Two-Step Many-Objective Optimal Power Flow Based on Knee Point-Driven Evolutionary Algorithm
Abstract
:1. Introduction
2. MaOPF Model
2.1. Objective Function
2.1.1. Generation Costs
2.1.2. Index of Voltage Deviation
2.1.3. Static Voltage Stability Margin
2.1.4. Emissions of Polluting Gases
2.2. Constraints in Power Systems
2.2.1. Constraints of Equality
2.2.2. Constraints of Inequality
3. Two-Step Solution Approach
3.1. Optimization Process with Many Objectives
3.1.1. KnEA-Based Many-Objective Optimization
3.1.2. Procedure of Many-Objective Optimization
- (1)
- The network parameters: the related information of power systems.
- (2)
- The controlled variable parameters: the bounds which are shown as (7), and the steps of T and . The considering controlled variable are listed as follow:
- (3)
- The algorithm parameters: the population size , the maximum generation number , the set of KPs , the ratio of size r, the rate of KPs in population t, the number of objectives which is taken as 4 in this paper.
3.2. Decision Support
3.2.1. Fuzzy c-Means
3.2.2. GRP Method
4. Case Studies
4.1. IEEE 118-Bus System
4.1.1. Introduction to the System
4.1.2. Algorithm Comparison
- (1)
- Generational distanceThe first indicator is the well-known generational distance (GD), which represents the convergence conditions of the set [23]. For measuring the convergence of obtained solutions, the formulation of GD is given as follows:
- (2)
- SpacingThe spacing (SP) is another popular indication for estimating the distribution of a Pareto front, and its expression is given by [23]:
4.1.3. Result Analysis
4.2. Application to the Hebei Provincial System
4.3. Discussions
5. Conclusions
- (1)
- Considering the generation cost, voltage deviation, static voltage stability margin and emissions of polluting gases, a MaOPF model is proposed to better adapt the increasingly diversified operating requirements of power systems.
- (2)
- The proposed solution approach not only can yield multiple well-distributed set of Pareto-optimal solutions, but also can further determine BCSs from each group, which represent decision-makers’ different, even conflicting, preferences.
- (3)
- The simulation results on two test cases with varied complexity levels verify the effectiveness of the proposal. More importantly, the KnEA has significant advantages in the optimization performance, compared with the other popular algorithms, such as RVEA and NSGA-III.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
OPF | Optimal power flow |
MOPF | Multi-objective optimal power flow |
MaOPF | Many-objective optimal power flow |
MOEA | Multi-objective evolutionary algorithm |
MaOP | Many-objective optimization problem |
NSGA-III | Non-dominated sorting genetic algorithm III |
KnEA | Knee point-driven evolutionary algorithm |
RVEA | Reference vector guided evolutionary algorithm |
BCS | Best compromise solution |
FCM | Fuzzy c-means |
GRP | Grey relational projection |
Active power output of a generator | |
Reactive power output of a generator | |
The number of generators | |
Voltage amplitude of a bus | |
Reference voltage amplitude of a bus | |
The number of buses | |
Phase-angle difference between two buses | |
Voltage phase angle of a bus | |
The number of load buses | |
Injected active power of a load bus | |
Injected reactive power of a load bus | |
Active loads of a load bus | |
Reactive load sof a load bus | |
The tap of a transformer | |
The number of adjustable transformer taps | |
The switching capacity of a reactive power compensation capacitor | |
The number of reactive power compensation capacitors | |
The power flow in the branch | |
The number of branches | |
The weighted distance of solutions | |
The priority membership of solutions | |
The generational distance | |
The spacing |
References
- Dommel, H.W.; Tinney, W.F. Optimal power flow solutions. IEEE Trans. Power Appl. Syst. 1968, 10, 1866–1876. [Google Scholar] [CrossRef]
- Vaccaro, A.; Canizares, C.A. An affine arithmetic-based framework for uncertain power flow and optimal power flow studies. IEEE Trans. Power Syst. 2017, 32, 274–288. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, H.; Bose, A.; Xia, Q.; Kang, C. Optimal power flow in AC–DC grids with discrete control devices. IEEE Trans. Power Syst. 2018, 33, 1461–1472. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, H.; Xia, Q.; Kang, C. A novel network model for optimal power flow with reactive power and network losses. Electr. Power Syst. Res. 2017, 144, 63–71. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Li, G.; Zhao, D.; Tian, W. Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties. IEEE Trans. Ind. Electron. 2019, 66, 1565–1575. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Li, G.; Mu, Y.; Zhao, D.; Chen, C.; Shen, B. Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing. Appl. Energy 2018, 232, 54–68. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, H.; Xia, Q.; Bose, A.; Kang, C. Optimal power flow based on successive linear approximation of power flow equations. IET Gener. Transm. Dis. 2016, 10, 3654–3662. [Google Scholar] [CrossRef]
- Bagde, B.Y.; Umre, B.S.; Dhenuvakonda, K.R. An efficient transient stability-constrained optimal power flow using biogeography-based algorithm. Int. Trans. Electr. Energy Syst. 2018, 28, e2467. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y. Social cognitive optimization with tent map for combined heat and power economic dispatch. Int. Trans. Electr. Energy Syst. 2018, e2660. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, S.; Mathieu, J.L. Distributionally robust chance-constrained optimal power flow with uncertain renewables and uncertain reserves provided by loads. IEEE Trans. Power Syst. 2017, 32, 1378–1388. [Google Scholar] [CrossRef]
- Dall’Anese, E.; Baker, K.; Summers, T. Chance-constrained AC optimal power flow for distribution systems with renewables. IEEE Trans. Power Syst. 2017, 32, 3427–3438. [Google Scholar] [CrossRef]
- Sharifzadeh, H.; Amjady, N. Stochastic security-constrained optimal power flow incorporating preventive and corrective actions. Int. Trans. Electr. Energy Syst. 2016, 26, 2337–2352. [Google Scholar] [CrossRef]
- Wen, Y.; Guo, C. Adjustable risk-based direct current optimal power flow. Int. Trans. Electr. Energy Syst. 2015, 25, 3212–3226. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Chen, Q.; Yang, J.; Kang, C.; Huang, J. Dependent discrete convolution based probabilistic load flow for the active distribution system. IEEE Trans. Sustain. Energy 2017, 8, 1000–1009. [Google Scholar] [CrossRef]
- Lu, Z.; Li, H.; Qiao, Y. Probabilistic flexibility evaluation for power system planning considering its association with renewable power curtailment. IEEE Trans. Power Syst. 2018, 33, 3285–3295. [Google Scholar] [CrossRef]
- Jin, P.; Li, Y.; Li, G.; Chen, Z.; Zhai, X. Optimized hierarchical power oscillations control for distributed generation under unbalanced conditions. Appl. Energy 2017, 194, 343–352. [Google Scholar] [CrossRef]
- Peng, Q.; Low, S.H. Distributed optimal power flow algorithm for radial networks, I: Balanced single phase case. IEEE Trans. Smart Grid 2018, 9, 111–121. [Google Scholar] [CrossRef]
- Xia, M.; Lai, Q.; Zhong, Y.; Li, C.; Chiang, H.D. Aggregator-based interactive charging management system for electric vehicle charging. Energies 2016, 9, 159. [Google Scholar] [CrossRef]
- He, H.; Guo, J.; Peng, J.; Tan, H.; Sun, C. Real-time global driving cycle construction and the application to economy driving pro system in plug-in hybrid electric vehicles. Energy 2018, 152, 95–107. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, C.; Wen, C.; Wang, P. A novel composite nonlinear controller for stabilization of constant power load in DC microgrid. IEEE Trans. Smart Grid 2017. [Google Scholar] [CrossRef]
- Herrera, L.; Zhang, W.; Wang, J. Stability analysis and controller design of DC microgrids with constant power loads. IEEE Trans. Smart Grid 2017, 8, 881–888. [Google Scholar] [CrossRef]
- Kang, Q.; Feng, S.; Zhou, M.; Ammari, A.C.; Sedraoui, K. Optimal load scheduling of plug-in hybrid electric vehicles via weight-aggregation multi-objective evolutionary algorithms. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2557–2568. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Li, G.; Zhao, D.; Chen, C. Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process. Energy 2018, 147, 286–296. [Google Scholar] [CrossRef]
- Adaryani, M.R.; Karami, A. Artificial bee colony algorithm for solving multi-objective optimal power flow problem. Int. J. Electr. Power Energy Syst. 2013, 53, 219–230. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, B.; Wang, P.; Liang, J.; Yuan, Y.; Huang, Y.; Lei, X. Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm. Energy 2017, 122, 70–82. [Google Scholar] [CrossRef]
- Abaci, K.; Yamacli, V. Differential search algorithm for solving multi-objective optimal power flow problem. Int. J. Electr. Power Energy Syst. 2016, 79, 1–10. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Zhao, D.; Li, G.; Chen, C. A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making. Energy 2018, 162, 237–254. [Google Scholar] [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A.; Farrag, S.M. Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm. IET Gen. Transm. Dis. 2016, 10, 1634–1647. [Google Scholar] [CrossRef]
- Li, Y.; Feng, B.; Li, G.; Qi, J.; Zhao, D.; Mu, Y. Optimal distributed generation planning in active distribution networks considering integration of energy storage. Appl. Energy 2018, 210, 1073–1081. [Google Scholar] [CrossRef]
- Antonio, L.M.; Coello, C.A.C. Coevolutionary multi-objective evolutionary algorithms: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2017, 22, 851–865. [Google Scholar] [CrossRef]
- Sarro, F.; Ferrucci, F.; Harman, M.; Manna, A.; Ren, J. Adaptive multi-objective evolutionary algorithms for overtime planning in software projects. IEEE Trans. Softw. Eng. 2017, 43, 898–917. [Google Scholar] [CrossRef]
- Li, W.; Özcan, E.; John, R. Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation. Renew. Energy 2017, 105, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tian, Y.; Jin, Y. A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2015, 19, 761–776. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Cheng, R.; Jin, Y. A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans. Evol. Comput. 2018, 22, 97–112. [Google Scholar] [CrossRef]
- Liu, H.L.; Chen, L.; Zhang, Q.; Deb, K. Adaptively allocating search effort in challenging many-objective optimization problems. IEEE Trans. Evol. Comput. 2018, 22, 433–448. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M. Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 2017, 47, 4108–4121. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Ye, X.; Liu, S.; Yin, Y.; Jin, Y. User-oriented many-objective cloud workflow scheduling based on an improved knee point driven evolutionary algorithm. Knowl. Based Syst. 2017, 135, 113–124. [Google Scholar] [CrossRef]
- Narimani, M.R.; Azizipanah-Abarghooee, R.; Zoghdar-Moghadam-Shahrekohne, B.; Gholami, K. A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type. Energy 2013, 49, 119–136. [Google Scholar] [CrossRef]
- Ye, C.J.; Huang, M.X. Multi-objective optimal power flow considering transient stability based on parallel NSGA-II. IEEE Trans. Power Syst. 2015, 30, 857–866. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Yegireddy, N.K. Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II. Int. J. Electr. Power Energy Syst. 2013, 53, 54–63. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Q.; Li, P.; Deng, D.; Chen, Y. A modified MOEA/D approach to the solution of multi-objective optimal power flow problem. Appl. Soft Comput. 2016, 47, 494–514. [Google Scholar] [CrossRef]
- Yokoyama, R.; Bae, S.H.; Morita, T.; Sasaki, H. Multiobjective optimal generation dispatch based on probability security criteria. IEEE Trans. Power Syst. 1988, 3, 317–324. [Google Scholar] [CrossRef]
- Gaing, Z.L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, M.; Ghavidel, S.; Ghanbarian, M.M.; Gharibzadeh, M.; Vahed, A.A. Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy 2014, 78, 276–289. [Google Scholar] [CrossRef]
- Montoya, F.G.; Baños, R.; Gil, C.; Espín, A.; Alcayde, A.; Gómez, J. Minimization of voltage deviation and power losses in power networks using Pareto optimization methods. Eng. Appl. Artif. Intell. 2010, 23, 695–703. [Google Scholar] [CrossRef]
- Bouchekara, H.R.E.H.; Chaib, A.E.; Abido, M.A.; El-Sehiemy, R.A. Optimal power flow using an Improved Colliding Bodies Optimization algorithm. Appl. Soft Comput. 2016, 42, 119–131. [Google Scholar] [CrossRef]
- Mohamed, A.A.A.; Mohamed, Y.S.; El-Gaafary, A.A.; Hemeida, A.M. Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 2017, 142, 190–206. [Google Scholar] [CrossRef]
- Davoodi, E.; Babaei, E.; Mohammadi-ivatloo, B. An efficient covexified SDP model for multi-objective optimal power flow. Int. J. Electr. Power Energy Syst. 2018, 102, 254–264. [Google Scholar] [CrossRef]
- Biswas, P.P.; Suganthan, P.N.; Amaratunga, G.A. Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manag. 2017, 148, 1194–1207. [Google Scholar] [CrossRef]
- Thiele, L.; Miettinen, K.; Korhonen, P.J.; Molina, J. A preference-based evolutionary algorithm for multi-objective optimization. Evol. Comput. 2009, 17, 411–436. [Google Scholar] [CrossRef]
- Pal, N.R.; Bezdek, J.C. On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 1995, 3, 370–379. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Li, G. A two-stage multi-objective optimal power flow algorithm for hybrid AC/DC grids with VSC-HVDC. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Chang, X.; Wang, Q.; Liu, Y.; Wang, Y. Sparse regularization in fuzzy c-means for high-dimensional data clustering. IEEE Trans. Cybern. 2017, 47, 2616–2627. [Google Scholar] [CrossRef]
- Zang, Y.; Sun, W.; Han, S. Grey relational projection method for multiple attribute decision making with interval-valued dual hesitant fuzzy information. J. Intell. Fuzzy Syst. 2017, 33, 1053–1066. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Sun, Y. Online static security assessment of power systems based on lasso algorithm. Appl. Sci. 2018, 8, 1442. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z. Application of EOS-ELM with binary Jaya-based feature selection to real-time transient stability assessment using PMU data. IEEE Access 2017, 5, 23092–23101. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, H.; Bose, A.; Zheng, T.; Xia, Q.; Kang, C. A linearized OPF model with reactive power and voltage magnitude: A pathway to improve the Mw-only DC OPF. IEEE Trans. Power Syst. 2018, 33, 1734–1745. [Google Scholar] [CrossRef]
- Levron, Y.; Guerrero, J.M.; Beck, Y. Optimal power flow in microgrids with energy storage. IEEE Trans. Power Syst. 2013, 28, 3226–3234. [Google Scholar] [CrossRef]
- Reddy, S.S. Optimal power flow with renewable energy resources including storage. Electr. Eng. 2017, 99, 685–695. [Google Scholar] [CrossRef]
Objective Function | Extreme Value | KnEA | RVEA | NSGA-III |
---|---|---|---|---|
f1/(104 $/h) | Maximum value | 2.3062 | 2.3413 | 2.3507 |
Minimum value | 2.2808 | 2.2826 | 2.2831 | |
f2/(p.u.) | Maximum value | 0.0224 | 0.3147 | 0.0408 |
Minimum value | 0.0165 | 0.2451 | 0.0177 | |
f3/(p.u.) | Maximum value | 0.0449 | 0.0456 | 0.0496 |
Minimum value | 0.0301 | 0.0406 | 0.0361 | |
f4/(104 lb/h) | Maximum value | 2.2539 | 2.3151 | 2.2857 |
Minimum value | 2.2036 | 2.2078 | 2.2058 |
Algorithm | Metrics | Best | Average | Worst |
---|---|---|---|---|
KnEA | GD | 4133.68 | 4515.35 | 4868.10 |
SP | 15.23 | 16.40 | 17.92 | |
RVEA | GD | 5347.71 | 5893.61 | 6286.75 |
SP | 40.16 | 65.99 | 69.43 | |
NSGA-III | GD | 4879.06 | 5430.93 | 6250.68 |
SP | 17.37 | 19.67 | 21.35 |
Algorithm | KnEA | RVEA | NSGA-III |
---|---|---|---|
Average Time (s) | 88.12 | 93.45 | 90.69 |
BCSs | f1 (104 $/h) | f2 (p.u.) | f3 (p.u.) | f4 (104 lb/h) | PM |
---|---|---|---|---|---|
Prefer for f1 | 2.2828 | 0.0174 | 0.0309 | 2.2417 | 0.7553 |
Prefer for f2 | 2.2831 | 0.0167 | 0.0364 | 2.2413 | 0.7423 |
Prefer for f3 | 2.2919 | 0.0173 | 0.0303 | 2.2206 | 0.6885 |
Prefer for f4 | 2.2926 | 0.0185 | 0.0355 | 2.2190 | 0.6848 |
Generators | Before Optimization | After Optimization | ||||
---|---|---|---|---|---|---|
PG (p.u.) | QG (p.u.) | UG (p.u.) | PG (p.u.) | QG (p.u.) | UG (p.u.) | |
G1 | 4.500 | 0 | 1.050 | 4.471 | −0.856 | 1.019 |
G2 | 0.850 | 0 | 0.990 | 0.935 | 0.489 | 0.987 |
G3 | 2.200 | 0 | 1.050 | 2.420 | 1.811 | 1.015 |
G4 | 3.140 | 0 | 1.015 | 3.454 | −1.897 | 1.004 |
G5 | 2.040 | 0 | 1.025 | 2.244 | 0.331 | 1.009 |
G6 | 0.480 | 0 | 0.955 | 0.528 | 0.301 | 0.983 |
G7 | 1.550 | 0 | 0.985 | 1.705 | 0.793 | 1.005 |
G8 | 1.600 | 0 | 0.995 | 1.760 | −0.310 | 1.002 |
G9 | 3.910 | 0 | 1.005 | 4.300 | 3.749 | 1.000 |
G10 | 3.920 | 0 | 1.050 | 4.312 | −3.919 | 1.019 |
G11 | 5.164 | 0 | 1.035 | 3.690 | −0.772 | 1.031 |
G12 | 4.770 | 0 | 1.040 | 4.501 | 0.026 | 1.019 |
G13 | 6.070 | 0 | 1.005 | 5.463 | −0.154 | 1.015 |
G14 | 2.520 | 0 | 1.017 | 2.772 | 0.304 | 1.008 |
Optimization Condition | f1 (104 $/h) | f2 (p.u.) | f3 (p.u.) | f4 (104 lb/h) |
---|---|---|---|---|
Before optimization | 13.1221 | 0.0416 | 1.8729 | 2.9153 |
After optimization | 2.2828 | 0.0174 | 0.0309 | 2.2417 |
BCSs | f1 (105 $/h) | f2 (p.u.) | f3 (p.u.) | f4 (105 lb/h) | PM |
---|---|---|---|---|---|
Prefer for f1 | 6.8019 | 4.9166 | 7.1676 | 1.3378 | 0.8082 |
Prefer for f2 | 11.0076 | 1.4871 | 4.2874 | 1.4632 | 0.8471 |
Prefer for f3 | 7.8233 | 3.3164 | 2.5808 | 1.4277 | 0.7163 |
Prefer for f4 | 7.8030 | 3.0755 | 5.2818 | 1.3366 | 0.8213 |
Optimization condition | f1 (105 $/h) | f2 (p.u.) | f3 (p.u.) | f4 (105 lb/h) |
---|---|---|---|---|
Before optimization | 16.9414 | 166.2188 | 70.7107 | 6.5995 |
After optimization | 6.8019 | 4.9166 | 7.1676 | 1.3378 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, Y. Two-Step Many-Objective Optimal Power Flow Based on Knee Point-Driven Evolutionary Algorithm. Processes 2018, 6, 250. https://doi.org/10.3390/pr6120250
Li Y, Li Y. Two-Step Many-Objective Optimal Power Flow Based on Knee Point-Driven Evolutionary Algorithm. Processes. 2018; 6(12):250. https://doi.org/10.3390/pr6120250
Chicago/Turabian StyleLi, Yahui, and Yang Li. 2018. "Two-Step Many-Objective Optimal Power Flow Based on Knee Point-Driven Evolutionary Algorithm" Processes 6, no. 12: 250. https://doi.org/10.3390/pr6120250
APA StyleLi, Y., & Li, Y. (2018). Two-Step Many-Objective Optimal Power Flow Based on Knee Point-Driven Evolutionary Algorithm. Processes, 6(12), 250. https://doi.org/10.3390/pr6120250