# Experimental Development Process of a New Fluid–Solid Coupling Similar-Material Based on the Orthogonal Test

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Method

#### 2.1. Materials

#### 2.1.1. Fluid–Solid Coupling Similarity Theory

_{x}, K

_{y}, K

_{z}are the permeability coefficients in x, y, and z directions (cm/s), K

_{x}= K

_{y}= K

_{z}; p is the water pressure (MPa); S is the storage coefficient; e is the volume strain; W is the source sink term.

_{ij,i}is the stress tensor; X

_{j}is the volume force (N/m

^{3}); ρ is the density (g/cm

^{3}); u

_{i}is the displacement (cm).

_{ij}is the total stress tensor; $\overline{{\sigma}_{ij}}$ is the effective stress tensor; α is the effective stress coefficient of Biolt; δ is the Kronker mark; ρ is the density (g/cm

^{3}).

_{G}, C

_{u}, C

_{l}, C

_{λ}, C

_{γ}, C

_{e}, C

_{ρ}, and C

_{t}are the similarity ratios of the shear modulus, displacement, model size, Lame constant, bulk density, volumetric strain, density, and time, respectively.

_{l}, C

_{λ}, and C

_{k}are the similarity ratios of the model size, Lame constant, and permeability coefficient, respectively.

#### 2.1.2. Similar-Material Components

#### 2.2. Methodology

#### 2.2.1. Orthogonal Test Schemes of Similar-Material Proportion

_{25}(5

^{4}). The level values of each factor were set as input in the orthogonal experimental design module of SPSS software, leading to the schemes, as listed in Table 2.

#### 2.2.2. Fabricating Specimens

- (1)
- Aggregate, cementing agent and regulator were weighed proportionately.
- (2)
- The aggregate and cement were mixed evenly, followed by adding water 0.5 times of cement.
- (3)
- Vaseline was heated to a liquid state and poured into the above mixture.
- (4)
- Antiwear hydraulic oil was added and stirred.
- (5)
- The well-mixed materials were loaded into a mold and compacted. The mold for testing specimen tensile strength is a PVC tube with a height of 25 mm and an inner diameter of 45 mm (Figure 2h).
- (6)
- Demolded and labeled, specimens were maintained for three days at room temperature.

#### 2.2.3. Testing Index Parameters of Specimens

_{water}is the specimen weight after immersion (g); m

_{dry}is the specimen weight before immersion (g).

_{c}and brittle behavior (BB)

_{t}

_{v}is the failure load value of the specimen (N); and L

_{h}is the thickness of the specimen (mm).

^{2}); A is the specimen sectional area (cm

^{2}); L is the specimen height (cm); $\Delta {h}_{1}$, $\Delta {h}_{2}$ are initial water head difference and water head difference after t time (cm), respectively. In Table 3, the variation range of the permeability coefficient of similar material specimen is 8.79 × 10

^{−8}–2.95 × 10

^{−4}cm/s.

## 3. Results and Discussion

#### 3.1. Results

#### 3.1.1. Density Analysis

_{jm}is the sum of the experimental indexes corresponding to the j factor, m level is in the range analysis. K

_{jm}

_{-a}is the average value of K

_{jm}and R

_{j}is the range of the j column factor, reflecting the variation range of the test index. The larger the R

_{j}, the greater the effect of the factors on the test indicators, which can determine the primary and secondary factors.

_{1}of factor A are as follows: K

_{A}

_{1}= 1.766 + 1.761 + 1.884 + 1.879 + 1.832 = 9.122, K

_{A}

_{1}

_{-a}= K

_{A}

_{1}/5 = 1.824. Similarly, K

_{A}

_{2}= 9.346, K

_{A}

_{2}

_{-a}= K

_{A}

_{2}/5 = 1.869; K

_{A}

_{3}= 9.013, K

_{A}

_{3}

_{-a}= K

_{A}

_{3}/5 = 1.803; K

_{A}

_{4}= 9.058, K

_{A}

_{4}

_{-a}= K

_{A}

_{4}/5 = 1.812; K

_{A}

_{5}=8.703, K

_{A}

_{5}

_{-a}= K

_{A}

_{5}/5 = 1.741.

_{A}= K

_{A}

_{2}

_{-a}− K

_{A}

_{5}

_{-a}= 0.128, R

_{B}= 0.047, R

_{C}= 0.082, R

_{D}= 0.036, as shown in Table 4.

_{A}> R

_{C}> R

_{B}> R

_{D}. Therefore, the order of the factors that affects the specimen density is A > C > B > D.

_{e}), the percentage of the regression model error in the total error (R-Sq) and the adjusted R-Sq. R-Sq is used to show that the model is in line with the data, and the larger the value, the better the regression model and the data. The larger the R-Sq value, the better the fit between the regression model and the data.

_{e}= 0.0632119, R-Sq = 80.46%, the adjusted R-Sq = 75.39%, verifying the reliability of the similar-material density regression model.

#### 3.1.2. Compressive Strength Analysis

_{C}> R

_{A}> R

_{D}> R

_{B}. Therefore, the order of the factors affecting the specimen density is C > A > D > B. Figure 6 shows the intuitive analysis chart of effective factors of specimen compressive strength. Specimen compressive strength increases when increasing the percentage of river sand in the aggregate and the mass ratio of cement and vaseline.

_{c}= −2.04562 + 3.2768A − 0.13096B + 0.469376C − 5.75D

_{e}= 0.173737, R-Sq =94.31%, the adjusted R-Sq =82.94%, indicating the reliability of the similar-material compressive strength regression model.

#### 3.1.3. Tensile Strength Analysis

_{C}> R

_{A}> R

_{D}> R

_{B}. Therefore, the order of the factors affecting the specimen density is C > A > D > B. Figure 7 shows the intuitive analysis chart of factors affecting the specimen tensile strength. Specimen tensile strength increases with increasing the percentage of river sand in aggregate and the mass ratio of cement and vaseline.

_{t}= −0.19218 + 0.2916A − 0.00784B + 0.0439676C − 0.424D

_{e}= 0.0146990, R-Sq = 95.06%, the adjusted R-Sq = 85.17%, confirming the reliability of the similar-material tensile strength regression model.

#### 3.1.4. Permeability Coefficient Analysis

_{D}> R

_{C}> R

_{B}> R

_{A}. Therefore, the order of the factors affecting the specimen density is D > C > B > A. Figure 8 shows the intuitive analysis chart of influence factors affecting the specimen permeability coefficient. With increasing the percentage of antiwear hydraulic oil in the total mass of similar materials, the mass ratio of cement and vaseline, and the mass ratio of calcium carbonate and talc powder, the permeability coefficient first increases and then decreases.

_{e}= 0.0000412355, R-Sq = 86.20%, the adjusted R-Sq = 78.60%, indicating the reliability of similar-material permeability coefficient regression model.

#### 3.2. Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Li, Z.K.; Lu, D.R.; Nakayama, H.; Xi, J.H.; Sun, J.S. Developement and applicaiton of new technology for 3D geomechanical model test of large underground houses. Chin. J. Rock Mech. Eng.
**2003**, 22, 1430–1436. [Google Scholar] - Cui, X.M.; Miu, X.X.; Su, D.G.; Ma, W.M. Error analysis in similar material simulation test of the movement of rock strata and surface. Chin. J. Rock Mech. Eng.
**2002**, 21, 1827–1830. [Google Scholar] - Chapman, D.N.; Ahn, S.K.; Hunt, D.V.L.; Chan, A.H.C. The Use of Model Tests to Investigate the Ground Displacements Associated with Multiple Tunnel Construction in Soil. Tunn. Undergr. Space Technol.
**2006**, 21, 413. [Google Scholar] [CrossRef] - Jeon, S.; Kim, J.; Seo, Y.; Hong, C. Effect of a Fault and Weak Plane on the Stability of a Tunnel in Rock—A Scaled Model Test and Numerical Analysis. Int. J. Rock Mech. Min.
**2004**, 41, 658–663. [Google Scholar] [CrossRef] - Fumagalli, E. Statical and Geomechanical Model; Springer: New York, NY, USA, 1973; pp. 25–36. [Google Scholar]
- Kim, S.H.; Burd, H.J. Model testing of closely spaced tunnels in clay. Geotechnique
**1998**, 48, 375–388. [Google Scholar] [CrossRef] - Gu, D.Z. Similar Materials and Similar Models; China University of Mining and Technology Press: Xuzhou, China, 1995. [Google Scholar]
- Fu, X.M.; Deng, R.G. Indoor Rock Mechanics Test; Southwest Jiao Tong University Press: Chengdu, China, 2012; pp. 56–58. [Google Scholar]
- Chen, S.J.; Wang, H.L.; Zhang, J.W.; Xing, H.L.; Wang, H.L. Experimental study on low-strength similar-material proportioning and properties for coal mining. Adv. Mater. Sci. Eng.
**2015**, 2015, 1–6. [Google Scholar] [CrossRef] - Chen, S.J.; Wang, H.L.; Zhang, J.W.; Xing, H.L.; Wang, H.L. Low-Strength Similar Materials for Backfill Mining: Insight from Experiments on Components and Influence Mechanism. Geotech. Test. J.
**2015**, 38, 929–935. [Google Scholar] [CrossRef] - Chen, L.W.; Bai, S.W. Proportioning test study on similar of rock burst tendency of brittle rock mass. Rock Soil Mech.
**2006**, 27, 1050–1054. [Google Scholar] - Meguid, M.A.; Saada, O.; Nunes, M.A.; Mattar, J. Physical modeling of tunnels in soft ground: A review. Tunn. Undergr. Space Technol.
**2008**, 23, 185–198. [Google Scholar] [CrossRef] - Wu, B.T.; Zhu, H.H.; Xu, W.Q.; Ming, T. Research study of similar material for weak surrounding rock mass of class IV. Rock Soil Mech.
**2013**, 34, 109–116. [Google Scholar] - Zhang, Q.Y.; Li, S.C.; Guo, X.H.; Li, Y.; Wang, H.P. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application. Rock Soil Mech.
**2008**, 29, 2126–2130. [Google Scholar] - Zhang, Q.Y.; Liu, D.J.; Jia, C.; Shen, X.; Liu, J.; Duan, K. Development of geomechanical model similitude material for salt rock oil-gas storage medium. Rock Soil Mech.
**2009**, 30, 3581–3586. [Google Scholar] - Zhang, S.T.; Dai, L.C.; Wang, B.; Cao, Y. Experiment study on mixture ratio of similar material for simulation of coal and gas outburst. Coal Sci. Technol.
**2015**, 43, 76–81. [Google Scholar] - Liu, J.H.; Li, W.X.; Liu, Y.S.; Liu, B.G. A method for determining the ratio of similar material to simulate porous water-bearing stratum. Rock Soil Mech.
**2018**, 39, 657–664. [Google Scholar] [CrossRef] - Zhang, F.; Ma, G.; Tao, Y.Q.; Liu, X.; Feng, D.; Li, R. Proportioning experiment of similar material for coal and rock model test. Coal Geol. Explor.
**2018**, 46, 119–124. [Google Scholar] - Zha, J.F.; Li, H.Z.; Guo, G.L.; Wang, J.T. Influence of temperature and humidity on similar material and its control measures. Environ. Earth Sci.
**2017**, 76, 740. [Google Scholar] [CrossRef] - Li, H.Z.; Guo, G.L.; Zha, J.F. Study on time-varying characteristics of similar material model strength and the regulation measures. Environ. Earth Sci.
**2017**, 76, 518. [Google Scholar] [CrossRef] - Li, L.J.; Qian, M.G.; Yin, Y.Q. Simulation of similar materials for water inrush from coal floor. Coal Geol. Explor.
**1996**, 25, 33–36. [Google Scholar] - Sun, W.B.; Zhang, S.C.; Li, Y.Y.; Lu, C. Development application of solid-fluid coupling similar material for floor strata and simulation test of water-inrush in deep mining. Chin. J. Rock Mech. Eng.
**2015**, 31, 2665–2670. [Google Scholar] - Sun, W.B.; Zhang, S.C.; Guo, W.J.; Liu, W.T. Physical simulation of high-pressure water inrush through the floor of a deep mine. Mine Water Environ.
**2017**, 36, 542–549. [Google Scholar] [CrossRef] - Chen, J.T.; Yin, L.M.; Sun, W.B.; Lu, C.; Zhang, S.C.; Sun, X.Z. Development and application for new solid-fluid coupling similar material of deep floor aquifuge. Chin. J. Rock Mech. Eng.
**2015**, 34, 3956–3964. [Google Scholar] - Li, S.C.; Feng, X.D.; Li, S.C.; Li, L.P.; Li, G.Y. Research and development of a new similar material for solid-fluid coupling and its application. Chin. J. Rock Mech. Eng.
**2010**, 29, 281–288. [Google Scholar] - Li, S.C.; Zhou, Y.; Li, L.P.; Zhang, J.; Song, S.G. Development and application of a new similar material for underground engineering fluid-solid coupling model test. Chin. J. Rock Mech. Eng.
**2012**, 31, 1128–1137. [Google Scholar] - Yu, L.Y.; Jing, H.W.; Xu, B.S.; Wang, Y.C. Solid-fluid coupling analogous material test for subsea tunnel. J. Cent. South Univ. (Sci. Technol.)
**2015**, 46, 983–990. [Google Scholar] [CrossRef] - Wang, H. The Development and Application of Solid-Liquid Coupling Similar Stimulation Non-Hydrophilic Material for Water-Protection Mining. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2015. [Google Scholar]
- Wang, K.; Li, S.C.; Zhang, Q.S.; Zhang, X.; Li, L.P. Development and application of new similar materials of surrounding rock for a fluid-solid coupling model test. Rock Soil Mech.
**2016**, 37, 2521–2533. [Google Scholar] [CrossRef] - Zhao, B.; Wen, G.C.; Sun, H.T.; Sun, D.L.; Yang, H.M.; Cao, J.; Dai, L.C.; Wang, B. Similarity criteria and coal-like material in coal and gas outburst physical simulation. Int. J. Coal Sci. Technol.
**2018**, 5, 167–178. [Google Scholar] [CrossRef] - Hu, Y.Q.; Zhao, Y.S.; Yang, D. Simulation theory & method of 3D solid-liquid coupling. J. Liaoning Tech. Univ.
**2007**, 26, 204–206. [Google Scholar] - Wang, W.Z. Design and Analysis of Experiments; Higher Education Press: Beijing, China, 2004; pp. 23–25. [Google Scholar]
- Gao, R.; Yan, H.; Ju, F.; Mei, X.C.; Wang, X.L. Influential factors and control of water inrush in a coal seam as the main aquifer. Int. J. Min. Sci. Technol.
**2018**, 28, 187–193. [Google Scholar] [CrossRef] - Guo, Z.G. Methods of Social Statistics: Application of SPSS Software; Renmin University of China Press: Beijing, China, 1999. [Google Scholar]
- Li, K.; Li, H.F. Response characteristics analysis of mine water filled structure with ground-tunnel transient electromagnetic method. J. China Univ. Sci. Technol.
**2018**, 47, 1113–1122. [Google Scholar] - Wu, R.A.; Wei, Y.J.; Ji, C.L. Analysis of deformation mechanism of slope with soft and hard rock inter-bedded structure in Three Gorges reservoir area: A case study of Xiangcheng elementary school in Yunyang. J. Catastrophol.
**2018**, 33, 212–217. [Google Scholar] [CrossRef] - Cao, P.; Wang, H.; Jin, J.; Hao, R.Q.; Fan, W.C. Experimental study of the fracture failure of sandstone containing hole and fissure under seepage water pressure. J. China Univ. Sci. Technol.
**2018**, 47, 240–246. [Google Scholar] - Esposito, L.; Esposito, A.W.; Pasculli, A.; Sciarra, N. Particular features of the physical and mechanical characteristics of certain Phlegraean pyroclastic soils. Catena
**2013**, 104, 186–194. [Google Scholar] [CrossRef] - Pasculli, A.; Sciarra, N.; Esposito, L.; Esposito, A.W. Effects of wetting and drying cycles on mechanical proprerties of pyroclastic soils. Catena
**2017**, 156, 113–123. [Google Scholar] [CrossRef] - Cao, R.H.; Lin, H.; Cao, P. Strength and failure characteristics of brittle jointed rock-like specimens under uniaxial compression: Digital speckle technology and a particle mechanics approach. Int. J. Min. Sci. Technol.
**2018**, 28, 669–677. [Google Scholar] [CrossRef] - Peng, S.J.; Chen, C.C.; Xu, J.; Zhang, H.L.; Tang, Y.; Nie, W.; Zhao, K. Loading rate dependency of rock stress-strain curve based on Brazil splitting test. Chin. J. Rock Mech. Eng.
**2018**, 37, 3247–3252. [Google Scholar] [CrossRef] - Zhou, H.; Meng, F.Z.; Zhang, C.Q.; Xu, R.C.; Lu, J.J. Quantitative evaluation of rock brittleness based on stress-strain curve. Chin. J. Rock Mech. Eng.
**2014**, 33, 1114–1122. [Google Scholar] - Wu, L.Y. Introduction to MINITAB Software: The Most Practical Statistical Analysis Tutorial; Higher Education Press: Beijing, China, 2012; pp. 78–81. [Google Scholar]
- Feng, H.Y. The influence of pressure and temperature on dispensing quantity in dispensing technology based on MINITAB regression analysis method. Commod. Qual.
**2017**, 9, 229–230. [Google Scholar]

**Figure 1.**The raw materials of similar-material: (

**a**) River sand; (

**b**) Calcium carbonate; (

**c**) Talc powder; (

**d**) White cement; (

**e**) Vaseline; (

**f**) Antiwear hydraulic oil.

**Figure 2.**The fabrication process of similar-material specimen: (

**a**) Weighing; (

**b**) Stirring; (

**c**) Heating vaseline; (

**d**) Adding hydraulic oil; (

**e**) Compacting; (

**f**) Demolding; (

**g**) Partial specimen; (

**h**) PVC tube.

**Figure 5.**Intuitive analysis chart of density influencing factor: (

**a**) Factor A; (

**b**) Factor B; (

**c**) Factor C; (

**d**) Factor D.

**Figure 6.**Intuitive analysis chart of compressive strength influencing factor: (

**a**) Factor A; (

**b**) Factor B; (

**c**) Factor C; (

**d**) Factor D.

**Figure 7.**Intuitive analysis chart of tensile strength influencing factor: (

**a**) Factor A; (

**b**) Factor B; (

**c**) Factor C; (

**d**) Factor D.

**Figure 8.**Intuitive analysis chart of permeability coefficient influencing factor: (

**a**) Factor A; (

**b**) Factor B; (

**c**) Factor C; (

**d**) Factor D.

Level | Factors | |||
---|---|---|---|---|

A (%) | B | C | D (%) | |

1 | 75 | 3:4 | 3:7 | 2 |

2 | 80 | 4:4 | 4:6 | 3 |

3 | 85 | 5:4 | 5:5 | 4 |

4 | 90 | 6:4 | 6:4 | 5 |

5 | 95 | 7:4 | 7:3 | 6 |

Schemes | A (%) | B | C | D (%) |
---|---|---|---|---|

S1 | 1 (75) | 1 (3:4) | 1 (3:7) | 1 (2) |

S2 | 1 | 2 (4:4) | 2 (4:6) | 2 (3) |

S3 | 1 | 3 (5:4) | 3 (5:5) | 3 (4) |

S4 | 1 | 4 (6:4) | 4 (6:4) | 4 (5) |

S5 | 1 | 5 (7:4) | 5 (7:3) | 5 (6) |

S6 | 2 (80) | 1 | 2 | 3 |

S7 | 2 | 2 | 3 | 4 |

S8 | 2 | 3 | 4 | 5 |

S9 | 2 | 4 | 5 | 1 |

S10 | 2 | 5 | 1 | 2 |

S11 | 3 (85) | 1 | 3 | 5 |

S12 | 3 | 2 | 4 | 1 |

S13 | 3 | 3 | 5 | 2 |

S14 | 3 | 4 | 1 | 3 |

S15 | 3 | 5 | 2 | 4 |

S16 | 4 (90) | 1 | 4 | 2 |

S17 | 4 | 2 | 5 | 3 |

S18 | 4 | 3 | 1 | 4 |

S19 | 4 | 4 | 2 | 5 |

S20 | 4 | 5 | 3 | 1 |

S21 | 5 (95) | 1 | 5 | 4 |

S22 | 5 | 2 | 1 | 5 |

S23 | 5 | 3 | 2 | 1 |

S24 | 5 | 4 | 3 | 2 |

S25 | 5 | 5 | 4 | 3 |

**Table 3.**The index parameters of specimens (PrePEM: pre-peak elastic modulus; PostPEM: post peak elastic modulus; BB: brittle behavior; RTC: the ratio of uniaxial tensile strength and uniaxial compressive strength).

Schemes | σ_{c} (MPa) | PrePEM (MPa) | PostPEM (MPa) | BB | σ_{t} (MPa) | RTC | ρ (g/cm^{3}) | K (cm/s) |
---|---|---|---|---|---|---|---|---|

S1 | 0.268 | 24.15 | 9.05 | 2.67 | 0.028 | 1/9.6 | 1.766 | 3.15 × 10^{−5} |

S2 | 0.228 | 22.39 | 10.38 | 2.16 | 0.021 | 1/10.9 | 1.761 | 2.08 × 10^{−5} |

S3 | 0.250 | 23.06 | 9.00 | 2.56 | 0.025 | 1/10.0 | 1.884 | 2.95 × 10^{−4} |

S4 | 0.278 | 24.55 | 9.15 | 2.68 | 0.026 | 1/10.7 | 1.879 | 2.85 × 10^{−6} |

S5 | 0.461 | 40.31 | 14.21 | 2.84 | 0.048 | 1/9.6 | 1.832 | 1.23 × 10^{−6} |

S6 | 0.272 | 24.38 | 9.33 | 2.61 | 0.024 | 1/11.3 | 1.778 | 1.09 × 10^{−4} |

S7 | 0.400 | 43.92 | 15.17 | 2.90 | 0.033 | 1/12.1 | 1.851 | 2.58 × 10^{−6} |

S8 | 0.435 | 51.20 | 19.89 | 2.57 | 0.042 | 1/10.4 | 1.886 | 8.79 × 10^{−5} |

S9 | 0.859 | 103.13 | 43.00 | 2.40 | 0.095 | 1/9.1 | 1.892 | 3.25 × 10^{−6} |

S10 | 0.472 | 45.18 | 16.09 | 2.81 | 0.050 | 1/9.4 | 1.939 | 2.06 × 10^{−6} |

S11 | 0.500 | 55.23 | 18.79 | 2.94 | 0.045 | 1/11.1 | 1.731 | 8.13 × 10^{−5} |

S12 | 1.005 | 98.76 | 34.58 | 2.86 | 0.101 | 1/10.0 | 1.837 | 8.45 × 10^{−6} |

S13 | 1.103 | 112.40 | 42.00 | 2.68 | 0.099 | 1/11.1 | 1.843 | 1.25 × 10^{−7} |

S14 | 0.521 | 39.87 | 15.05 | 2.65 | 0.046 | 1/11.3 | 1.809 | 5.17 × 10^{−5} |

S15 | 0.365 | 40.26 | 16.35 | 2.46 | 0.040 | 1/9.1 | 1.792 | 3.09 × 10^{−5} |

S16 | 0.910 | 106.90 | 40.61 | 2.63 | 0.080 | 1/11.4 | 1.895 | 2.00 × 10^{−7} |

S17 | 1.223 | 121.20 | 49.88 | 2.43 | 0.102 | 1/12.0 | 1.894 | 1.56 × 10^{−7} |

S18 | 0.538 | 40.26 | 16.35 | 2.46 | 0.053 | 1/10.2 | 1.728 | 4.25 × 10^{−5} |

S19 | 0.502 | 42.29 | 17.23 | 2.45 | 0.053 | 1/9.5 | 1.755 | 8.09 × 10^{−6} |

S20 | 0.786 | 55.23 | 18.79 | 2.94 | 0.070 | 1/11.2 | 1.786 | 1.02 × 10^{−6} |

S21 | 1.311 | 135.60 | 52.40 | 2.59 | 0.111 | 1/11.8 | 1.736 | 8.79 × 10^{−8} |

S22 | 0.531 | 39.83 | 15.05 | 2.65 | 0.057 | 1/9.3 | 1.798 | 7.59 × 10^{−6} |

S23 | 0.656 | 45.92 | 17.17 | 2.67 | 0.058 | 1/11.3 | 1.722 | 9.93 × 10^{−5} |

S24 | 0.715 | 66.20 | 29.20 | 2.23 | 0.079 | 1/9.1 | 1.725 | 1.21 × 10^{−6} |

S25 | 1.116 | 108.69 | 43.60 | 2.49 | 0.101 | 1/11.1 | 1.722 | 2.29 × 10^{−7} |

Factors | A | B | C | D | Sum of Test Results | |
---|---|---|---|---|---|---|

ρ | K_{1} | 9.122 | 8.906 | 9.040 | 9.003 | ∑ = 45.241 |

K_{2} | 9.346 | 9.141 | 8.808 | 9.163 | ||

K_{3} | 9.013 | 9.063 | 8.977 | 9.087 | ||

K_{4} | 9.058 | 9.060 | 9.219 | 8.986 | ||

K_{5} | 8.703 | 9.071 | 9.197 | 9.002 | ||

K_{1}_{-a} | 1.824 | 1.781 | 1.808 | 1.801 | ||

K_{2}_{-a} | 1.869 | 1.828 | 1.762 | 1.833 | ||

K_{3}_{-a} | 1.803 | 1.813 | 1.795 | 1.817 | ||

K_{4}_{-a} | 1.812 | 1.812 | 1.844 | 1.797 | ||

K_{5}_{-a} | 1.741 | 1.814 | 1.839 | 1.800 | ||

R | 0.128 | 0.047 | 0.082 | 0.036 | ||

σ_{c} | K_{1} | 1.485 | 3.261 | 2.330 | 3.574 | ∑ = 20.705 |

K_{2} | 2.438 | 3.387 | 2.023 | 3.428 | ||

K_{3} | 3.494 | 2.982 | 2.651 | 3.382 | ||

K_{4} | 3.959 | 2.875 | 3.744 | 2.892 | ||

K_{5} | 4.329 | 3.200 | 4.957 | 2.429 | ||

K_{1}_{-a} | 0.297 | 0.652 | 0.466 | 0.715 | ||

K_{2}_{-a} | 0.488 | 0.677 | 0.405 | 0.686 | ||

K_{3}_{-a} | 0.699 | 0.596 | 0.530 | 0.676 | ||

K_{4}_{-a} | 0.792 | 0.575 | 0.749 | 0.578 | ||

K_{5}_{-a} | 0.866 | 0.640 | 1.191 | 0.686 | ||

R | 0.378 | 0.102 | 0.586 | 0.229 | ||

σ_{t} | K_{1} | 0.148 | 0.288 | 0.234 | 0.352 | ∑ = 1.487 |

K_{2} | 0.244 | 0.314 | 0.196 | 0.329 | ||

K_{3} | 0.331 | 0.277 | 0.252 | 0.298 | ||

K_{4} | 0.358 | 0.299 | 0.350 | 0.263 | ||

K_{5} | 0.406 | 0.309 | 0.455 | 0.245 | ||

K_{1}_{-a} | 0.0296 | 0.0576 | 0.0468 | 0.0704 | ||

K_{2}_{-a} | 0.0488 | 0.0628 | 0.0392 | 0.0658 | ||

K_{3}_{-a} | 0.0662 | 0.0554 | 0.0504 | 0.0596 | ||

K_{4}_{-a} | 0.0716 | 0.0598 | 0.07 | 0.0526 | ||

K_{5}_{-a} | 0.0812 | 0.0618 | 0.091 | 0.049 | ||

R | 0.0516 | 0.0074 | 0.0518 | 0.0214 | ||

K | K_{1} | 3.51 × 10^{−4} | 2.22 × 10^{−4} | 1.35 × 10^{−4} | 1.44 × 10^{−4} | ∑ = 1.19 × 10^{−3} |

K_{2} | 2.05 × 10^{−4} | 3.96 × 10^{−5} | 2.68 × 10^{−4} | 2.44 × 10^{−5} | ||

K_{3} | 1.72 × 10^{−4} | 5.25 × 10^{−4} | 6.81 × 10^{−4} | 7.56 × 10^{−4} | ||

K_{4} | 5.20 × 10^{−5} | 6.71 × 10^{−5} | 9.96 × 10^{−5} | 7.89 × 10^{−5} | ||

K_{5} | 1.08 × 10^{−5} | 3.54 × 10^{−5} | 4.85 × 10^{−6} | 1.86 × 10^{−4} | ||

K_{1}_{-a} | 7.02 × 10^{−5} | 4.44 × 10^{−5} | 2.70 × 10^{−5} | 2.88 × 10^{−5} | ||

K_{2}_{-a} | 4.10 × 10^{−5} | 7.92 × 10^{−6} | 5.36 × 10^{−5} | 4.88 × 10^{−6} | ||

K_{3}_{-a} | 3.44 × 10^{−5} | 1.05 × 10^{−4} | 1.36 × 10^{−4} | 1.51 × 10^{−4} | ||

K_{4}_{-a} | 1.04 × 10^{−5} | 1.34 × 10^{−5} | 1.99 × 10^{−5} | 1.58 × 10^{−5} | ||

K_{5}_{-a} | 2.16 × 10^{−6} | 7.08 × 10^{−6} | 9.70 × 10^{−7} | 3.72 × 10^{−5} | ||

R | 7.00 × 10^{−5} | 9.79 × 10^{−5} | 1.35 × 10^{−4} | 1.46 × 10^{−4} |

**Table 5.**The variance analysis of similar-material density (Seq SS: the sum of the squares of deviations; Adj SS: adjusted squares sum of deviations; Adj MS: adjusted squares sum of mean-square error).

Variance Sources | Free Degree | SeqSS | Adj SS | Adj MS | F | p |
---|---|---|---|---|---|---|

A | 4 | 0.042940 | 0.042940 | 0.010735 | 2.69 | 0.109 |

B | 4 | 0.005942 | 0.005942 | 0.001486 | 0.37 | 0.823 |

C | 4 | 0.022829 | 0.022829 | 0.005707 | 1.43 | 0.309 |

D | 4 | 0.004546 | 0.004546 | 0.001137 | 0.28 | 0.880 |

Error | 8 | 0.031966 | 0.031966 | 0.003996 |

Stratum | ρ (g/cm^{3}) | σ_{c} (MPa) | σ_{t} (MPa) | K (cm/s) | |
---|---|---|---|---|---|

Mudstone | Protolith | 1.815 | 54.25 | 9.65 | 3.55 × 10^{−6} |

Model | 1.801 | 0.261 | 0.048 | 2.52 × 10^{−7} | |

Sandstone | Protolith | 1.903 | 92.30 | 16.25 | 1.69 × 10^{−5} |

Model | 1.893 | 0.458 | 0.081 | 1.20 × 10^{−6} |

Stratum | A (%) | B | C | D (%) | Sand: Calcium Carbonate: Talc Powder: White Cement: Vaseline: Antiwear Hydraulic Oil |
---|---|---|---|---|---|

Mudstone | 87.45 | 1.27 | 1.19 | 4.78 | 12.46:1.00:0.79:0.69:0.89:0.79 |

Sandstone | 75.32 | 1.43 | 1.74 | 3.65 | 5.19:1.00:0.70:0.51:0.29:0.29 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, S.; Liu, W.
Experimental Development Process of a New Fluid–Solid Coupling Similar-Material Based on the Orthogonal Test. *Processes* **2018**, *6*, 211.
https://doi.org/10.3390/pr6110211

**AMA Style**

Liu S, Liu W.
Experimental Development Process of a New Fluid–Solid Coupling Similar-Material Based on the Orthogonal Test. *Processes*. 2018; 6(11):211.
https://doi.org/10.3390/pr6110211

**Chicago/Turabian Style**

Liu, Shiliang, and Weitao Liu.
2018. "Experimental Development Process of a New Fluid–Solid Coupling Similar-Material Based on the Orthogonal Test" *Processes* 6, no. 11: 211.
https://doi.org/10.3390/pr6110211