Next Article in Journal
Cloning of CHO Cells, Productivity and Genetic Stability—A Discussion
Next Article in Special Issue
Kinetics of the Aqueous-Phase Copolymerization of MAA and PEGMA Macromonomer: Influence of Monomer Concentration and Side Chain Length of PEGMA
Previous Article in Journal / Special Issue
Simultaneous Monitoring of the Effects of Multiple Ionic Strengths on Properties of Copolymeric Polyelectrolytes during Their Synthesis
Open AccessArticle

Biodegradable and Biocompatible PDLLA-PEG1k-PDLLA Diacrylate Macromers: Synthesis, Characterisation and Preparation of Soluble Hyperbranched Polymers and Crosslinked Hydrogels

1
School of Chemistry, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
2
Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
*
Author to whom correspondence should be addressed.
Academic Editor: Alexander Penlidis
Processes 2017, 5(2), 18; https://doi.org/10.3390/pr5020018
Received: 5 March 2017 / Revised: 8 April 2017 / Accepted: 17 April 2017 / Published: 20 April 2017
(This article belongs to the Special Issue Water Soluble Polymers)
A series of PDLLA-PEG1k-PDLLA tri-block co-polymers with various compositions, i.e., containing 2–10 lactoyl units, were prepared via ring opening polymerisation of d,l-lactide in the presence of poly (ethylene glycol) (PEG) (Mn = 1000 g·mol−1) as the initiator and stannous 2-ethylhexanoate as the catalyst at different feed ratios. PDLLA-PEG1k-PDLLA co-polymers were then functionalised with acrylate groups using acryloyl chloride under various reaction conditions. The diacrylated PDLLA-PEG1k-PDLLA (diacryl-PDLLA-PEG1k-PDLLA) were further polymerised to synthesize soluble hyperbranched polymers by either homo-polymerisation or co-polymerisation with poly(ethylene glycol) methyl ether methylacrylate (PEGMEMA) via free radical polymerisation. The polymer samples obtained were characterised by 1H NMR (proton Nuclear Magnetic Resonance), FTIR (Fourier Transform Infra-red spectroscopy), and GPC (Gel Permeation Chromatography). Moreover, the diacryl-PDLLA-PEG1k-PDLLA macromers were used for the preparation of biodegradable crosslinked hydrogels through the Michael addition reaction and radical photo-polymerisation with or without poly(ethylene glycol) methyl ether methylacrylate (PEGMEMA, Mn = 475 g·mol−1) as the co-monomer. It was found that fine tuning of the diacryl-PDLLA-PEG1k-PDLLA constituents and its combination with co-monomers resulted in hydrogels with tailored swelling properties. It is envisioned that soluble hyperbranched polymers and crosslinked hydrogels prepared from diacryl-PDLLA-PEG1k-PDLLA macromers can have promising applications in the fields of nano-medicines and regenerative medicines. View Full-Text
Keywords: poly (ethylene glycol); d,l-lactide; macromers; triblock co-polymers; hyperbranched polymers; biodegradable hydrogels poly (ethylene glycol); d,l-lactide; macromers; triblock co-polymers; hyperbranched polymers; biodegradable hydrogels
Show Figures

Graphical abstract

MDPI and ACS Style

Hughes, A.; Tai, H.; Tochwin, A.; Wang, W. Biodegradable and Biocompatible PDLLA-PEG1k-PDLLA Diacrylate Macromers: Synthesis, Characterisation and Preparation of Soluble Hyperbranched Polymers and Crosslinked Hydrogels. Processes 2017, 5, 18.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop