# Network Analysis Identifies Crosstalk Interactions Governing TGF-β Signaling Dynamics during Endoderm Differentiation of Human Embryonic Stem Cells

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Cell Culture and Treatment

#### 2.1.1. Human ESC Maintenance

_{2}before passaging. Cells were examined under the microscope every day and colonies with observable differentiation were picked and removed before the media changes. The maintenance protocol was adopted from our previous studies [2,9,10].

#### 2.1.2. Experimental Induction of Endoderm from hESCs

#### 2.1.3. Measuring Experimental Dynamics of Signaling Molecules

#### 2.2. Identification of Network Interactions from Experimental Time Series Signaling Data

#### 2.2.1. Details of DBN Algorithm

^{®}(Natick, MA, USA) on Linux 64-bit platform and single core of INTEL

^{®}(Santa Clara, CA, USA) Core™ 2 Quad CPU (Q8400 @ 2.66 GHz).

#### 2.2.2. Constructing the DBNs

## 3. Results and Discussion

#### 3.1. Dynamics of Signaling Molecules during Endoderm Induction

**Figure 1.**Dynamics of key molecules from the TGF-β/SMAD, PI3K/AKT and MAPK/ERK pathways for two endoderm induction conditions. (

**A**–

**F**) p-AKT, t-TGFβRII, p-SMAD2, p-SMAD3, t-SMAD4 and p-ERK dynamics under high and low PI3K conditions. H1 hESCs were treated with 100 ng/mL Activin A in the presence or absence of 1 μM Wortmannin (PI3K inhibitor) for 24 h. The protein levels were quantified using Multiplex MagPix Assay. The mean and standard deviation (number of repeats = 3) in protein levels are represented here as fold change over time 0 levels.

#### 3.2. Predictions of Network Interactions by DBN Analysis on Entire Time Series

#### 3.2.1. DBN Analysis and Consensus Graph

**Figure 2.**Dynamic Bayesian Networks inferred for endoderm induction conditions (

**A**) Consensus graph for high PI3K data. The thickness of the edges reflects the value of edge probabilities (≥0.5); (

**B**) Marginal edge probability table for high PI3K data. The parent node is the node whose value at time step (t − 1) affects the value of child node at time step t; (

**C**) Consensus graph for low PI3K data; (

**D**) Marginal edge probability table for low PI3K data.

#### 3.2.2. High PI3K Condition

#### 3.2.3. Low PI3K Condition

#### 3.2.4. Comparison between Digraphs of High and low PI3K Conditions

#### Influence of Total Receptor Levels

#### Interactions between Intracellular Molecules

#### 3.2.5. Change-points Inferred by cpBGe Model

**Figure 3.**Co-allocation matrices for the high and low PI3K time series. (

**A**) High PI3K condition; (

**B**) Low PI3K condition. The axes represent time step. The actual time values corresponding to the time step are given below the plots. The black/white shading indicates the posterior probability of two time points being assigned to the same mixture component, ranging from 0 (black) to 1 (white). As seen from the figure, there are several time segments inferred from the data, 4 for the high PI3K condition and 3–5 for the low PI3K condition. All nodes show identical change-point behavior (data not shown), although this was not pre-fixed in the algorithm. The crosses indicate the time segments selected for network inference in different time zones.

#### 3.3. Changes in Regulatory Structure across Time Zones

#### 3.3.1. High PI3K Condition

**Figure 4.**Dynamic Bayesian Network inferred for endoderm induction conditions under different time zones and high PI3K. (

**A**) Consensus graph for high PI3K data, early dynamics (t = 0.5, 1, 1.5 h); (

**B**) Marginal edge probability table for high PI3K data, early dynamics; (

**C**) Consensus graph for high PI3K data, late dynamics (t = 6, 12, 18 h); (

**D**) Marginal edge probability table for high PI3K data, late dynamics.

#### 3.3.2. Low PI3K Condition

#### 3.4. Correlation between Molecule Pairs in the Early and Late Time Zones

**Figure 5.**Dynamic Bayesian Network inferred for endoderm induction conditions under different time zones and low PI3K. (

**A**) Consensus graph for low PI3K data, early dynamics (t = 0.5, 1, 1.5 h); (

**B**) Marginal edge probability table for low PI3K data, early dynamics; (

**C**) Consensus graph for low PI3K data, late dynamics (t = 12, 18, 24 h); (

**D**) Marginal edge probability table for low PI3K data, late dynamics.

#### 3.4.1. Influence of Total Receptor Levels

#### 3.4.2. Intracellular Regulation by p-AKT

**Figure 6.**Correlation tables for high and low PI3K condition. (

**A**) Receptor mediated regulation; (

**B**) p-AKT mediated regulation; (

**C**) p-ERK mediated regulation. The Pearson correlation is calculated between the parent nodes at time step (t − 1) and all other nodes at time step t. The early time points 0.5, 1, 1.5 h (both conditions) and the late time points correspond to 6, 12, and 18 for high PI3K and 12, 18, 24 for low PI3K. The average correlation coefficients across 2 repeats (selected in Figure 3) are used for high and low PI3K. However, for the low PI3K late time points, only repeat 3 is used.

#### 3.4.3. Intracellular Regulation by p-ERK

#### 3.5. Network Regulation during Endoderm Differentiation

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Nomenclature

DBN | Dynamic Bayesian Network |

DE | Definitive Endoderm |

hESCs | Human Embryonic Stem Cells |

p-SMAD2 | phosphorylated SMAD2 |

p-SMAD3 | phosphorylated SMAD3 |

p-AKT | phosphorylated AKT |

p-ERK | phosphorylated ERK |

TGFβ | Transforming growth factor-beta |

t-TGFβRII | total TGFβ receptor 2 |

t-SMAD4 | total SMAD4 |

## Conflicts of Interest

## References

- Semb, H. Definitive endoderm: A key step in coaxing human embryonic stem cells into transplantable beta-cells. Biochem. Soc. Trans.
**2008**, 36, 272–275. [Google Scholar] [CrossRef] [PubMed] - Jaramillo, M.; Mathew, S.; Task, K.; Barner, S.; Banerjee, I. Potential for pancreatic maturation of differentiating human embryonic stem cells is sensitive to the specific pathway of definitive endoderm commitment. PLoS One
**2014**, 9, e94307. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Xu, X.; Browning, V.L.; Odorico, J.S. Activin, bmp and fgf pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mech. Dev.
**2011**, 128, 412–427. [Google Scholar] [CrossRef] [PubMed] - McLean, A.B.; D’Amour, K.A.; Jones, K.L.; Krishnamoorthy, M.; Kulik, M.J.; Reynolds, D.M.; Sheppard, A.M.; Liu, H.; Xu, Y.; Baetge, E.E. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells
**2007**, 25, 29–38. [Google Scholar] [CrossRef] [PubMed] - D’Amour, K.A.; Agulnick, A.D.; Eliazer, S.; Kelly, O.G.; Kroon, E.; Baetge, E.E. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol.
**2005**, 23, 1534–1541. [Google Scholar] [CrossRef] [PubMed] - Nostro, M.C.; Sarangi, F.; Ogawa, S.; Holtzinger, A.; Corneo, B.; Li, X.; Micallef, S.J.; Park, I.-H.; Basford, C.; Wheeler, M.B. Stage-specific signaling through tgfβ family members and wnt regulates patterning and pancreatic specification of human pluripotent stem cells. Development
**2011**, 138, 861–871. [Google Scholar] [CrossRef] [PubMed] - Basma, H.; Soto-Gutierrez, A.; Yannam, G.R.; Liu, L.; Ito, R.; Yamamoto, T.; Ellis, E.; Carson, S.D.; Sato, S.; Chen, Y.; et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology
**2009**, 136, 990–999. [Google Scholar] [CrossRef] [PubMed] - Sulzbacher, S.; Schroeder, I.S.; Truong, T.T.; Wobus, A.M. Activin a-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors—The influence of differentiation factors and culture conditions. Stem Cell Reviews Rep.
**2009**, 5, 159–173. [Google Scholar] [CrossRef] - Mathew, S.; Jaramillo, M.; Zhang, X.; Zhang, L.A.; Soto-Gutierrez, A.; Banerjee, I. Analysis of alternative signaling pathways of endoderm induction of human embryonic stem cells identifies context specific differences. BMC Syst. Biol.
**2012**, 6, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Richardson, T.; Kumta, P.N.; Banerjee, I. Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells. Tissue Eng. Part A
**2014**, 20, 3198–3211. [Google Scholar] [CrossRef] [PubMed] - Attisano, L.; Wrana, J.L.; Montalvo, E.; Massague, J. Activation of signalling by the activin receptor complex. Mol. Cell. Biol.
**1996**, 16, 1066–1073. [Google Scholar] [PubMed] - Massague, J.; Seoane, J.; Wotton, D. Smad transcription factors. Genes Dev.
**2005**, 19, 2783–2810. [Google Scholar] [CrossRef] [PubMed] - Wu, M.Y.; Hill, C.S. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev. Cell
**2009**, 16, 329–343. [Google Scholar] [CrossRef] [PubMed] - Dalton, S. Signaling networks in human pluripotent stem cells. Curr. Opin. Cell Biol.
**2013**, 25, 241–246. [Google Scholar] [CrossRef] [PubMed] - Avery, S.; Zafarana, G.; Gokhale, P.J.; Andrews, P.W. The role of smad4 in human embryonic stem cell self-renewal and stem cell fate. Stem Cells
**2010**, 28, 863–873. [Google Scholar] [PubMed] - Sakaki-Yumoto, M.; Liu, J.M.; Ramalho-Santos, M.; Yoshida, N.; Derynck, R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J. Biol. Chem.
**2013**, 288, 18546–18560. [Google Scholar] [CrossRef] [PubMed] - Singh, A.M.; Reynolds, D.; Cliff, T.; Ohtsuka, S.; Mattheyses, A.L.; Sun, Y.; Menendez, L.; Kulik, M.; Dalton, S. Signaling network crosstalk in human pluripotent cells: A smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell
**2012**, 10, 312–326. [Google Scholar] [CrossRef] [PubMed] - Pauklin, S.; Vallier, L. The cell-cycle state of stem cells determines cell fate propensity. Cell
**2013**, 155, 135–147. [Google Scholar] [CrossRef] [PubMed] - Needham, C.J.; Bradford, J.R.; Bulpitt, A.J.; Westhead, D.R. A primer on learning in bayesian networks for computational biology. PLoS Comput. Biol.
**2007**, 3, e129. [Google Scholar] [CrossRef] [PubMed] - Woolf, P.J.; Prudhomme, W.; Daheron, L.; Daley, G.Q.; Lauffenburger, D.A. Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics
**2005**, 21, 741–753. [Google Scholar] [CrossRef] [PubMed] - Zielinski, R.; Przytycki, P.F.; Zheng, J.; Zhang, D.; Przytycka, T.M.; Capala, J. The crosstalk between egf, igf, and insulin cell signaling pathways—Computational and experimental analysis. BMC Syst. Biol.
**2009**, 3, 88. [Google Scholar] [CrossRef] [PubMed] - Murphy, K.P. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2002. [Google Scholar]
- Heinrich, R.; Neel, B.G.; Rapoport, T.A. Mathematical models of protein kinase signal transduction. Mol. Cell
**2002**, 9, 957–970. [Google Scholar] [CrossRef] [PubMed] - Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Grzegorczyk, M.; Husmeier, D. Improvements in the reconstruction of time-varying gene regulatory networks: Dynamic programming and regularization by information sharing among genes. Bioinformatics
**2011**, 27, 693–699. [Google Scholar] [CrossRef] [PubMed] - Grzegorczyk, M.; Husmeier, D. Non-homogeneous dynamic bayesian networks for continuous data. Mach. Learn.
**2011**, 83, 355–419. [Google Scholar] [CrossRef] - Azhar, N.; Ziraldo, C.; Barclay, D.; Rudnick, D.A.; Squires, R.H.; Vodovotz, Y.; Pediatric Acute Liver Failure Study Group. Analysis of serum inflammatory mediators identifies unique dynamic networks associated with death and spontaneous survival in pediatric acute liver failure. PLoS One
**2013**, 8, e78202. [Google Scholar] [CrossRef] [PubMed] - Emr, B.; Sadowsky, D.; Azhar, N.; Gatto, L.A.; An, G.; Nieman, G.F.; Vodovotz, Y. Removal of inflammatory ascites is associated with dynamic modification of local and systemic inflammation along with prevention of acute lung injury: In vivo and in silico studies. Shock
**2014**, 41, 317–323. [Google Scholar] [CrossRef] [PubMed] - Aerts, J.M.; Haddad, W.M.; An, G.; Vodovotz, Y. From data patterns to mechanistic models in acute critical illness. J. Crit. Care
**2014**, 29, 604–610. [Google Scholar] [CrossRef] [PubMed] - Dojer, N.; Gambin, A.; Mizera, A.; Wilczynski, B.; Tiuryn, J. Applying dynamic bayesian networks to perturbed gene expression data. BMC Bioinf.
**2006**, 7, 249. [Google Scholar] [CrossRef] - Chang, R.; Shoemaker, R.; Wang, W. Systematic search for recipes to generate induced pluripotent stem cells. PLoS Comput. Biol.
**2011**, 7, e1002300. [Google Scholar] [CrossRef] [PubMed] - Grzegorczyk, M.; Husmeier, D. A non-homogeneous dynamic bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology. Stat. Appl. Genet. Mol. Biol.
**2012**, 11. [Google Scholar] [CrossRef] - Yu, J.; Smith, V.A.; Wang, P.P.; Hartemink, A.J.; Jarvis, E.D. Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics
**2004**, 20, 3594–3603. [Google Scholar] [CrossRef] [PubMed] - Schmierer, B.; Hill, C.S. Tgfbeta-smad signal transduction: Molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol.
**2007**, 8, 970–982. [Google Scholar] [CrossRef] [PubMed] - Guo, X.; Wang, X.-F. Signaling cross-talk between tgf-β/bmp and other pathways. Cell Res.
**2008**, 19, 71–88. [Google Scholar] [CrossRef] - Zhang, Y.E. Non-smad pathways in tgf-β signaling. Cell Res.
**2008**, 19, 128–139. [Google Scholar] [CrossRef] - Conery, A.R.; Cao, Y.; Thompson, E.A.; Townsend, C.M., Jr.; Ko, T.C.; Luo, K. Akt interacts directly with smad3 to regulate the sensitivity to tgf-beta induced apoptosis. Nat. Cell Biol.
**2004**, 6, 366–372. [Google Scholar] [CrossRef] [PubMed] - Danielpour, D.; Song, K. Cross-talk between igf-i and tgf-β signaling pathways. Cytokine Growth Factor Rev.
**2006**, 17, 59–74. [Google Scholar] [CrossRef] [PubMed] - Song, K.; Wang, H.; Krebs, T.L.; Danielpour, D. Novel roles of akt and mtor in suppressing tgf-beta/alk5-mediated smad3 activation. EMBO J.
**2006**, 25, 58–69. [Google Scholar] [CrossRef] [PubMed] - Remy, I.; Montmarquette, A.; Michnick, S.W. Pkb/akt modulates tgf-β signalling through a direct interaction with smad3. Nat. Cell Biol.
**2004**, 6, 358–365. [Google Scholar] [CrossRef] [PubMed] - Zhang, L.; Zhou, F.; ten Dijke, P. Signaling interplay between transforming growth factor-β receptor and pi3k/akt pathways in cancer. Trends Biochem. Sci.
**2013**, 38, 612–620. [Google Scholar] [CrossRef] [PubMed] - Qiao, J.; Kang, J.; Ko, T.C.; Evers, B.M.; Chung, D.H. Inhibition of transforming growth factor-beta/smad signaling by phosphatidylinositol 3-kinase pathway. Cancer Lett.
**2006**, 242, 207–214. [Google Scholar] [CrossRef] [PubMed] - Sun, T.; Ye, F.; Ding, H.; Chen, K.; Jiang, H.; Shen, X. Protein tyrosine phosphatase 1b regulates tgf beta 1-induced smad2 activation through pi3 kinase-dependent pathway. Cytokine
**2006**, 35, 88–94. [Google Scholar] [CrossRef] [PubMed] - Aksamitiene, E.; Kiyatkin, A.; Kholodenko, B.N. Cross-talk between mitogenic ras/mapk and survival pi3k/akt pathways: A fine balance. Biochem. Soc. Trans.
**2012**, 40, 139–146. [Google Scholar] [CrossRef] [PubMed] - Villaverde, A.F.; Banga, J.R. Reverse engineering and identification in systems biology: Strategies, perspectives and challenges. J. R. Soc. Interface
**2014**, 11, 20130505. [Google Scholar] [CrossRef] [PubMed] - Banerjee, I.; Maiti, S.; Parashurama, N.; Yarmush, M. An integer programming formulation to identify the sparse network architecture governing differentiation of embryonic stem cells. Bioinformatics
**2010**, 26, 1332–1339. [Google Scholar] [CrossRef] [PubMed] - Chemmangattuvalappil, N.; Task, K.; Banerjee, I. An integer optimization algorithm for robust identification of non-linear gene regulatory networks. BMC Syst. Biol.
**2012**, 6, 119. [Google Scholar] [CrossRef] [PubMed] - Guillen-Gosálbez, G.; Miró, A.; Alves, R.; Sorribas, A.; Jiménez, L. Identification of regulatory structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization. BMC Syst. Biol.
**2013**, 7, 113. [Google Scholar] [CrossRef] [PubMed] - Rodriguez-Fernandez, M.; Rehberg, M.; Kremling, A.; Banga, J.R. Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems. BMC Syst. Biol.
**2013**, 7, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Penfold, C.A.; Wild, D.L. How to infer gene networks from expression profiles, revisited. Interface Focus
**2011**, 1, 857–870. [Google Scholar] [CrossRef] [PubMed] - Lee, W.P.; Tzou, W.S. Computational methods for discovering gene networks from expression data. Brief Bioinform.
**2009**, 10, 408–423. [Google Scholar] [PubMed] - Bansal, M.; Belcastro, V.; Ambesi-Impiombato, A.; Di Bernardo, D. How to infer gene networks from expression profiles. Mol. Syst. Biol.
**2007**, 3. [Google Scholar] [CrossRef] - Tegner, J.; Yeung, M.K.; Hasty, J.; Collins, J.J. Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. USA
**2003**, 100, 5944–5949. [Google Scholar] [CrossRef] [PubMed] - Molinelli, E.J.; Korkut, A.; Wang, W.; Miller, M.L.; Gauthier, N.P.; Jing, X.; Kaushik, P.; He, Q.; Mills, G.; Solit, D.B.; et al. Perturbation biology: Inferring signaling networks in cellular systems. PLoS Comput. Biol.
**2013**, 9, e1003290. [Google Scholar] [CrossRef] [PubMed] - Galvin-Burgess, K.E.; Travis, E.D.; Pierson, K.E.; Vivian, J.L. Tgf-β-superfamily signaling regulates embryonic stem cell heterogeneity: Self-renewal as a dynamic and regulated equilibrium. Stem Cells
**2013**, 31, 48–58. [Google Scholar] [CrossRef] [PubMed] - Liu, J.; Dai, W.; Hahn, J. Mathematical modeling and analysis of crosstalk between mapk pathway and smad-dependent tgf-β signal transduction. Processes
**2014**, 2, 570–595. [Google Scholar] [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mathew, S.; Sundararaj, S.; Banerjee, I.
Network Analysis Identifies Crosstalk Interactions Governing TGF-β Signaling Dynamics during Endoderm Differentiation of Human Embryonic Stem Cells. *Processes* **2015**, *3*, 286-308.
https://doi.org/10.3390/pr3020286

**AMA Style**

Mathew S, Sundararaj S, Banerjee I.
Network Analysis Identifies Crosstalk Interactions Governing TGF-β Signaling Dynamics during Endoderm Differentiation of Human Embryonic Stem Cells. *Processes*. 2015; 3(2):286-308.
https://doi.org/10.3390/pr3020286

**Chicago/Turabian Style**

Mathew, Shibin, Sankaramanivel Sundararaj, and Ipsita Banerjee.
2015. "Network Analysis Identifies Crosstalk Interactions Governing TGF-β Signaling Dynamics during Endoderm Differentiation of Human Embryonic Stem Cells" *Processes* 3, no. 2: 286-308.
https://doi.org/10.3390/pr3020286