Integrated Furnace-to-SCR CFD Modeling of a Large Coal-Fired Boiler: Combustion Characteristics and Flow Optimization over a Wide Load Range
Abstract
1. Introduction
2. Boiler Description and Numerical Methodology
2.1. Boiler Description
2.2. Computational Domain and Mesh
2.3. Computational Models
2.3.1. Governing Equations and Turbulence Model
2.3.2. Lagrangian Coal-Particle Tracking Model
2.3.3. Combustion and Radiation Models
2.3.4. Erosion and Ash-Deposition Models
2.4. Simulation Conditions
3. Results and Discussion
3.1. Mesh Independence Analysis and Model Validation
3.2. Combustion Characteristics over a Wide Load Range
3.2.1. Temperature Distributions at Different Boiler Loads
3.2.2. Species Distributions and Emission Characteristics at Different Boiler Loads
3.2.3. Flow Field Characteristics at Different Boiler Loads
3.3. Flow Field Optimization for the SCR System
3.3.1. Optimization Design of the Guide Vanes
3.3.2. Flow Characteristics Before and After Optimization
3.3.3. Erosion and Ash Deposition on the Guide Vanes Before and After Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SCR | Selective Catalytic Reduction |
| CFD | Computational Fluid Dynamics |
| BMCR | Boiler Maximum Continuous Rating |
| NOx | Nitrogen Oxides |
| SOFA | Separated Over-Fire Air |
| DPM | Discrete Phase Model |
| DO | Discrete Ordinates |
| CoV | Coefficient of Variation |
| DRW | Discrete Random Walk |
References
- Du, X. Thoughts on strategies and paths to achieve carbon peaking and carbon neutrality in China. Front. Energy 2023, 17, 324–331. [Google Scholar] [CrossRef]
- Li, M.; Li, F.; Qiu, J.; Zhou, H.; Wang, H.; Lu, H.; Zhang, N.; Song, Z. Multi-objective optimization of non-fossil energy structure in China towards the carbon peaking and carbon neutrality goals. Energy 2024, 312, 133643. [Google Scholar] [CrossRef]
- Li, J.; Mi, Z.; Yu, Y. Research on the classification and evaluation of large-scale user load patterns for grid supply–demand balance regulation demands. Appl. Energy 2025, 397, 126301. [Google Scholar] [CrossRef]
- Taler, J.; Trojan, M.; Dzierwa, P.; Kaczmarski, K.; Węglowski, B.; Taler, D.; Zima, W.; Grądziel, S.; Ocłoń, P.; Sobota, T.; et al. The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions. Energy 2023, 263, 125745. [Google Scholar] [CrossRef]
- Chen, G.; Li, Z.; Zhang, H.; Huang, L.; Liu, Z.; Fan, W. Influences of ultra-low load operation strategies on performance of a 300 MW subcritical bituminous coal boiler. Appl. Therm. Eng. 2024, 256, 124037. [Google Scholar] [CrossRef]
- Jiang, Y.; Lee, B.-H.; Oh, D.-H.; Jeon, C.-H. Influence of various air-staging on combustion and NOX emission characteristics in a tangentially fired boiler under the 50% load condition. Energy 2022, 244, 123167. [Google Scholar] [CrossRef]
- Li, X.; Zeng, L.; Zhang, N.; Chen, Z.; Li, Z.; Qin, Y. Effects of the air-staging degree on performances of a supercritical down-fired boiler at low loads: Air/particle flow, combustion, water wall temperature, energy conversion and NOX emissions. Fuel 2022, 308, 121896. [Google Scholar] [CrossRef]
- Rossiello, G.; Uzair, M.A.; Ahmadpanah, S.B.; Rogora, M.; Saponaro, A.; Torresi, M. Integrated use of CFD and field data for accurate thermal analyses of oil/gas boilers. Fuel 2023, 335, 126931. [Google Scholar] [CrossRef]
- Li, X.; Lin, H.; Wang, G.; Dai, G.; Chen, Y.Q.; Luo, Y.; Zhang, Y.; Zhang, J.; Tan, H.; Axelbaum, R.L.; et al. A full-scale staged, pressurized oxy-biomass combustion towards BECCS: Performance assessment via CFD approach. Energy 2025, 326, 136262. [Google Scholar] [CrossRef]
- Zeng, Y.; Kim, G.-M.; Kim, K.-M.; Kim, S.-M.; Jeon, C.-H.; Yu, H.J. Carbon-free power generation strategy in South Korea: CFD simulation for optimization of ammonia injection and blending ratio in tangentially fired boiler. Appl. Therm. Eng. 2025, 279, 127563. [Google Scholar] [CrossRef]
- Askarova, A.; Bolegenova, S.; Maximov, V.; Beketayeva, M.; Safarik, P. Numerical modeling of pulverized coal combustion at thermal power plant boilers. J. Therm. Sci. 2015, 24, 275–282. [Google Scholar] [CrossRef]
- Madejski, P. Numerical study of a large-scale pulverized coal-fired boiler operation using CFD modeling based on the probability density function method. Appl. Therm. Eng. 2018, 145, 352–363. [Google Scholar] [CrossRef]
- Belošević, S.; Tomanović, I.; Crnomarković, N.; Milićević, A. Full-scale CFD investigation of gas-particle flow, interactions and combustion in tangentially fired pulverized coal furnace. Energy 2019, 179, 1036–1053. [Google Scholar] [CrossRef]
- Ciukaj, S.; Hernik, B. Field and CFD Study of Fuel Distribution in Pulverized Fuel (PF) Boilers. J. Therm. Sci. 2020, 29, 535–545. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, Z.; Zhang, B.; Gao, X.; Li, J.; Qiao, Y.; Li, Z. Study on the slagging trends of the pre-combustion chamber in industrial pulverized coal boiler under different excess air coefficients by CFD numerical simulation. Energy 2023, 264, 126184. [Google Scholar] [CrossRef]
- Adamczyk, W.P.; Isaac, B.; Parra-Alvarez, J.; Smith, S.T.; Harris, D.; Thornock, J.N.; Zhou, M.; Smith, P.J.; Żmuda, R. Application of LES-CFD for predicting pulverized-coal working conditions after installation of NOX control system. Energy 2018, 160, 693–709. [Google Scholar] [CrossRef]
- Wang, H.; Jin, H.; Yang, Z.; Deng, S.; Wu, X.; An, J.; Sheng, R.; Ti, S. CFD modeling of flow, combustion and NOX emission in a wall-fired boiler at different low-load operating conditions. Appl. Therm. Eng. 2024, 236, 121824. [Google Scholar] [CrossRef]
- Chang, J.; Wang, X.; Zhou, Z.; Chen, H.; Niu, Y. CFD modeling of hydrodynamics, combustion and NOX emission in a tangentially fired pulverized-coal boiler at low load operating conditions. Adv. Powder Technol. 2021, 32, 290–303. [Google Scholar] [CrossRef]
- Laubscher, R.; Rousseau, P. CFD study of pulverized coal-fired boiler evaporator and radiant superheaters at varying loads. Appl. Therm. Eng. 2019, 160, 114057. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, H.; Zhou, X.; Wang, X.; Zheng, H.; Liu, Y.; Tan, H. CFD modeling and industry application of a self-preheating pulverized coal burner of high coal concentration and enhanced combustion stability under ultra-low load. Appl. Therm. Eng. 2024, 253, 123831. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, T.; Liu, W. Development of a scripting tool for the fast and batch generation of orthogonal hexahedral mesh for CFD analysis in built environments. Build. Environ. 2025, 281, 113102. [Google Scholar] [CrossRef]
- Li, M.-J.; Tang, S.-Z.; Wang, F.-l.; Zhao, Q.-X.; Tao, W.-Q. Gas-side fouling, erosion and corrosion of heat exchangers for middle/low temperature waste heat utilization: A review on simulation and experiment. Appl. Therm. Eng. 2017, 126, 737–761. [Google Scholar] [CrossRef]
- Anindito, B.; Nurtono, T.; Winardi, S. Using computational fluid dynamics to predict the erosion rates on the cyclones wall for coal boiler plant. J. Mech. Eng. Sci. 2020, 14, 7498–7506. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, S. Numerical simulation of ash deposition behavior with a novel erosion model using dynamic mesh. Fuel 2021, 286, 119482. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Tahmasebi, A.; Jeon, C.-H.; Yu, J. A Review of the Numerical Modeling of Pulverized Coal Combustion for High-Efficiency, Low-Emissions (HELE) Power Generation. Energy Fuels 2021, 35, 7434–7466. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, S. Numerical prediction of swirl burner geometry effects on NOx emission and combustion instability in heavy oil-fired boiler. Appl. Therm. Eng. 2019, 159, 113843. [Google Scholar] [CrossRef]
- Laubscher, R.; Rousseau, P. Numerical investigation on the impact of variable particle radiation properties on the heat transfer in high ash pulverized coal boiler through co-simulation. Energy 2020, 195, 117006. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.-J.; Liao, M.-R.; Wang, W.-Z. Coupled modeling of combustion and hydrodynamics for a coal-fired supercritical boiler. Fuel 2019, 240, 49–56. [Google Scholar] [CrossRef]
- Oka, Y.; Yoshida, T. Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage. Wear 2005, 259, 102–109. [Google Scholar] [CrossRef]
- Oka, Y.I.; Okamura, K.; Yoshida, T. Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear 2005, 259, 95–101. [Google Scholar] [CrossRef]
- Wu, G.; Chen, H.; Li, Y.; Gao, H.; Sun, F.; Du, J.; Li, Y. Experimental investigation of NOX emissions and SCR optimization in hydrogen internal combustion engines under full-range operating conditions. J. Energy Inst. 2025, 123, 102232. [Google Scholar] [CrossRef]



















| Item | Unit | Value |
|---|---|---|
| Main steam flow rate | t/h | 1994 |
| Main steam pressure | MPa | 29.3 |
| Main steam temperature | °C | 605 |
| Feedwater temperature | °C | 304 |
| Reheat steam flow rate | t/h | 1671 |
| Reheat steam pressure | MPa | 5.66 |
| Reheat steam temperature | °C | 623 |
| Coal Type | Car/% | Har/% | Oar/% | Nar/% | Sar/% | Aar/% | Var/% | Mt/% | Qnet,ar/(MJ/kg) |
|---|---|---|---|---|---|---|---|---|---|
| Design coal | 57.22 | 3.56 | 7.94 | 0.93 | 0.85 | 19.40 | 26.6 | 10.1 | 22.0 |
| As-fired coal | 56.82 | 3.55 | 8.82 | 0.82 | 0.48 | 13.39 | 32.3 | 16.10 | 21.4 |
| Case | Boiler Load (%) | Coal Feed Rate (t/h) | Primary Air Temperature (°C) | Secondary Air Temperature (°C) | Excess Air Ratio | Burners in Operation |
|---|---|---|---|---|---|---|
| 1 | 100 | 255.0 | 77 | 332 | 1.15 | A B C E F |
| 2 | 75 | 197.2 | 70 | 318 | 1.15 | A B C E |
| 3 | 50 | 130.5 | 66 | 310 | 1.20 | A B E |
| 4 | 25 | 74.1 | 58 | 298 | 1.25 | A B |
| Item | Unit | Predicted Value | Measured Value | Relative Deviation (%) |
|---|---|---|---|---|
| Furnace-exit gas temperature | °C | 1051 | 1093 | −3.8% |
| Furnace-exit O2 concentration | vol% | 3.02 | 2.85 | 6.0% |
| NOx concentration 1 | mg/Nm3 | 241 | 229 | 5.2% |
| Unburned carbon in fly ash | wt% | 2.30 | 2.45 | −6.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Feng, X.; Xiang, J.; Chen, Z.; Zhang, G. Integrated Furnace-to-SCR CFD Modeling of a Large Coal-Fired Boiler: Combustion Characteristics and Flow Optimization over a Wide Load Range. Processes 2026, 14, 485. https://doi.org/10.3390/pr14030485
Feng X, Xiang J, Chen Z, Zhang G. Integrated Furnace-to-SCR CFD Modeling of a Large Coal-Fired Boiler: Combustion Characteristics and Flow Optimization over a Wide Load Range. Processes. 2026; 14(3):485. https://doi.org/10.3390/pr14030485
Chicago/Turabian StyleFeng, Xiangdong, Jin Xiang, Zhen Chen, and Guangxue Zhang. 2026. "Integrated Furnace-to-SCR CFD Modeling of a Large Coal-Fired Boiler: Combustion Characteristics and Flow Optimization over a Wide Load Range" Processes 14, no. 3: 485. https://doi.org/10.3390/pr14030485
APA StyleFeng, X., Xiang, J., Chen, Z., & Zhang, G. (2026). Integrated Furnace-to-SCR CFD Modeling of a Large Coal-Fired Boiler: Combustion Characteristics and Flow Optimization over a Wide Load Range. Processes, 14(3), 485. https://doi.org/10.3390/pr14030485
