Microwave-Assisted Catalytic Pyrolysis of Waste Plastics for High-Value Resource Recovery: A Comprehensive Review
Abstract
1. Introduction
2. Waste Plastic Pyrolysis Technology
2.1. Traditional Waste Plastic Pyrolysis Technology
2.2. Microwave Pyrolysis Technology for Waste Plastic Treatment
2.3. Key Factors in Microwave-Assisted Waste Plastic Pyrolysis
2.3.1. Influence of Raw Material Characteristics on Microwave-Assisted Waste Plastic Pyrolysis
2.3.2. Effect of Reaction Conditions on Microwave-Assisted Pyrolysis of Waste Plastics
2.3.3. Effect of Microwave Parameters on Microwave-Assisted Pyrolysis of Waste Plastics
2.3.4. Effect of Catalysts on Microwave-Assisted Pyrolysis of Waste Plastics
2.3.5. Interactions Between Multiple Factors
2.4. Life Cycle and Industrial Feasibility of Microwave-Based Plastic Valorisation
2.4.1. Life Cycle Analysis of Microwave-Based Plastic Resource Recovery
2.4.2. Industrial Feasibility of Microwave-Assisted Resource Recovery from Plastics
3. Existing Challenges
4. Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vuppaladadiyam, S.S.V.; Vuppaladadiyam, A.K.; Sahoo, A.; Urgunde, A.; Murugavelh, S.; Šrámek, V.; Pohořelý, M.; Trakal, L.; Bhattacharya, S.; Sarmah, A.K.; et al. Waste to Energy: Trending Key Challenges and Current Technologies in Waste Plastic Management. Sci. Total Environ. 2024, 913, 169436. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, W. Analysis of Patent Technologies for Chemical Recycling of Waste Plastics. Petrochemicals 2023, 52, 879–887. [Google Scholar] [CrossRef]
- He, L.; Shen, J.; Guo, S. Research progress on the modification and recycling of waste plastics. Polym. Bull. 2021, 34, 18–28. [Google Scholar] [CrossRef]
- Ragaert, K.; Ragot, C.; Van Geem, K.M.; Kersten, S.; Shiran, Y.; De Meester, S. Clarifying European Terminology in Plastics Recycling. Curr. Opin. Green Sustain. Chem. 2023, 44, 100871. [Google Scholar] [CrossRef]
- Garcia, J.M.; Robertson, M.L. The Future of Plastics Recycling. Science 2017, 358, 870–872. [Google Scholar] [CrossRef]
- Shi, R.; Liu, K.-S.; Liu, F.; Yang, X.; Hou, C.-C.; Chen, Y. Electrocatalytic Reforming of Waste Plastics into High Value-Added Chemicals and Hydrogen Fuel. Chem. Commun. 2021, 57, 12595–12598. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, J.; Yang, X.; Wang, Z. Research progress on the biodegradability of biodegradable plastics. Hubei Agric. Sci. 2013, 52, 2481–2485. [Google Scholar] [CrossRef]
- Dong, Q.; Lele, A.D.; Zhao, X.; Li, S.; Cheng, S.; Wang, Y.; Cui, M.; Guo, M.; Brozena, A.H.; Lin, Y.; et al. Depolymerisation of Plastics by Means of Electrified Spatiotemporal Heating. Nature 2023, 616, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhong, Q.; Xu, P.; Huang, H.; Yang, F.; Cao, M.; He, L.; Zhang, Q.; Chen, J. Solar Thermal Catalysis for Sustainable and Efficient Polyester Upcycling. Matter 2022, 5, 1305–1317. [Google Scholar] [CrossRef]
- Buchholz, P.C.F.; Feuerriegel, G.; Zhang, H.; Perez-Garcia, P.; Nover, L.-L.; Chow, J.; Streit, W.R.; Pleiss, J. Plastics Degradation by Hydrolytic Enzymes: The Plastics-Active Enzymes Database—PAZy. Proteins Struct. Funct. Bioinform. 2022, 90, 1443–1456. [Google Scholar] [CrossRef]
- Miao, K.; Meng, J.; Jiang, X. Research Progress on Pollution and Degradation of Plastic Waste. J. East China Norm. Univ. Sci. 2023, 2023, 170–176. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, F.; Zhou, J.; Dou, Y. Research progress in the recycling and conversion of waste plastics. China Plast. 2024, 38, 79–87. [Google Scholar] [CrossRef]
- Li, N.; Mei, X.; Zhong, B.; Wang, X.; Liu, X.; Lin, H.; He, Y. Potential Ecological Risk of Microplastics Contamination to Environment in Protect Area Lakes. J. Hazard. Mater. 2025, 485, 136863. [Google Scholar] [CrossRef]
- An, L.; Kou, Z.; Li, R.; Zhao, Z. Research Progress in Fuel Oil Production by Catalytic Pyrolysis Technologies of Waste Plastics. Catalysts 2024, 14, 212. [Google Scholar] [CrossRef]
- Kremer, I.; Tomić, T.; Katančić, Z.; Erceg, M.; Papuga, S.; Vuković, J.P.; Schneider, D.R. Catalytic Pyrolysis and Kinetic Study of Real-World Waste Plastics: Multi-Layered and Mixed Resin Types of Plastics. Clean. Technol. Environ. Policy 2021, 24, 677–693. [Google Scholar] [CrossRef]
- Miskolczi, N.; Angyal, A.; Bartha, L.; Valkai, I. Fuels by Pyrolysis of Waste Plastics from Agricultural and Packaging Sectors in a Pilot Scale Reactor. Fuel Process. Technol. 2009, 90, 1032–1040. [Google Scholar] [CrossRef]
- Kusenberg, M.; Zayoud, A.; Roosen, M.; Thi, H.D.; Abbas-Abadi, M.S.; Eschenbacher, A.; Kresovic, U.; De Meester, S.; Van Geem, K.M. A Comprehensive Experimental Investigation of Plastic Waste Pyrolysis Oil Quality and Its Dependence on the Plastic Waste Composition. Fuel Process. Technol. 2022, 227, 107090. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and Recovery Routes of Plastic Solid Waste (PSW): A Review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Ellis, L.D.; Rorrer, N.A.; Sullivan, K.P.; Otto, M.; McGeehan, J.E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G.T. Chemical and Biological Catalysis for Plastics Recycling and Upcycling. Nat. Catal. 2021, 4, 539–556. [Google Scholar] [CrossRef]
- Sarkar, T.K.; Yadav, M.; Obot, I.B. Mechanistic Evaluation of Adsorption and Corrosion Inhibition Capabilities of Novel Indoline Compounds for Oil Well/Tubing Steel in 15% HCl. Chem. Eng. J. 2022, 431, 133481. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.-L.; Texier, H.; Gavalda, S.; et al. An Engineered PET Depolymerase to Break down and Recycle Plastic Bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef]
- Arena, U. Process and Technological Aspects of Municipal Solid Waste Gasification. A Review. Waste Manag. 2012, 32, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A Review on Thermal and Catalytic Pyrolysis of Plastic Solid Waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef]
- Shantanu, M.; Mahendra Reddy, V.; Karmakar, S. Experimental and Numerical Studies on Heat Recirculated High Intensity Meso-Scale Combustor for Mini Gas Turbine Applications. Energy Convers. Manag. 2018, 176, 324–333. [Google Scholar] [CrossRef]
- Zheng, K.; Wu, Y.; Hu, Z.; Wang, S.; Jiao, X.; Zhu, J.; Sun, Y.; Xie, Y. Progress and Perspective for Conversion of Plastic Wastes into Valuable Chemicals. Chem. Soc. Rev. 2023, 52, 8–29. [Google Scholar] [CrossRef]
- Tang, L.; Chen, X.; Tao, X. Non-Thermal Effect of Microwave on Organic Sulfur Removal from Coal by Microwave with Peroxyacetic Acid. Fuel 2023, 338, 127262. [Google Scholar] [CrossRef]
- Chan, C.-H.; Ab Manap, N.I.; Nek Mat Din, N.S.M.; Ahmad Hazmi, A.S.; Kow, K.W.; Ho, Y.K. Strategy to Scale up Microwave Synthesis with Insight into the Thermal and Non-Thermal Effects from Energy-Based Perspective. Chem. Eng. Process.-Process Intensif. 2021, 168, 108594. [Google Scholar] [CrossRef]
- Monzavi, M.; Chen, Z.; Hussain, A.; Chaouki, J. High Quality Products from Microwave Catalytic Pyrolysis of Heavy Oil and Polyethylene. Appl. Therm. Eng. 2023, 230, 120722. [Google Scholar] [CrossRef]
- Ma, J. Master Equation Analysis of Thermal and Nonthermal Microwave Effects. J. Phys. Chem. A 2016, 120, 7989–7997. [Google Scholar] [CrossRef]
- Wu, J.; Yan, Z.; Lu, L.; Wang, C.; Shi, J.; Sun, B. Dual Promotion of Electron Transfer and Polarization by Organic Ligands for Microwave Catalysis over an Iron-Based Metal–Organic Framework. ACS Appl. Eng. Mater. 2025, 3, 4470–4481. [Google Scholar] [CrossRef]
- Lin, M.-S.; Chu, K.-R. On the Non-Thermal Mechanisms in Microwave Sintering of Materials. Materials 2025, 18, 668. [Google Scholar] [CrossRef]
- Aljammal, N.; Lauwaert, J.; Biesemans, B.; Verpoort, F.; Heynderickx, P.M.; Thybaut, J.W. Quantification of the Microwave Effect in the Synthesis of 5-Hydroxymethylfurfural over Sulfonated MIL-101(Cr). Catalysts 2023, 13, 622. [Google Scholar] [CrossRef]
- Wang, N.; Zou, W.; Li, X.; Liang, Y.; Wang, P. Study and Application Status of the Nonthermal Effects of Microwaves in Chemistry and Materials Science—A Brief Review. RSC Adv. 2022, 12, 17158–17181. [Google Scholar] [CrossRef]
- Zhu, Y.-J.; Chen, F. Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase. Chem. Rev. 2014, 114, 6462–6555. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, Y.; Cui, L.; Maqsood, T.; Nižetić, S. Cleaner Production of Aviation Oil from Microwave-Assisted Pyrolysis of Plastic Wastes. J. Clean. Prod. 2023, 390, 136102. [Google Scholar] [CrossRef]
- Jiang, Z.; Liang, Y.; Guo, F.; Wang, Y.; Li, R.; Tang, A.; Tu, Y.; Zhang, X.; Wang, J.; Li, S.; et al. Microwave-Assisted Pyrolysis-a New Way for the Sustainable Recycling and Upgrading of Plastic and Biomass: A Review. ChemSusChem 2024, 17, e202400129. [Google Scholar] [CrossRef]
- Yang, C.; Shang, H.; Li, J.; Fan, X.; Sun, J.; Duan, A. A Review on the Microwave-Assisted Pyrolysis of Waste Plastics. Processes 2023, 11, 1487. [Google Scholar] [CrossRef]
- Shi, H.; Cui, Y.; Zhang, Y.; Zhao, W.; Liu, W.; Ruan, R. Gases Production from Microwave-Assisted Pyrolysis of Polypropylene Plastic. J. Environ. Chem. Eng. 2023, 11, 110851. [Google Scholar] [CrossRef]
- Fan, S.; Liu, Y.; Zhang, Y.; Zhao, W.; Xu, C. Microwave-Assisted Pyrolysis of Plastics for Aviation Oil Production: Energy and Economic Analyses. Front. Chem. Sci. Eng. 2024, 18, 81. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, J.; Wang, D.; Chen, Y.; Zhang, L.; Ma, W.; Zhao, S. Microwave-Intensified Catalytic Upcycling of Plastic Waste into Hydrogen and Carbon Nanotubes over Self-Dispersing Bimetallic Catalysts. Chem. Eng. J. 2024, 483, 149270. [Google Scholar] [CrossRef]
- Dan, E.; McCue, A.J.; Dionisi, D.; Fernández Martín, C. Plastic Valorization into Added-Value Products via Microwave and Conventional Pyrolysis: A Review. ACS Environ. Au 2026, in press. [Google Scholar] [CrossRef]
- Papuga, S.; Savković, J.; Djurdjevic, M.; Ciprioti, S.V. Effect of Feed Mass, Reactor Temperature, and Time on the Yield of Waste Polypropylene Pyrolysis Oil Produced via a Fixed-Bed Reactor. Polymers 2024, 16, 1302. [Google Scholar] [CrossRef]
- Shen, Y. Microwave-Assisted Pyrolysis of Biomass and Plastic Wastes for Hydrogen Production. Green Chem. 2025, 27, 10402–10422. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Thermochemical Conversion of Plastic Waste to Fuels: A Review. Environ. Chem. Lett. 2021, 19, 123–148. [Google Scholar] [CrossRef]
- Goulas, A.; Whittaker, T.; Chi-Tangyie, G.; Reaney, I.M.; Engstrøm, D.; Whittow, W.; Vaidhyanathan, B. Multi-Material Additive Manufacture and Microwave-Assisted Sintering of a Metal/Ceramic Metamaterial Antenna Structure. Appl. Mater. Today 2023, 33, 101878. [Google Scholar] [CrossRef]
- Cudjoe, D.; Wang, H. Plasma Gasification versus Incineration of Plastic Waste: Energy, Economic and Environmental Analysis. Fuel Process. Technol. 2022, 237, 107470. [Google Scholar] [CrossRef]
- Luo, J.; Gong, G.; Ma, R.; Sun, S.; Cui, C.; Cui, H.; Sun, J.; Ma, N. Study on High-Value Products of Waste Plastics from Micro-wave Catalytic Pyrolysis: Construction and Performance Evaluation of Advanced Microwave Absorption-Catalytic Bifunc-tional Catalysts. Fuel 2023, 346, 128296. [Google Scholar] [CrossRef]
- Zhang, P.; Liang, C.; Wu, M.; Chen, X.; Liu, D.; Ma, J. High-Efficient Microwave Plasma Discharging Initiated Conversion of Waste Plastics into Hydrogen and Carbon Nanotubes. Energy Convers. Manag. 2022, 268, 116017. [Google Scholar] [CrossRef]
- Zhou, N.; Dai, L.; Lv, Y.; Li, H.; Deng, W.; Guo, F.; Chen, P.; Lei, H.; Ruan, R. Catalytic Pyrolysis of Plastic Wastes in a Continuous Microwave Assisted Pyrolysis System for Fuel Production. Chem. Eng. J. 2021, 418, 129412. [Google Scholar] [CrossRef]
- Yao, D.; Wu, C.; Yang, H.; Zhang, Y.; Nahil, M.A.; Chen, Y.; Williams, P.T.; Chen, H. Co-Production of Hydrogen and Carbon Nanotubes from Catalytic Pyrolysis of Waste Plastics on Ni-Fe Bimetallic Catalyst. Energy Convers. Manag. 2017, 148, 692–700. [Google Scholar] [CrossRef]
- GB/T 3634.1-2011; Hydrogen Part 1: Industrial Hydrogen; Two Thousand and Eleven. China National Standardization Administration: Beijing, China.
- ISO 14687:2019; Hydrogen Fuel Quality—Product Specification. International Organization for Standardization: Geneva, Switzerland, 2019.
- Wu, C.; Williams, P.T. Investigation of Ni-Al, Ni-Mg-Al and Ni-Cu-Al Catalyst for Hydrogen Production from Pyrolysis–Gasification of Polypropylene. Appl. Catal. B Environ. 2009, 90, 147–156. [Google Scholar] [CrossRef]
- Sheka, E.F.; Golubev, Y.A.; Popova, N.A. Graphene Domain Signature of Raman Spectra of Sp2 Amorphous Carbons. Nanomaterials 2020, 10, 2021. [Google Scholar] [CrossRef]
- Xie, X.; Wu, S. Application and progress of microwave-assisted heating in thermal decomposition reactions. Chem. React. Eng. Technol. 2024, 40, 452–467. [Google Scholar]
- Liu, Z.; Xie, M.; Zhou, T.; Yang, J.; Yang, Y.; Liu, T.; Dai, S.; Huang, Q.; Cen, Q.; Xiao, P.; et al. A Review on Liquid Fuel Produced from Microwave-Assisted Pyrolysis of Plastic Waste. Process Saf. Environ. Prot. 2024, 187, 833–844. [Google Scholar] [CrossRef]
- Jie, X.; Li, W.; Slocombe, D.; Gao, Y.; Banerjee, I.; Gonzalez-Cortes, S.; Yao, B.; AlMegren, H.; Alshihri, S.; Dilworth, J.; et al. Microwave-Initiated Catalytic Deconstruction of Plastic Waste into Hydrogen and High-Value Carbons. Nat. Catal. 2020, 3, 902–912. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Yin, F. Co-Pyrolysis of Mixed Plastics and Its Impact on Kinetic Parameters and Pyrolysis Product Distribution. Therm. Sci. Eng. Prog. 2025, 68, 104242. [Google Scholar] [CrossRef]
- Kunwar, B.; Chandrasekaran, S.R.; Moser, B.R.; Deluhery, J.; Kim, P.; Rajagopalan, N.; Sharma, B.K. Catalytic Thermal Cracking of Postconsumer Waste Plastics to Fuels. 2. Pilot-Scale Thermochemical Conversion. Energy Fuels 2017, 31, 2705–2715. [Google Scholar] [CrossRef]
- Liu, M.; Wang, G.; Zhang, Z.; Li, Z.; Xu, S.; Wang, R.; He, S. Catalytic Pyrolysis Performance of Alkanes to Light Olefins over Bifunctional ZSM-5 Zeolites. J. Anal. Appl. Pyrolysis 2023, 170, 105924. [Google Scholar] [CrossRef]
- Yao, L.; Liu, X.; Song, Z.; Wang, Z.; Pang, Y.; Li, S.; Huang, C. Microwave-Assisted Fe-Based Catalytic Conversion of Plastic Waste to Hydrogen: ReaxFF-MD and DFT Insights. Chem. Eng. J. 2025, 520, 166127. [Google Scholar] [CrossRef]
- Lam, S.S.; Wan Mahari, W.A.; Ok, Y.S.; Peng, W.; Chong, C.T.; Ma, N.L.; Chase, H.A.; Liew, Z.; Yusup, S.; Kwon, E.E.; et al. Microwave Vacuum Pyrolysis of Waste Plastic and Used Cooking Oil for Simultaneous Waste Reduction and Sustainable Energy Conversion: Recovery of Cleaner Liquid Fuel and Techno-Economic Analysis. Renew. Sustain. Energy Rev. 2019, 115, 109359. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, W.; Zhang, X.; Qiao, J. Chemical Recycling of Plastics by Microwave-assisted High-temperature Pyrolysis. Glob. Chall. 2020, 4, 1900074. [Google Scholar] [CrossRef]
- Ahmad, F.; Cao, W.; Zhang, Y.; Pan, R.; Zhao, W.; Liu, W.; Shuai, Y. Oil Recovery from Microwave Co-Pyrolysis of Polystyrene and Polypropylene Plastic Particles for Pollution Mitigation. Environ. Pollut. 2024, 356, 124240. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Y.; Cui, L.; Liu, Y.; Li, B.; Liu, W. Microwave-Assisted Pyrolysis of Polypropylene Plastic for Liquid Oil Production. J. Clean. Prod. 2023, 411, 137303. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Y.; Cui, L.; Xiong, Q.; Mostafa, E. Microwave-Assisted Fluidized Bed Reactor Pyrolysis of Polypropylene Plastic for Pyrolysis Gas Production towards a Sustainable Development. Appl. Energy 2023, 342, 121099. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, Y.; Liu, Y.; Dai, L.; Wu, Q.; Xia, M.; Zhang, S.; Ke, L.; Zou, R.; Ruan, R. Microwave Catalytic Co-Pyrolysis of Waste Cooking Oil and Low-Density PolyeFluidisedthylene to Produce Monocyclic Aromatic Hydrocarbons: Effect of Different Catalysts and Pyrolysis Parameters. Sci. Total Environ. 2022, 809, 152182. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Zhou, W.; Wang, Y.; Jiang, H.; Wu, J.; Hu, J.; Wang, M.; Wang, W.; Wang, Q.; Hu, Y.; et al. Integrating Microwave Pyrolysis and Hydrotreating for Converting Low-Density Polyethylene into Jet Fuel. Renew. Energy 2024, 236, 121432. [Google Scholar] [CrossRef]
- Liu, H.; Cui, J.; Zhao, Z.; Ren, Y.; Chen, B.; Li, L. Bifunctional Catalyst Fe-Co/AC for Synergistic CatalyPolyethenezing Microwave-Assisted Lignin Hydrogenolysis. Renew. Energy 2025, 253, 123570. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, Y.; Liu, Z.; Zhao, W.; Liu, W.; Shuai, Y. Microwave-Assisted Catalytic Pyrolysis of Polypropylene for Aviation Fuel Production with Fe/Ni Catalysts: A Comparison with Electrical Catalytic Pyrolysis. Energy Convers. Manag. 2025, 340, 119993. [Google Scholar] [CrossRef]
- Shoukat, B.; Hussain, H.; Naz, M.Y.; Ibrahim, A.A.; Shukrullah, S.; Khan, Y.; Zhang, Y. Microwave-Assisted Catalytic Deconstruction of Plastics Waste into Nanostructured Carbon and Hydrogen Fuel Using Composite Magnetic Ferrite Catalysts. Scientifica 2024, 2024, 3318047. [Google Scholar] [CrossRef]
- Yao, L.; Yi, B.; Zhao, X.; Wang, W.; Mao, Y.; Sun, J.; Song, Z. Microwave-Assisted Decomposition of Waste Plastic over Fe/FeAl2O4 to Produce Hydrogen and Carbon Nanotubes. J. Anal. Appl. Pyrolysis 2022, 165, 105577. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, X.; Fan, L.; Zhang, Q.; Cui, X.; Tian, X.; Wu, Q.; Cobb, K.; Ruan, R.; Tu, H.; et al. Conversion of Low-Density Polyethylene into Monocyclic Aromatic Hydrocarbons through Continuous Microwave Pyrolysis with Ex-Situ Dual-Catalyst Beds. J. Clean. Prod. 2023, 418, 138039. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, H.; Hu, W.; Xie, M.; Pan, Y.; Niu, B.; Duan, D.; Ding, L.; Long, D.; Zhang, Y. Temperature-Dependent NiFeAl Catalysts for Efficient Microwave-Assisted Catalytic Pyrolysis of Polyethene into Value-Added Hydrogen and Carbon Nanotubes. Fuel 2024, 366, 131390. [Google Scholar] [CrossRef]
- Jadhav, A.L.; Gardi, P.A.; Kadam, P.A. Critical Review of Heterogeneous Catalysts: Manufacturing of Fuel from Waste Plastic Pyrolysis. Korean J. Chem. Eng. 2024, 41, 2937–2960. [Google Scholar] [CrossRef]
- Fricler, V.Y.; Nyashina, G.S.; Vershinina, K.Y.; Vinogrodskiy, K.V.; Shvets, A.S.; Strizhak, P.A. Microwave Pyrolysis of Agricultural Waste: Influence of Catalysts, Absorbers, Particle Size and Blending Components. J. Anal. Appl. Pyrolysis 2023, 171, 105962. [Google Scholar] [CrossRef]
- Dai, L.; Zhao, H.; Zhou, N.; Cobb, K.; Chen, P.; Cheng, Y.; Lei, H.; Zou, R.; Wang, Y.; Ruan, R. Catalytic Microwave-Assisted Pyrolysis of Plastic Waste to Produce Naphtha for a Circular Economy. Resour. Conserv. Recycl. 2023, 198, 107154. [Google Scholar] [CrossRef]
- Neha, S.; Prasanna Kumar Ramesh, K.; Remya, N. Techno-Economic Analysis and Life Cycle Assessment of Microwave Co-Pyrolysis of Food Waste and Low-Density Polyethene. Sustain. Energy Technol. Assess. 2022, 52, 102356. [Google Scholar] [CrossRef]
- Foong, S.Y.; Chan, Y.H.; Yek, P.N.Y.; Lock, S.S.M.; Chin, B.L.F.; Yiin, C.L.; Lan, J.C.-W.; Lam, S.S. Microwave-Assisted Pyrolysis in Biomass and Waste Valorisation: Insights into the Life-Cycle Assessment (LCA) and Techno-Economic Analysis (TEA). Chem. Eng. J. 2024, 491, 151942. [Google Scholar] [CrossRef]
- Beneroso, D.; Monti, T.; Kostas, E.T.; Robinson, J. Microwave Pyrolysis of Biomass for Bio-Oil Production: Scalable Processing Concepts. Chem. Eng. J. 2017, 316, 481–498. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.; Lee, J.; Cho, H. Sustainable Chemical Recycling of Waste Plastics into Olefins through Low-Pressure Hydrothermal Liquefaction and Microwave Pyrolysis: Techno-Economic Analysis and Life Cycle Assessment. Energy Convers. Manag. 2024, 317, 118861. [Google Scholar] [CrossRef]
- Trecáková, T.; Paulu, A.; Harasymchuk, I.; Brunhoferová, H.; Kočí, V. The Effects of the Technological Setup of Plastic Waste Pyrolysis on Its Environmental Performance. Environ. Sci. Adv. 2025, 4, 1796–1809. [Google Scholar] [CrossRef]
- Muniyappan, D.; Lima, G.R.; Pereira, A.O.; Gopi, R.; Ramanathan, A. Multivariate Combined Optimization Strategy and Comparative Life-Cycle Assessment of Biomass and Plastic Residues via Microwave Co-Pyrolysis Approach towards a Sustainable Synthesis of Renewable Hydrocarbon Fuel. J. Environ. Chem. Eng. 2023, 11, 111436. [Google Scholar] [CrossRef]
- Mahmoud Fodah, A.E.; Ghosal, M.K.; Behera, D. Bio-Oil and Biochar from Microwave-Assisted Catalytic Pyrolysis of Corn Stover Using Sodium Carbonate Catalyst. J. Energy Inst. 2021, 94, 242–251. [Google Scholar] [CrossRef]
- Mostasemi, F.; Afzal, M.T. A Review on the Microwave-Assisted Pyrolysis Technique. Renew. Sustain. Energy Rev. 2013, 28, 317–330. [Google Scholar] [CrossRef]
- Hu, X.; Ma, D.; Zhang, G.; Ling, M.; Hu, Q.; Liang, K. Microwave-assisted pyrolysis of waste plastics for their resource reuse: A technical review. Carbon Resources Conversion. 2023, 28, 317–330. [Google Scholar] [CrossRef]
- Al-Sakkaf, A.; Luo, C.; Wang, Y.; Palanki, S. Technoeconomic Analysis of a Microwave-Assisted Novel Process That Converts Polypropylene Plastic Waste to Propylene. Ind. Eng. Chem. Res. 2025, 64, 23568–23581. [Google Scholar] [CrossRef]
- Kondo, H.; Sawai, A.; Hirabayashi, K.; Nakanishi, A.; Fukumoto, K.; Tanaka, Y.; Horikoshi, S. Continuous Process Design of the Microwave Chemical Recycling of Waste Plastics Using Microwave-Absorbing Heating Elements. Sci. Rep. 2024, 14, 21952. [Google Scholar] [CrossRef] [PubMed]
- Putra, P.H.M.; Rozali, S.; Patah, M.F.A.; Idris, A. A Review of Microwave Pyrolysis as a Sustainable Plastic Waste Management Technique. J. Environ. Manag. 2022, 303, 114240. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhang, Y.; Cui, L.; Xiong, Q.; Maqsood, T. Conversion of Polystyrene Plastic into Aviation Fuel through Microwave-Assisted Pyrolysis as Affected by Iron-Based Microwave Absorbents. ACS Sustain. Chem. Eng. 2023, 11, 1054–1066. [Google Scholar] [CrossRef]
- Rajasekhar Reddy, B.; Malhotra, A.; Najmi, S.; Baker-Fales, M.; Coasey, K.; Mackay, M.; Vlachos, D.G. Microwave Assisted Heating of Plastic Waste: Effect of Plastic/Susceptor (SiC) Contacting Patterns. Chem. Eng. Process.-Process Intensif. 2022, 182, 109202. [Google Scholar] [CrossRef]
- Barham, J.P.; Koyama, E.; Norikane, Y.; Ohneda, N.; Yoshimura, T. Microwave Flow: A Perspective on Reactor and Microwave Configurations and the Emergence of Tunable Single-Mode Heating toward Large-Scale Applications. Chem. Rec. 2019, 19, 188–203. [Google Scholar] [CrossRef]
- Goyal, H.; Chen, T.-Y.; Chen, W.; Vlachos, D.G. A Review of Microwave-Assisted Process Intensified Multiphase Reactors. Chem. Eng. J. 2022, 430, 133183. [Google Scholar] [CrossRef]
- Priecel, P.; Lopez-Sanchez, J.A. Advantages and Limitations of Microwave Reactors: From Chemical Synthesis to the Catalytic Valorisation of Biobased Chemicals. ACS Sustain. Chem. Eng. 2019, 7, 3–21. [Google Scholar] [CrossRef]
- Kappe, C.O. Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6284. [Google Scholar] [CrossRef] [PubMed]








| Technology | Operating Conditions | Main Products | Advantages | Limitations | Ref. |
|---|---|---|---|---|---|
| Physical modification | Room temperature | Filled, reinforced, and blended modified plastics | Simple and low-cost; preserves polymer structure; compatible with large-scale recycling | Cannot treat contaminated or degraded plastics; incompatible polymer blends cause phase separation | [18] |
| Chemical modification | 120–300 °C | Modified polymers with enhanced compatibility or performance | Enhances interface bonding; extends polymer lifespan | Additives and chemical reagents are required; by-products may be generated; applicability is limited | [19] |
| Photocatalysis | Sunlight or ultraviolet radiation | Monomers, organic acids, or degradation intermediates | Low energy consumption; environmentally friendly; potential for selective depolymerisation | Hydrophobic plastics hinder catalyst–substrate contact, low reaction selectivity and slow reaction rates | [20] |
| Biocatalysis | Aqueous or mild conditions | TPA, EG from PET | Minimal processing; avoid toxic emissions | Effective only on polyester (PET); inactive on polyolefins (PE, PP); slow kinetics; sensitive to contamination | [21] |
| Incineration | 800–1200 °C; excess oxygen | Carbon dioxide, water, sulphur dioxide, ash | Technologically mature with a high energy recovery rate | Generates toxic emissions; degrades material value; fails to achieve chemical recovery | [22] |
| Pyrolysis | 450–650 °C; oxygen-free | Pyrolysis oil, gas, coke | Adaptable to polyolefins; controllable product distribution | Produces complex product mixtures; contamination affects quality | [23] |
| Catalytic pyrolysis | 350–550 °C, catalyst | Light olefins, aromatics, upgraded oil | High selectivity; low reaction temperature | Catalyst deactivation; poor tolerance to mixed plastics; high catalyst cost | [24] |
| Key Parameter | Conventional Pyrolysis (CP) | Microwave-Assisted Pyrolysis (MAP) | Advantages of MAP |
|---|---|---|---|
| Heating Mechanism | Heating from the exterior inwards, with slower heating rates [36]. | Heating from the interior outwards, generating heat within [35]. | Instantaneous switching to overcome heating resistance [36]. |
| Heating Rate | Slower rates with extended reaction times, approximately 5–20 °C/min [37]. | Faster rates with uniform heating, temperature rise rates of approximately 50–100 °C/min [38]. | Significantly reduced reaction times [30]. |
| Energy Efficiency | Higher energy consumption, 1.4–1.5 times that of microwave-assisted pyrolysis [39]. | Significantly reduced energy consumption with high energy utilisation efficiency, demonstrating exceptional energy self-sufficiency potential [40]. | Markedly more energy-efficient than conventional processes (approximately 30–40%), substantially enhancing the economic viability of waste plastic resource recovery [41]. |
| Temperature Uniformity | Significant temperature gradients, uneven heating [42]. | Uniform heating with low temperature gradients [43]. | Suppresses by-product formation, enhances target product yield. |
| Product Selectivity | Uneven pyrolysis, complex product composition [44]. | High selectivity for target products, superior product quality [35]. | Effectively improves product quality and yield. |
| Raw Material Properties | Reaction Conditions | Major Production | Ref. |
|---|---|---|---|
| PP | 450–550 °C; multi-mode cavity | Liquid oil (48.8 wt%); gas (49.6 wt%), residue (1.6 wt%). | [23] |
| LDPE | 450–550 °C; single-mode cavity | Oil phase (91.1 wt%); gas phase (8.7%). | [57] |
| HDPE | 480–600 °C; single-mode cavity | The yield was 55.6 mmol g−1_plastic; gas phase (H2 close to 90 vol%; the carbon yield (about 70 wt%). | [58] |
| PP + PS | 450–650 °C; multi-mode cavity | Liquid phase (yield up to 93.84 wt%, mainly aromatics, cyclic hydrocarbons, and oxygen-containing compounds). | [64] |
| PP + palm oil | 400–500 °C; vacuum environment; multi-mode cavity | The liquid yield (67.65 wt%, diesel fraction hydrocarbons C10–C20) has a high calorific value (47.74 MJ/kg), which exceeds the standard for commercial diesel. | [62] |
| PE + palm oil | 470–520 °C; vacuum environment; multi-mode cavity | It is a high-quality fuel rich in straight-chain alkanes (C12–C24), with a high cetane number, and polyethene improves the hydrogen-to-carbon ratio and stability. |
| Feedstock | Temperature | Major Production | Effect of Temperature on Results | Ref. |
|---|---|---|---|---|
| Mixed plastics | 400–700 °C | C5–C20 liquid hydrocarbons, light gases (C1–C4), solid char. | Liquid yield increases at 500–600 °C (approximately 40–50 wt%); gas yield increases at 600–700 °C (up to ~70 wt%). | [28] |
| Waste plastic | 450–650 °C | Hydrocarbon-rich oils (aliphatics and aromatics), light gases. | Increasing temperature promotes the transfer of products from the liquid/wax phase to the gas phase. Liquid yield (50 wt%) at 560 °C; gas yield increases (>60 wt%) at 620 °C. | [49] |
| PP (with SiC) | 700–900 °C | Gas phase (light hydrocarbons); solid phase (amorphous carbon/graphite-like carbon). | At temperatures ranging from 700 to 900 °C, the gas yield increases by approximately 30 wt%, promoting secondary cracking. | [38] |
| PP | 350–500 °C | Gasoline fraction hydrocarbons (C5–C12) and light gases. | Liquid yield was highest at 450 °C (82 wt%); gas yield was highest at 550 °C (30 wt%). | [65] |
| PP + PS (co-pyrolysis) | 450–650 °C | Aromatic-rich liquid oil (styrene and BTX) and light gases | Liquid yield (78 wt%) was observed at 450 °C. The gas yield and light hydrocarbons increased with increasing temperature, with the highest gas phase yield (36 wt%) at 650 °C. | [64] |
| PP + HDPE (mixed plastic) | 500–900 °C | Gas-rich products (C1–C4) with minor liquid hydrocarbons | The gas yield increased with increasing temperature within the range of 500–900 °C, reaching its highest level (72.4 wt%) at 900 °C. | [66] |
| Raw Materials | Catalyst | Major Production | Catalytic Effect | Ref. |
|---|---|---|---|---|
| LDPE | No catalyst | Liquid yield (52.1 wt%, comprising 34.1 wt% alkanes and 65.9 wt% alkenes, with no aromatics). | Optimised product composition, transitioning from zero to aromatic hydrocarbon production. | [68] |
| MgO | Liquid yield decreased to 48.5 wt%, comprising C5–C12 hydrocarbons at 87.6 wt%, with aromatic content increasing to 4.8%. | |||
| LDPE | No catalyst | Gas 50.89 wt% (H2 29.06 vol%); liquid 25.56 wt%; carbon 23.55 wt%. | Fe–Ni synergistic effect enhances metal–support interactions; improves cracking and reforming activity; enhances gas and oil product quality; and causes higher Fe content → stronger C–C/C–H bond cleavage capability. | [47] |
| Fe/SiC | Gas yield (60.21 wt%, H2 48.08 vol%); liquid yield increased; carbon yield decreased | |||
| Ni/SiC | Gas yield (58.82 wt%, H2 45.79 vol%); liquid yield increased; carbon yield decreased. | |||
| Fe-Ni/SiC(2:1) | Gas yield (73.61 wt%, comprising H2 at 73.89 vol%); oil and carbon yields were lowest. | |||
| PP | No catalyst | Naphthalene content ~4.38% area, MAS, and PAS increased; H2 yield enhanced to ~1.53 mmol/gPP. | Fe–Ni alloys form electron transfer pathways, promoting hydrogen transfer reactions; they inhibit excessive aromatisation, enabling synergistic cracking–hydrogenation–cyclisation. | [70] |
| Fe/HY | Naphthalene (~4.38 area%), MAS, and PAS increased; H2 yield improved to ~1.53 mmol/gPP. | |||
| Ni/HY | Naphthalene (~9.15 area%) and aromatics significantly increased, while alkanes decreased. | |||
| Fe-Ni/HY | Oil yield (67.5 wt%, alkane content of 34.67%, and significantly reduced aromatic content) is similar to that of aviation fuel. | |||
| Mixed plastic | NiZnFe2O4 | The liquid phase yield is relatively high at ~11 wt%; CNTs exhibit high structural purity. | Ni–Zn promotes CNT growth; Ni–Mg promotes dehydrogenation and inhibits liquid phase growth; Mg–Zn exhibits weak activity and microwave absorption, limiting carbon growth. | [71] |
| NiMg Fe2O4 | H2 content reached a maximum value of ~87.5 vol%. | |||
| MgZn Fe2O4 | Gas yield is relatively high. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bai, Y.; Li, K.; Zhao, J.; Yang, C.; Bai, Y.; Sun, S.; Shang, H. Microwave-Assisted Catalytic Pyrolysis of Waste Plastics for High-Value Resource Recovery: A Comprehensive Review. Processes 2026, 14, 427. https://doi.org/10.3390/pr14030427
Bai Y, Li K, Zhao J, Yang C, Bai Y, Sun S, Shang H. Microwave-Assisted Catalytic Pyrolysis of Waste Plastics for High-Value Resource Recovery: A Comprehensive Review. Processes. 2026; 14(3):427. https://doi.org/10.3390/pr14030427
Chicago/Turabian StyleBai, Yuxin, Keying Li, Jiang Zhao, Changze Yang, Yi Bai, Shoufeng Sun, and Hui Shang. 2026. "Microwave-Assisted Catalytic Pyrolysis of Waste Plastics for High-Value Resource Recovery: A Comprehensive Review" Processes 14, no. 3: 427. https://doi.org/10.3390/pr14030427
APA StyleBai, Y., Li, K., Zhao, J., Yang, C., Bai, Y., Sun, S., & Shang, H. (2026). Microwave-Assisted Catalytic Pyrolysis of Waste Plastics for High-Value Resource Recovery: A Comprehensive Review. Processes, 14(3), 427. https://doi.org/10.3390/pr14030427

