Micromechanical Properties of Deep Carbonate Investigated by Coupling Nanoindentation and SEM-EDS
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Location and Sample Preparation
2.2. Mineralogy Information
2.3. Nanoindentation Tests
2.3.1. Nanoindentation Test Equipment
2.3.2. Nanoindentation Test Principles
- (1)
- Young’s modulus
- (2)
- Hardness
3. Results
3.1. Mineral Composition and Microstructure
3.2. Load–Displacement Curves
3.3. Elastic Modulus and Hardness
3.4. Deformations Beneath the Indenter
4. Discussion
4.1. Effects on the Initiation and Propagation Behavior of Hydraulic Fracturing
4.2. Effects on the Wellbore Instability Mechanisms
4.3. Limitations and Outline of Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilkinson, B.H.; McElroy, B.J.; Kesler, S.E.; Peters, S.E.; Rothman, E.D. Global geologic maps are tectonic speedometers—Rates of rock cycling from area-age frequencies. Geol. Soc. Am. Bull. 2009, 121, 760–779. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, J.; Cheng, Z.; Xin, B.; Chen, H. Mechanical Behavior and Microstructural Characteristics of Ultradeep Tight Carbonate Rocks With Different Burial Depths. Front. Earth Sci. 2022, 10, 858899. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; He, J.; Zhang, H.; Zhang, X.; Liu, X. Fracability evaluation method of a fractured-vuggy carbonate reservoir in the shunbei block. ACS Omega 2023, 8, 15810–15818. [Google Scholar] [CrossRef]
- Wei, G.; Yang, W.; Xie, W.; Su, N.; Xie, Z.; Zeng, F.; Ma, S.; Jin, H.; Wang, Z.; Zhu, Q.; et al. Formation mechanisms, potentials and exploration practices of large lithologic gas reservoirs in and around an intracratonic rift: Taking the sinian—Cambrian of Sichuan Basin as an example. Pet. Explor. Dev. 2022, 49, 530–545. [Google Scholar] [CrossRef]
- Xiong, R.; Fu, H.; Li, Y.; Xie, C.; Wang, R.; Zhao, S.; Xu, C.; Xiao, C. Sequence of middle-lower Ordovician in Shunbei area of Tarim Basin, China, and its geological significance. Carbonates Evaporites 2025, 40, 116. [Google Scholar] [CrossRef]
- Flügel, E.; Munnecke, A. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer: Berlin, Germany, 2010. [Google Scholar]
- Ma, D.C.; Li, W.J.; Chen, Z.Y.; Fang, X.; Cheng, J.F.; Jia, X.L. Middle to Upper Ordovician stable carbon isotope stratigraphy and sedimentary facies in the Shunbei and Tahe areas, northern-central Tarim, China. Palaeoworld 2024, 33, 870–883. [Google Scholar] [CrossRef]
- Deng, S.; Li, H.; Zhang, Z.; Zhang, J.; Yang, X. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin. AAPG Bull. 2019, 103, 109–137. [Google Scholar] [CrossRef]
- Yang, H.J.; Chen, Y.Q.; Tian, J.; Du, J.H.; Zhu, Y.F.; Li, H.H.; Pan, W.Q.; Yang, P.F.; Li, Y.; An, H.T. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin. China Pet. Explor. 2020, 25, 62–72. [Google Scholar]
- Liu, J.; Huang, C.; Zhou, L.; Chen, Q.; Zhang, S. Estimation of the rock mechanics and in-situ stress parameters of carbonate reservoirs using array sonic logging: A case study of Shunbei No. 4 block. J. Geomech. 2024, 30, 394–407. [Google Scholar]
- Xie, H.; Li, C.; He, Z.; Li, C.; Lu, Y.; Zhang, R.; Gao, M.; Gao, F. Experimental study on rock mechanical behavior retaining the in situ geological conditions at different depths. Int. J. Rock Mech. Min. Sci. 2021, 138, 104548. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Wang, Q.; Song, J.; Hu, D.; Zhou, H. Assessment of Young’s modulus of small-sized rock samples based on macroindentation testing. Acta Geotech. 2025, 20, 2257–2278. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, S.; Zhang, Y.; Zeng, J.; Mu, W. Use of nonlinear chaos inversion in predicting deep thin lithologic hydrocarbon reservoirs: A case study from the Tazhong oil field of the Tarim Basin, China. Geophysics 2016, 81, B221–B234. [Google Scholar] [CrossRef]
- Farouk, S.; Abdeldaim, A.; Qteishat, A.; Ahmad, F.; Mohammed, I.; Al-Kahtany, K.; Powell, J.H. Orbital forcing and paleoenvironmental changes across the upper Ordovician glaciation-lower Silurian hot shale in the Risha gas field, northeast Jordan. Mar. Pet. Geol. 2024, 168, 107040. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, S.; Xi, Z.; Sun, S.; Jiao, P.; Mei, X.; Zhou, T.; Sun, J.; Zeng, F. A Machine Learning Approach for Estimating Shale Micro-Mechanical Properties from High Resolution SEM–EDS Images. Rock Mech. Rock Eng. 2025, 58, 13999–14019. [Google Scholar] [CrossRef]
- Charlton, T.S.; Rouainia, M.; Aplin, A.C.; Fisher, Q.J.; Bowen, L. Nanoindentation of Horn River Basin shales: The micromechanical contrast between overburden and reservoir formations. J. Geophys. Res. Solid Earth 2023, 128, e2022JB025957. [Google Scholar] [CrossRef]
- Ulm, F.J.; Abousleiman, Y. The nanogranular nature of shale. Acta Geotech. 2006, 1, 77–88. [Google Scholar] [CrossRef]
- Abdallah, Y.; Vandamme, M.; Chateau, C.; Garnier, D.; Jolivet, I.; Onaisi, A.; Richard, D.; Zandi, S. Linking elastic properties of various carbonate rocks to their microstructure by coupling nanoindentation and SEM-EDS. Int. J. Rock Mech. Min. Sci. 2023, 170, 105456. [Google Scholar] [CrossRef]
- Zheng, M.; Gu, Z.; Dong, H.; Ma, T.; Wu, Y. Nanoindentation-Based Characterization of Mesoscale Mechanical Behavior in Dolomite Crystals. Processes 2025, 13, 1203. [Google Scholar] [CrossRef]
- Deng, T.; Zhao, J.; Yin, H.; Xie, Q.; Gou, L. Mechanical Characterization of Main Minerals in Carbonate Rock at the Micro Scale Based on Nanoindentation. Processes 2024, 12, 2727. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, W.; Zhang, D. Elastic characterization of shale at microscale: A comparison between modulus mapping, PeakForce quantitative nanomechanical mapping, and contact resonance method. SPE J. 2022, 27, 3136–3157. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, W.; Zhang, D.; Wei, R.; Wang, Y. Influence of geochemical features on the mechanical properties of organic matter in shale. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019809. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, W.; Shi, H.; Ni, J.; Ding, L.; Yang, B.; Zheng, Y.; Li, X. Experimental investigation of microscale mechanical alterations in shale induced by fracturing fluid contact. Gas Sci. Eng. 2024, 124, 205264. [Google Scholar] [CrossRef]
- Xie, X.; Deng, H.; Hu, L.; Li, Y.; Mao, J.; Liu, J. Assessing the effect of oriented structure characteristics of laminated shale on its mechanical behaviour with the aid of nano-indentation and FE-SEM techniques. Int. J. Rock Mech. Min. Sci. 2024, 173, 105625. [Google Scholar] [CrossRef]
- Cheng, P.; Zhang, C.P.; Ma, Z.Y.; Zhou, J.P.; Zhang, D.C.; Liu, X.F.; Chen, H.; Ranjith, P.G. Experimental study of micromechanical properties alterations of shale matrix treated by ScCO2-Water saturation using nanoindentation tests. Energy 2022, 242, 122965. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, S.; Zhu, Y.; Huang, F.; Wu, Q. Micromechanical properties and homogenization of sandstone based on nanoindentation. Phys. Fluids 2024, 36, 087112. [Google Scholar] [CrossRef]
- Ma, Z.; Pathegama Gamage, R.; Zhang, C. Application of nanoindentation technology in rocks: A review. Geomech. Geophys. Geo-Energy Geo-Resour. 2020, 6, 60. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, G.; Peng, Y. Characterizing the micro-fracture in quasi-brittle rock using nanoindentation. Eng. Fract. Mech. 2024, 308, 110378. [Google Scholar] [CrossRef]
- Pan, H.; Kang, Y.; Hu, Y.; Liu, F.; Xu, J.; Li, D.; Li, J. Determination of the property evolution in rock after laser irradiation by nanoindentation and nuclear magnetic resonance. Int. J. Rock Mech. Min. Sci. 2024, 174, 105638. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, A.; Liu, S.; Kang, Y. Nano-scale mechanical properties of constituent minerals in shales investigated by combined nanoindentation statistical analyses and SEM-EDS-XRD techniques. Int. J. Rock Mech. Min. Sci. 2022, 159, 105187. [Google Scholar] [CrossRef]
- Veytskin, Y.B.; Tammina, V.K.; Bobko, C.P.; Hartley, P.G.; Clennell, M.B.; Dewhurst, D.N.; Dagastine, R.R. Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry. Geomech. Energy Environ. 2017, 9, 21–35. [Google Scholar] [CrossRef]
- Li, T.; Yao, M.; Xia, Y.; Feng, X.; Cong, W.; Shi, Y.; Tang, C.A. The influences of mineral components and pore structure on hydraulic fracture propagation in shale. Rock Mech. Rock Eng. 2025, 58, 2929–2952. [Google Scholar] [CrossRef]
- Cong, W.; Li, T.; Shi, Y.; Tang, C.A. Study on the Mechanical Properties and Failure Characteristics of Heterogenous Shale Based on CT Scanning. SPE J. 2024, 29, 7088–7107. [Google Scholar] [CrossRef]
- Krakowiak, K.J.; Wilson, W.; James, S.; Musso, S.; Ulm, F.J. Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials. Cem. Concr. Res. 2015, 67, 271–285. [Google Scholar] [CrossRef]
- Liu, X.Y.; Xu, D.P.; Li, S.J.; Qiu, S.L.; Jiang, Q. An insight into the mechanical and fracture characterization of minerals and mineral interfaces in granite using nanoindentation and micro X-ray computed tomography. Rock Mech. Rock Eng. 2023, 56, 3359–3375. [Google Scholar] [CrossRef]
- Ahmadov, R.; Vanorio, T.; Mavko, G. Confocal laser scanning and atomic-force microscopy in estimation of elastic properties of the organic-rich Bazhenov Formation. Lead. Edge 2009, 28, 18–23. [Google Scholar] [CrossRef]
- Kamboj, R.; Debbarma, S. Nano-indentation and SEM analysis of the interfacial transition zone in RAP-concrete. Constr. Build. Mater. 2025, 492, 142854. [Google Scholar] [CrossRef]
- Li, L.; Mao, L.; Yang, J. A review of principles, analytical methods, and applications of SEM-EDS in cementitious materials characterization. Adv. Mater. Technol. 2025, 10, 2401175. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, W.; Cui, X.; Zhou, J. Influence of mineralogical characteristics on mechanical properties of Montney tight formations using instrumented indentation test and SEM–EDS analysis. Rock Mech. Rock Eng. 2024, 57, 8777–8794. [Google Scholar] [CrossRef]
- Charlton, T.S.; Rouainia, M.; Aplin, A.C. Stochastic homogenization of the elastic properties of highly anisotropic shales. In Proceedings of the 57th U.S. Rock Mechanics/Geomechanics Symposium, Santa Fe, NM, USA, 25–28 June 2023; American Rock Mechanics Association (ARMA): Golden, CO, USA, 2023; p. ARMA-2023. [Google Scholar]
- Sheng, M.; Cheng, S.Z.; Lu, Z.H.; Zhang, Y.; Tian, S.C.; Li, G.S. Influence of formation in-situ stress on mechanical heterogeneity of shale through grid nanoindentation. Pet. Sci. 2022, 19, 211–219. [Google Scholar] [CrossRef]
- Zhou, P.; Li, C.; Xie, H. Micromechanical properties of granite with insights into mineral interface mechanics. Int. J. Min. Sci. Technol. 2025, in press. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, C.; Gamage, R.P.; Zhang, G. Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation. Int. J. Min. Sci. Technol. 2022, 32, 283–294. [Google Scholar] [CrossRef]
- Liu, A.; Liu, S.; Liu, Y.; Liu, B.; Liu, T. Characterizing mechanical heterogeneity of coal at nano-to-micro scale using combined nanoindentation and FESEM-EDS. Int. J. Coal Geol. 2022, 261, 104081. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Z.; Tang, Y.; Deng, Y.; Luo, T.; Wang, Y. Mechanical property characterization of mudstone based on nanoindentation technique combined with upscaling method. Environ. Earth Sci. 2023, 82, 485. [Google Scholar] [CrossRef]
- Yang, R.; Cong, R.; Gong, Y.; Pang, Z.; Huang, Z.; Li, G. Micromechanical Contrast of Ordos Basin Sandstone-Mudstone Interbedded Layered Rocks. J. Geophys. Res. Solid Earth 2023, 128, e2023JB027190. [Google Scholar] [CrossRef]
- Zhang, Y.; Lebedev, M.; Al-Yaseri, A.; Yu, H.; Nwidee, L.N.; Sarmadivaleh, M.; Barifcani, A.; Iglauer, S. Morphological evaluation of heterogeneous oolitic limestone under pressure and fluid flow using X-ray microtomography. J. Appl. Geophys. 2018, 150, 172–181. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Liu, A.; Kang, Y. Determination of mechanical property evolutions of shales by nanoindentation and high-pressure CO2 and water treatments: A nano-to-micron scale experimental study. Rock Mech. Rock Eng. 2022, 55, 7629–7655. [Google Scholar] [CrossRef]
- Li, S.; Jiao, B.; Deng, B.; Huang, J.; Pang, J. Impact of water–rock interaction on microstructure damage of carbonate rocks and alteration of its micromechanical properties. Phys. Fluids 2025, 37, 077108. [Google Scholar] [CrossRef]
- Gou, X.; Peng, H.; Liu, X.; Yang, X.; Li, D.; Liu, Z. Study on the effect of supercritical carbon dioxide on rock mechanical properties of carbonate reservoirs. J. Phys. Conf. Ser. 2025, 3048, 012183. [Google Scholar] [CrossRef]
- Xiong, C.; Cai, Z.; Ma, B.; Tian, W.; Shen, C.; Zhao, Y.; Zhao, L.; Zhao, X. Controls of strike-slip faults on condensate gas accumulation and enrichment in the Ordovician carbonate reservoirs of the central Tarim Basin, NW China. J. Asian Earth Sci. 2024, 263, 106019. [Google Scholar] [CrossRef]
- Fu, H.; Han, J.; Meng, W.; Feng, M.; Hao, L.; Gao, Y.; Guan, Y. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin. Nat. Gas Ind. B 2017, 4, 294–304. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, D.; Zhao, J. Control of fracture toughness of kerogen on artificially-matured shale samples: An energy-based nanoindentation analysis. Gas Sci. Eng. 2024, 124, 205266. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]












| Components | Calcite | Quartz | Dolomite | Illite | Plagioclase | K-Feldspar | Pyrite |
|---|---|---|---|---|---|---|---|
| A13 | 88.5 | 10.4 | 0.3 | 0 | 0.8 | 0 | – |
| A15 | 91.3 | 8.1 | 0 | – | – | 0.5 | 0 |
| A18 | 89.5 | 9.6 | – | 0.4 | – | 0 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, Z.; Mao, H.; Zhao, H.; Luo, P.; Guo, Z.; Liu, Y. Micromechanical Properties of Deep Carbonate Investigated by Coupling Nanoindentation and SEM-EDS. Processes 2026, 14, 251. https://doi.org/10.3390/pr14020251
Xu Z, Mao H, Zhao H, Luo P, Guo Z, Liu Y. Micromechanical Properties of Deep Carbonate Investigated by Coupling Nanoindentation and SEM-EDS. Processes. 2026; 14(2):251. https://doi.org/10.3390/pr14020251
Chicago/Turabian StyleXu, Zehao, Haijun Mao, Haiyang Zhao, Pandeng Luo, Zechen Guo, and Yiming Liu. 2026. "Micromechanical Properties of Deep Carbonate Investigated by Coupling Nanoindentation and SEM-EDS" Processes 14, no. 2: 251. https://doi.org/10.3390/pr14020251
APA StyleXu, Z., Mao, H., Zhao, H., Luo, P., Guo, Z., & Liu, Y. (2026). Micromechanical Properties of Deep Carbonate Investigated by Coupling Nanoindentation and SEM-EDS. Processes, 14(2), 251. https://doi.org/10.3390/pr14020251

