Physics-Constrained Meta-Embedded Neural Network for Bottom-Hole Pressure Prediction in Radial Oil Flow Reservoirs
Abstract
1. Introduction
2. Materials and Methods
2.1. Seepage Equation of Formation Fluid
2.2. MetaPress Neural Network Framework
2.3. Loss Function Construction
2.4. Geological Background and Network Parameter Settings
3. Experimental Process and Results
3.1. Preliminary Model Comparison
3.2. Result
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tornabene, F.; Fantuzzi, N.; Ubertini, F.; Viola, E. Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey. Appl. Mech. Rev. 2015, 67, 020801. [Google Scholar] [CrossRef]
- Santoro, R.; Elishakoff, I. Accuracy of the finite difference method in stochastic setting. J. Sound Vib. 2006, 291, 275–284. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning Through Physics–Informed Neural Networks: Where we are and What’s Next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, J. Development and Application of Artificial Neural Network. Wireless Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Alkinani, H.H.; Al-Hameedi, A.T.; Dunn-Norman, S.; Flori, R.E.; Alsaba, M.T.; Amer, A.S. Applications of Artificial Neural Networks in the Petroleum Industry: A Review. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 18–21 March 2019; p. D032S063R002. [Google Scholar] [CrossRef]
- Ross, C. Improving resolution and clarity with neural networks. In Proceedings of the SEG Technical Program Expanded Abstracts 2017, Houston, TX, USA, 17 August 2017; Society of Exploration Geophysicists: Houston, TX, USA, 2017; pp. 3072–3076. [Google Scholar] [CrossRef]
- Ogiesoba, O.; Ambrose, W. Seismic attributes investigation of depositional environments and hydrocarbon sweet-spot distribution in Serbin field, Taylor group, central Texas. In Proceedings of the Seg Technical Program Expanded Abstracts, Houston, TX, USA, 17 August 2017; Society of Exploration Geophysicists: Houston, TX, USA, 2017; pp. 2274–2278. [Google Scholar] [CrossRef]
- Arehart, R.A. Drill-Bit Diagnosis With Neural Networks. SPE Comput. Appl. 1990, 2, 24–28. [Google Scholar] [CrossRef]
- Gidh, Y.; Purwanto, A.; Bits, S. Artificial Neural Network Drilling Parameter Optimization System Improves ROP by Predicting/Managing Bit Wear. In SPE Intelligent Energy International; Society of Petroleum Engineers: Utrecht, The Netherlands, 2012; p. SPE-149801-MS. [Google Scholar] [CrossRef]
- Khan, M.R.; Tariq, Z.; Abdulraheem, A. Utilizing State of the Art Computational Intelligence to Estimate Oil Flow Rate in Artificial Lift Wells. In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition; Society of Petroleum Engineers: Utrecht, The Netherlands, 2018; p. SPE-192321-MS. [Google Scholar] [CrossRef]
- Guofan, L.; Yao, T.; Mariia, B.C.E. Production Optimization Using Machine Learning in Bakken Shale. In Proceedings of the 6th Unconventional Resources Technology Conference, Houston, TX, USA, 9 July 2018; American Association of Petroleum Geologists: Tulsa, OK, USA, 2018. [Google Scholar] [CrossRef]
- Elshafei, M.; Hamada, G.M. Neural Network Identification of Hydrocarbon Potential of Shaly Sand Reservoirs. In Proceedings of the SPE Saudi Arabia Section Technical Symposium, Dhahran, Saudi Arabia, 7–8 May 2007; p. SPE-110959-MS. [Google Scholar] [CrossRef]
- Hamam, H.; Ertekin, T. A Generalized Varying Oil Compositions and Relative Permeability Screening Tool for Continuous Carbon Dioxide Injection in Naturally Fractured Reservoirs. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 23–26 April 2018; p. SPE-192194-MS. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, C.; Cheng, Y.; Luo, X.; Qiu, X. Using a Deep Neural Network with Small Datasets to Predict the Initial Production of Tight Oil Horizontal Wells. Electronics 2023, 12, 4570. [Google Scholar] [CrossRef]
- Nait Amar, M.; Zeraibi, N. A combined support vector regression with firefly algorithm for prediction of bottom hole pressure. SN Appl. Sci. 2019, 2, 23. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, R.; Zhu, Z.; Song, X.; Su, Y.; Li, G.; Han, L. Bottom hole pressure prediction based on hybrid neural networks and Bayesian optimization. Petrol. Sci. 2023, 20, 3712–3722. [Google Scholar] [CrossRef]
- Nwanwe, C.C.; Duru, U.I.; Anyadiegwu, C.; Ekejuba, A.I.B. An artificial neural network visible mathematical model for real-time prediction of multiphase flowing bottom-hole pressure in wellbores. Pet. Res. 2023, 8, 370–385. [Google Scholar] [CrossRef]
- Ali, A.; Guo, L. Neuro-Adaptive Learning Approach for Predicting Production Performance and Pressure Dynamics of Gas Condensation Reservoir. IFAC-PapersOnLine 2019, 52, 122–127. [Google Scholar] [CrossRef]
- Ali, A.; Guo, L. Data-driven based investigation of pressure dynamics in underground hydrocarbon reservoirs. Energy Rep. 2021, 7, 104–110. [Google Scholar] [CrossRef]
- Ali, A.; Diala, U.; Guo, L. Data-Driven Based Modelling of Pressure Dynamics in Multiphase Reservoir Model. In Proceedings of the 2022 UKACC 13th International Conference on Control (CONTROL), Plymouth, UK, 20–22 April 2022; pp. 189–194. [Google Scholar] [CrossRef]
- Kim, K.G. Book Review: Deep Learning. Healthc. Inform. Res. 2016, 22, 351–354. [Google Scholar] [CrossRef]
- Zhu, Y.; Zabaras, N. Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification. J. Comput. Phys. 2018, 366, 415–447. [Google Scholar] [CrossRef]
- Yu, B. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Commun. Math. Stat. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Long, Z.; Lu, Y.; Dong, B. PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 2019, 399, 108925. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Pang, G.; Lu, L.; Karniadakis, G.E. fPINNs: Fractional Physics-Informed Neural Networks. Siam J. Sci. Comput. 2019, 41, A2603–A2626. [Google Scholar] [CrossRef]
- Fang, Z.; Zhan, J. A Physics-Informed Neural Network Framework for PDEs on 3D Surfaces: Time Independent Problems. IEEE Access 2020, 8, 26328–26335. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, L.; Karniadakis, G.E. Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks. Siam J. Sci. Comput. 2020, 42, A639–A665. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, Z.; Yan, J. Physics-informed machine learning for surrogate modeling of wind pressure and optimization of pressure sensor placement. Comput. Mech. 2023, 71, 481–491. [Google Scholar] [CrossRef]
- Bai, J.; Rabczuk, T.; Gupta, A.; Alzubaidi, L.; Gu, Y. A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics. Comput. Mech. 2023, 71, 543–562. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, L.; Karniadakis, G.E.; Dal Negro, L. Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express 2020, 28, 11618–11633. [Google Scholar] [CrossRef]
- Meng, Z.; Qian, Q.; Xu, M.; Yu, B.; Yıldız, A.R.; Mirjalili, S. PINN-FORM: A new physics-informed neural network for reliability analysis with partial differential equation. Comput. Methods Appl. Mech. Eng. 2023, 414, 116172. [Google Scholar] [CrossRef]
- Wang, S.; Karniadakis, G.E. GMC-PINNs: A new general Monte Carlo PINNs method for solving fractional partial differential equations on irregular domains. Comput. Methods Appl. Mech. Eng. 2024, 429, 117189. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J. Applications of Physics-Informed Neural Networks in Power Systems—A Review. IEEE Trans. Power Syst. 2023, 38, 572–588. [Google Scholar] [CrossRef]
- Shan, L.; Liu, C.; Liu, Y.; Tu, Y.; Deng, L.; Hei, X. Physics-informed machine learning for solving partial differential equations in porous media. Adv. Geo-Energy Res. 2023, 8, 37–44. [Google Scholar] [CrossRef]
- Lv, S.; Li, D.; Zha, W.; Shen, L.; Xing, Y. Solving seepage equation using physics-informed residual network without labeled data. Comput. Methods Appl. Mech. Eng. 2024, 418, 116563. [Google Scholar] [CrossRef]
- Shi, S.; Liu, D.; Ji, R.; Han, Y. An Adaptive Physics-Informed Neural Network with Two-Stage Learning Strategy to Solve Partial Differential Equations. Numer. Math. Theory Methods Appl. 2023, 16, 298–322. [Google Scholar] [CrossRef]
- Li, D.; Shen, L.; Zha, W.; Liu, X.; Tan, J. Physics-constrained deep learning for solving seepage equation. J. Petrol. Sci. Eng. 2021, 206, 109046. [Google Scholar] [CrossRef]
- Wu, B.; Hennigh, O.; Kautz, J.; Choudhry, S.; Byeon, W. Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations. In Proceedings of the International Conference on Computational Science–ICCS 2022, Cham, Switzerland, 15 June 2022; Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 372–379. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Gao, H.; Pan, S.; Wang, J. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng. 2020, 361, 112732. [Google Scholar] [CrossRef]














| Parameter | Value | Unit |
|---|---|---|
| Porosity | 0.15 | / |
| Skin factor | 1 | / |
| Well radius | 0.1 | m |
| Reservoir thickness | 10 | m |
| permeability | 40 | mD |
| Viscosity | 0.001 | Pa·s |
| Initial pressure | 1.77 × 107 | Pa |
| Volume factor | 1.05 | / |
| Well number | 1 | / |
| Boundary and control | Constant pressure boundary | |
| Fluid model | Black oil; single-phase | |
| Reservoir radius | 200 | m |
| Parameter | Value |
|---|---|
| Parameter | Value |
| Hidden layers | 5 |
| Neurons per layer | 5 |
| Activation | tanh/sigmoid |
| Optimizer | Adam |
| Learning rate | 0.01 |
| Epochs | 340 |
| Batch size | 10 |
| L2 penalty term | 10−4 |
| Random seed | Random (42), np.ran andom (42), torch.manual_seed (42) |
| λf | 105 |
| λcons | 10−5 |
| λout-b | 10−6 |
| λu | 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Qiu, L.; Yang, Y.; Sai, Y.; Cheng, Y. Physics-Constrained Meta-Embedded Neural Network for Bottom-Hole Pressure Prediction in Radial Oil Flow Reservoirs. Processes 2026, 14, 89. https://doi.org/10.3390/pr14010089
Qiu L, Yang Y, Sai Y, Cheng Y. Physics-Constrained Meta-Embedded Neural Network for Bottom-Hole Pressure Prediction in Radial Oil Flow Reservoirs. Processes. 2026; 14(1):89. https://doi.org/10.3390/pr14010089
Chicago/Turabian StyleQiu, Linhao, Yuxi Yang, Yunxiu Sai, and Youyou Cheng. 2026. "Physics-Constrained Meta-Embedded Neural Network for Bottom-Hole Pressure Prediction in Radial Oil Flow Reservoirs" Processes 14, no. 1: 89. https://doi.org/10.3390/pr14010089
APA StyleQiu, L., Yang, Y., Sai, Y., & Cheng, Y. (2026). Physics-Constrained Meta-Embedded Neural Network for Bottom-Hole Pressure Prediction in Radial Oil Flow Reservoirs. Processes, 14(1), 89. https://doi.org/10.3390/pr14010089

