Improving the Circularity of Sugarcane Mills: Evaluation of Technologies for Obtaining Isoamyl Acetate from Fusel Oil
Abstract
1. Introduction
2. Materials and Methods
- Technology A (indirect process): Separation of isoamyl alcohol followed by its esterification via reactive distillation.
- Technology B (direct process): Esterification of fusel oil through reactive distillation, with subsequent purification of isoamyl acetate.
2.1. Selecting Components and Property Packages
2.2. Modeling and Operating Conditions
2.3. Sensitivity Analysis
2.4. Economic Assessment
3. Results and Discussion
3.1. Results Obtained from the Simulation
3.2. Sensitivity Analysis
3.3. Economic Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RD | Reactive distillation |
| C1 | Distillation column |
| P1 | Purification column |
| B1 | Bottom stream of distillation column C1 |
| D1 | Distillate stream of distillation column C1 |
| AAc | Acetic acid |
| iAmOH | Isoamyl alcohol |
| iAmAc | Isoamyl acetate |
| NRTL | Nonrandom Two-Liquid model |
| PR | Peng-Robinson |
| RR | Reflux ratio |
| CAPEX | Capital expenditures |
| OPEX | Operating expenses |
| NPV | Net present value |
| IRR | Internal rate of return |
| PP | Payback period |
| TUC | Utility services |
References
- García-Aleaga, C.L.; Cruz-Llerena, A.; Pérez-Ones, O.; de Cárdenas, L.Z.; Fernández-Casiis, M. Potencialidades del aceite fusel. Tecnologías para su revalorización. Bionatura 2024, 9, 91–112. [Google Scholar] [CrossRef]
- Mendoza-Pedroza, J.J.; Sánchez-Ramírez, E.; Segovia-Hernández, J.G.; Hernández, S.; Orjuela, A. Recovery of alcohol industry wastes: Revaluation of fusel oil through intensified processes. Chem. Eng. Process. 2021, 163, 108329. [Google Scholar] [CrossRef]
- Dias, A.L.B.; da Cunha, G.N.; dos Santos, P.; Meireles, M.A.A.; Martínez, J. Fusel oil: Water adsorption and enzymatic synthesis of acetate esters in supercritical CO2. J. Supercrit. Fluids. 2018, 142, 22–31. [Google Scholar] [CrossRef]
- Neagu, M.; Cursaru, D.L.; Missyurin, A.; Goian, O. Efficient separation of isoamyl alcohol from fusel oil using non-polar solvent and hybrid decanter–distillation process. Appl. Sci. 2025, 15, 9954. [Google Scholar] [CrossRef]
- Studziński, W.; Podczarski, M.; Piechota, J.; Buziak, M.; Yakovenko, M.; Khokha, Y. Recovery of Natural Pyrazines and Alcohols from Fusel Oils Using an Innovative Extraction Installation. Molecules 2025, 30, 3028. [Google Scholar] [CrossRef] [PubMed]
- Marinho, L.H.N.; Aragão, F.V.; de Genaro Chiroli, D.M.; Zola, F.C.; Tebcherani, S.M. A systematic review of fusel oil as a renewable biofuel: Challenges, opportunities, and circular economy integration. Fuel 2025, 402, 135924. [Google Scholar] [CrossRef]
- de Lima, R.; Bento, H.B.S.; Reis, C.E.R.; Bôas, R.N.V.; de Freitas, L.; Carvalho, A.K.F.; de Castro, H.F. Biolubricant Production from Stearic Acid and Residual Secondary Alcohols: System and Reaction Design for Lipase-Catalyzed Batch and Continuous Processes. Catal. Lett. 2022, 152, 547–558. [Google Scholar] [CrossRef]
- Erol, D.; Yaman, H.; Doğan, B.; Yeşilyurt, M.K. The assessment of fusel oil in a compression-ignition engine in the perspective of the waste to energy concept: Investigation of the performance, emissions, and combustion characteristics. Biofuels 2022, 13, 1147–1164. [Google Scholar] [CrossRef]
- Massa, T.B.; Raspe, D.T.; Feiten, M.C.; Cardozo-Filho, L.; da Silva, C.D. Fusel Oil: Chemical Composition and an Overview of Its Potential Application. J. Braz. Chem. Soc. 2023, 34, 153–166. [Google Scholar] [CrossRef]
- SÁ, A.G.A.; de Meneses, A.C.; de Araújo, P.H.H.; de Oliveira, D. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci. Technol. 2017, 69, 95–105. [Google Scholar] [CrossRef]
- Yılmaz, B.; Deniz, İ.; Fazlı, H.; Gürsoy, S.; Yarıcı, T.; Bengü, B. Synthesis of iso-amyl ester rosin and its evaluation as an alternative to paraffin in medium density fiberboard production. Bioresources 2024, 19, 2077–2091. [Google Scholar] [CrossRef]
- Tran, T.T.V.; Kongparakul, S.; Karnjanakom, S.; Reubroycharoen, P.; Guan, G.; Chanlek, N.; Samart, C. Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. Mol. Catal. 2020, 484, 110724. [Google Scholar] [CrossRef]
- Sánchez, C.A.; Sánchez, O.A.; Orjuela, A.; Gil, I.D.; Rodríguez, G. Vapor–Liquid Equilibrium for Binary Mixtures of Acetates in the Direct Esterification of Fusel Oil. J. Chem. Eng. Data. 2017, 62, 11–19. [Google Scholar] [CrossRef]
- Ali, S.S.; Hossain, S.K.; Asif, M. Dynamic modeling of the isoamyl acetate reactive distillation process. Pol. J. Chem. Technol. 2017, 19, 59–66. [Google Scholar] [CrossRef]
- Barrientos, D.A.; Fernandez, B.; Morante, R.; Rivera, H.R.; Simeon, K.; Lopez, E.C.R. Recent Advances in Reactive Distillation. Eng. Proc. 2023, 56, 99. [Google Scholar] [CrossRef]
- Kiss, A.A.; Muthia, R.; Pazmiño-Mayorga, I.; Harmsen, J.; Jobson, M.; Gao, X. Conceptual methods for synthesis of reactive distillation processes: Recent developments and perspectives. J. Chem. Technol. Biotechnol. 2024, 99, 1263–1290. [Google Scholar] [CrossRef]
- Kiss, A.A. Novel Catalytic Reactive Distillation Processes for a Sustainable Chemical Industry. Top. Catal. 2019, 62, 1132–1148. [Google Scholar] [CrossRef]
- Missyurin, A.; Cursaru, D.L.; Neagu, M.; Nicolae, M. Hybrid Process Flow Diagram for Separation of Fusel Oil into Valuable Components. Processes 2024, 12, 2888. [Google Scholar] [CrossRef]
- Valverde, J.L.; Ferro, V.R.; Giroir-Fendler, A. Automation in the simulation of processes with Aspen HYSYS: An academic approach. Comput. Appl. Eng. Educ. 2023, 31, 376–388. [Google Scholar] [CrossRef]
- Cruz-Llerena, A.; Pérez-Ones, O.; Zumalacarregui-de Cárdenas, L.; Pérez-de los Ríos, J.L. Simulation and technoeconomic assessment of vinasse-to-energy treatments for pollution mitigation: A biorefinery approach. Biofuels, Bioprod. Bioref. 2025. [Google Scholar] [CrossRef]
- Ferreira, M.C.; Meirelles, A.J.; Batista, E.A. Study of the fusel oil distillation process. Ind. Eng. Chem. Res. 2013, 52, 2336–2351. [Google Scholar] [CrossRef]
- Montoya, N.; Córdoba, F.; Trujillo, C.; Gil, I.; Rodríguez, G. Fusel oil separation process. In Proceedings of the AIChE Annual Meeting, Minneapolis, MN, USA, 16–21 October 2011; American Institute of Chemical Engineers: New York, NY, USA, 2011; pp. 332–337. Available online: https://proceedings.aiche.org/conferences/aiche-annual-meeting/2011/proceeding/paper/428f-fusel-oil-separation-process (accessed on 8 April 2025).
- Patil, K.D.; Kulkarni, B.D. Modeling and simulation for reactive distillation process using aspen plus. In Proceedings of the National Symposium on Reaction Engineering (NSRE), Raipur, India, 22–23 January 2010; pp. 199–209. Available online: https://www.academia.edu/30993401/Modeling_and_simulation_for_reactive_distillation_process_using_Aspen_Plus (accessed on 8 April 2025).
- García-Aleaga, C.L.; Cruz-Llerena, A.; Pérez-Ones, O.; de Cárdenas, L.Z. Destilación reactiva para la revalorización de aceite de fusel: Caracterización de muestras y simulación de procesos. Rev. Cen. Azúcar 2024, 51, e1085-07. Available online: http://centroazucar.uclv.edu.cu/index.php/centro_azucar/article/view/818 (accessed on 8 April 2025).
- Patidar, P.; Mahajani, S.M. Esterification of fusel oil using reactive distillation–Part I: Reaction kinetics. Chem. Eng. J. 2012, 207, 377–387. [Google Scholar] [CrossRef]
- Sánchez, C.A.; Gil, I.D.; Rodríguez, G. Fluid phase equilibria for the isoamyl acetate production by reactive distillation. Fluid Phase Equilib. 2020, 518, 112647. [Google Scholar] [CrossRef]
- Patidar, P.; Mahajani, S.M. Esterification of fusel oil using reactive distillation. Part II: Process alternatives. Ind. Eng. Chem. Res. 2013, 52, 16637–16647. [Google Scholar] [CrossRef]
- González, D.R.; Bastidas, P.; Rodríguez, G.; Gil, I. Design alternatives and control performance in thepilot scale production of isoamyl acetate via reactive distillation. Chem. Eng. Res. Des. 2017, 123, 347–359. [Google Scholar] [CrossRef]
- Silva, G.G.; Botett, J.; Prieto, N. Predicción del equilibrio vapor-líquido de la mezcla acetato de etilo-etanol usando la ecuación de estado de Peng Robinson. Rev. UIS Ing. 2021, 20, 135–142. [Google Scholar] [CrossRef]
- Forero, L.A.; Velásquez, J.A. Representación simultánea del equilibrio líquido-vapor, el volumen molar y la entalpía de exceso de mezclas complejas mediante una ecuación de estado tipo Peng-Robinson. Inf. Tecnol. 2019, 30, 21–34. [Google Scholar] [CrossRef]
- Odejobi, O.J.; Oladokun, O.R.; Ajeigbe, F.J. Comparative study of fluid package on extractive distillation of ethanol-water mixture using pure glycerol and ethylene glycol as extracting solvents. J Eng Res Rep. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Patil, K.; Karan, P.; Pathare, S.; Salvi, S. Reactive Distillation for Esterification Reaction of Isoamyl Alcohol and Acetic Acid: Simulation and Experimental Studies. In Proceedings of the CHEMCON Indian Chemical Engineering Congress, Visakhapatnam, India, 27–30 December 2009; pp. 1–16. Available online: https://www.researchgate.net/publication/263331447_Reactive_Distillation_for_Esterification_Reaction_of_Isoamyl_Alcohol_and_Acetic_Acid_Simulation_and_Experimental_Studies (accessed on 2 May 2025).
- Bi, F.; Ali, A.; Iqbal, S.; Arman, M.; Ul-Hassan, M. Chemical esterification of fusel oil alcohol for the production of flavor and fragrance esters. J. Chem. Soc. Pak. 2008, 30, 919–923. Available online: https://psa.pastic.gov.pk/SearchArticleView.aspx?articledetailId=14898&S_id=83147 (accessed on 2 May 2025).
- Dar, A.; Anuradha, N. Use of orthogonal arrays and design of experiment via Taguchi L9 method in probability of default. Account 2018, 4, 113–122. [Google Scholar] [CrossRef]
- Guevara-Fernandez, D.; Proano-Aviles, J. Techno-economic analysis of the production of acetic acid via thermochemical processing of residual woody biomass in Ecuador. Biofuels Bioprod. Biorefin. 2022, 16, 335–348. [Google Scholar] [CrossRef]
- Eustácio, R.S.; da Silva, L.F.; Souza, C.; Mendes, M.F.; Neto, M.R.F.; Pereira, C.S.S. Simulação do processo de destilação da mistura etanol-óleo fúsel utilizando o simulador de processos ProSimPlus. Rev. Eletrônica Teccen 2018, 11, 61–67. [Google Scholar] [CrossRef]
- LaboratoriumDiscounter. Acetato de Isoamilo ≥98%, Extra Puro. Available online: https://www.laboratoriumdiscounter.nl/es/acetato-de-isoamilo-98-extra-puro.html (accessed on 5 May 2025).











| Authors | Technologies | Results |
|---|---|---|
| Ferreira et al. [21] | A single distillation column coupled to a decanter. Two distillation columns and a decanter coupled to the first column. A system composed of a decanter, a separator, and a distillation column. | A recovery of 99.53% of isoamyl alcohol was obtained, with a fraction of 0.818 w/w isoamyl alcohol and 0.178 w/w active amyl alcohol in the bottom. |
| Montoya et al. [22] | Two-column distillation process (the first one to remove water and light compounds, and the second one to purify isoamyl alcohol). | A recovery of 99.3% isoamyl alcohol with a purity of 0.997 w/w at the bottom. |
| Mendoza-Pedroza et al. [2] | Dividing wall column for the separation of isoamyl alcohol from other alcohols present in fusel oil. | A purity of 0.99 w/w of isoamyl alcohol was obtained. |
| Ali et al. [14] | Reactive distillation column for the synthesis of isoamyl acetate from the reaction of its constituent alcohol and acetic acid. | 99.85% purity of isoamyl acetate, with no water present and minimal traces of isoamyl alcohol (0.0002 mole fraction) and acetic acid (0.0013 mole fraction) in the bottom stream. 91% conversion of isoamyl alcohol. |
| Patil and Kulkarni [23] | Esterification process between acetic acid and isoamyl alcohol by a reactive distillation column. | 99.5% conversion of isoamyl alcohol with 88.4% w/w purity of isoamyl acetate. |
| Aleaga et al. [24] | Direct esterification of fusel oil by means of reaction, separation, and washing stages. | Mixture of esters composed of isoamyl acetate (molar fraction 0.5903), isobutyl acetate, and ethyl acetate, with conversions of 72.23% for isoamyl alcohol and 66.49% for acetic acid. |
| Patidar and Mahajani [25] | Reactive distillation column for obtaining esters from a mixture of fusel oil alcohols. | In the reactive stage, a mole fraction of 0.2121 of isoamyl acetate was obtained in the bottom stream, reaching a molar purity of 0.9879 after an additional purification column. |
| Component | Composition |
|---|---|
| Isoamyl alcohol | 0.6104 |
| 1-butanol | 0.0021 |
| 1-pentanol | 0.0219 |
| Acetaldehyde | 0.0001 |
| Isobutanol | 0.0655 |
| Ethanol | 0.1549 |
| Water | 0.1185 |
| 1-propanol | 0.0266 |
| Parameter | Technology A | Technology B | ||
|---|---|---|---|---|
| Distillation | Reactive Distillation | Reactive Distillation | Purification | |
| Number of stages | 22 | 35 | 24 | 35 |
| Reactive stages | - | 5–20 | 5–20 | - |
| Fusel oil feed stage | 11 | - | 20 | - |
| Fusel oil feed temperature (°C) | 30 | - | 30 | - |
| Hot fusel oil stream temperature (°C) | 50 | - | 50 | - |
| Alcohol feed stage | - | 3 | - | - |
| Acid feed stage | - | 13 | 20 | - |
| Isoamyl acetate feed stage | - | - | - | 20 |
| Acid feed temperature (°C) | - | 90 | 90 | - |
| Acid to alcohol molar ratio | - | 1 | - | - |
| Acid to fusel molar ratio | - | - | 1 | - |
| Reflux ratio | 1 | 7.5 | 1 | 7.5 |
| Ethanol recovery in distillate product (wt.%) | 99.9 | - | - | - |
| Acetic acid concentration in distillation product (wt.%) | - | 13.89 | 41.27 | - |
| Acid recovery in distillate product (% mol) | - | - | - | 99.9 |
| Pressure (kPa) | 101.3 | 101.3 | 101.3 | 101.3 |
| Technology | Column | Taguchi Design | Operating Parameters | Levels |
|---|---|---|---|---|
| A | C1 | L9 (33) | Reflux ratio (RR) | 1; 4; 8 |
| Feed stage | 11; 15; 20 | |||
| Feed temperature (°C) | 50; 70; 90 | |||
| RD | L9 (34) | RR | 8; 9.5; 11 | |
| Acid/alcohol molar ratio | 1; 1.5; 2 | |||
| Alcohol feed stage | 3; 8; 13 | |||
| Acid feed stage | 5; 9; 13 | |||
| B | RD | L9 (34) | RR | 1; 4; 8 |
| Acid/alcohol molar ratio | 1; 1.5; 2 | |||
| Reactant feed stage | 11; 15; 20 | |||
| Fusel oil feed temperature (°C) | 50; 70; 90 | |||
| P1 | L9 (32) | RR | 8; 9.5; 11 | |
| Isoamyl acetate feed stage | 20; 24; 28 |
| Parameter | C1 | RD | ||
|---|---|---|---|---|
| D1 | B1 | D2 | iAmAc | |
| Temperature (°C) | 84.09 | 130.7 | 96.54 | 141.4 |
| Mass flow rate (kg/h) | 12.74 | 18.63 | 11.71 | 19.64 |
| Composition (mass fraction) | ||||
| Isoamyl alcohol | 0.0680 | 0.9621 | 0.1393 | - |
| 1-butanol | 0.0015 | 0.0023 | 0.0037 | - |
| 1-pentanol | 0.0135 | 0.0269 | 0.0269 | 0.0095 |
| Acetaldehyde | 0.0001 | - | - | - |
| Isobutanol | 0.1435 | 0.0082 | 0.0127 | - |
| Ethanol | 0.3627 | 0.0002 | 0.0004 | - |
| Water | 0.3481 | 0.0001 | 0.2844 | - |
| 1-propanol | 0.0626 | 0.0003 | 0.0005 | - |
| Acetic acid | - | - | 0.1389 | - |
| Isoamyl acetate | - | - | 0.3932 | 0.9905 |
| Cooling water consumption (kW) | 8.97 | 25.41 | ||
| Heating consumption (kW) | 10.58 | 24.73 | ||
| Parameter | RD | P1 | ||
|---|---|---|---|---|
| D1 | B1 | D2 | iAmAc | |
| Temperature (°C) | 88.46 | 139.2 | 133.6 | 141.4 |
| Mass flow rate (kg/h) | 39.15 | 28.74 | 6.47 | 22.27 |
| Composition (mass fraction) | ||||
| Isoamyl alcohol | 0.0002 | 0.0073 | 0.0291 | 0.0010 |
| 1-butanol | 0.0015 | 0.0001 | 0.0004 | - |
| 1-pentanol | - | 0.0235 | 0.0423 | 0.0179 |
| Acetaldehyde | 0.0001 | - | - | - |
| Isobutanol | 0.0142 | - | 0.0002 | - |
| Ethanol | 0.0045 | - | - | - |
| Water | 0.2634 | - | - | - |
| 1-propanol | 0.0205 | - | 0.0001 | - |
| Acetic acid | 0.4127 | 0.0268 | 0.1191 | - |
| Isoamyl acetate | 0.0119 | 0.9382 | 0.7905 | 0.9810 |
| Isobutyl acetate | 0.0536 | 0.0041 | 0.0182 | - |
| Ethyl acetate | 0.2173 | - | - | - |
| Cooling water consumption (kW) | 19.49 | 4.84 | ||
| Heating consumption (kW) | 19.14 | 5.36 | ||
| Case | RR | Fusel Oil Feed Stages | Fusel Oil Feed Temperature (°C) | Purity (w/w) | iAmOH Recovery (%) | Mass Flow Rate iAmOH (kg/h) | Total Consumption (kW) |
|---|---|---|---|---|---|---|---|
| 1 | −1 | −1 | −1 | 0.9621 | 95.39 | 17.92 | 19.55 |
| 2 | −1 | 0 | 0 | 0.9600 | 95.38 | 17.92 | 18.99 |
| 3 | −1 | 1 | 1 | 0.9580 | 81.73 | 15.35 | 20.03 |
| 4 | 0 | −1 | 0 | 0.9905 | 96.20 | 18.07 | 46.53 |
| 5 | 0 | 0 | 1 | 0.9865 | 96.05 | 18.05 | 45.92 |
| 6 | 0 | 1 | −1 | 0.9727 | 95.63 | 17.97 | 46.70 |
| 7 | 1 | −1 | 1 | 0.9984 | 96.50 | 18.13 | 82.61 |
| 8 | 1 | 0 | −1 | 0.9957 | 96.39 | 18.11 | 83.58 |
| 9 | 1 | 1 | 0 | 0.9816 | 95.90 | 18.02 | 82.58 |
| Case | RR | AAc/ Alcohol Ratio | iAmOH Feed Stage | AAc Feed Stage | Purity (w/w) | iAmAc Mass Flow Rate (kg/h) | Total Consumption (kW) |
|---|---|---|---|---|---|---|---|
| 1 | −1 | −1 | −1 | −1 | 0.9917 | 19.48 | 53.15 |
| 2 | −1 | 0 | 0 | 0 | 0.8846 | 26.39 | 48.44 |
| 3 | −1 | 1 | 1 | 1 | 0.7301 | 26.46 | 48.35 |
| 4 | 0 | −1 | 0 | 1 | 0.9941 | 18.54 | 63.42 |
| 5 | 0 | 0 | 1 | −1 | 0.8858 | 26.47 | 56.56 |
| 6 | 0 | 1 | −1 | 0 | 0.7187 | 25.76 | 56.97 |
| 7 | 1 | −1 | 1 | 0 | 0.9951 | 17.52 | 76.11 |
| 8 | 1 | 0 | −1 | 1 | 0.8751 | 25.84 | 65.17 |
| 9 | 1 | 1 | 0 | −1 | 0.7318 | 25.56 | 91.64 |
| Case | RR | AAc/ Fusel Oil Ratio | Feed Stages | Fusel Oil Feed Temperature (°C) | Purity (w/w) | Mass Flow Rate iAmAc (kg/h) | Total Consumption (kW) |
|---|---|---|---|---|---|---|---|
| 1 | −1 | −1 | −1 | −1 | 0.9551 | 27.18 | 38.83 |
| 2 | −1 | 0 | 0 | 0 | 0.5525 | 27.56 | 37.16 |
| 3 | −1 | 1 | 1 | 1 | 0.3890 | 27.02 | 36.08 |
| 4 | 0 | −1 | 0 | 1 | 0.9526 | 27.74 | 96.06 |
| 5 | 0 | 0 | 1 | −1 | 0.5550 | 27.64 | 94.83 |
| 6 | 0 | 1 | −1 | 0 | 0.4032 | 27.73 | 93.94 |
| 7 | 1 | −1 | 1 | 0 | 0.9026 | 27.72 | 171.67 |
| 8 | 1 | 0 | −1 | 1 | 0.5593 | 27.74 | 170.47 |
| 9 | 1 | 1 | 0 | −1 | 0.4042 | 27.74 | 170.44 |
| Case | RR | Feed Stages | Purity (w/w) | iAmAc Recovery (%) | Mass Flow Rate iAmAc (kg/h) | Total Consumption (kW) |
|---|---|---|---|---|---|---|
| 1 | −1 | −1 | 0.9810 | 81.04 | 21.85 | 10.20 |
| 2 | −1 | 0 | 0.9828 | 76.20 | 20.54 | 12.10 |
| 3 | −1 | 1 | 0.9904 | 39.77 | 10.72 | 25.79 |
| 4 | 0 | −1 | 0.9875 | 70.60 | 19.03 | 17.66 |
| 5 | 0 | 0 | 0.9855 | 73.93 | 19.93 | 16.03 |
| 6 | 0 | 1 | 0.9909 | 43.80 | 11.81 | 29.94 |
| 7 | 1 | −1 | 0.9862 | 77.21 | 20.82 | 17.25 |
| 8 | 1 | 0 | 0.9857 | 77.14 | 20.80 | 17.24 |
| 9 | 1 | 1 | 0.9876 | 67.39 | 18.17 | 22.67 |
| Items | Alternative 1 | Alternative 2 |
|---|---|---|
| CAPEX (US$/year) | 3,899,190 | 4,793,660 |
| OPEX (US$/year) | 5,054,440 | 3,560,560 |
| NPV (US$) | 3,587,110 | 7,232,950 |
| IRR (%) | 38.95 | 56.34 |
| PP (years) | 5.05 | 3.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liz García Aleaga, C.; Cruz Llerena, A.; Zumalacárregui de Cárdenas, L.; Pavão, L.V.; da Silva Sá Ravagnani, M.A.; Costa, C.B.B.; Pérez Ones, O. Improving the Circularity of Sugarcane Mills: Evaluation of Technologies for Obtaining Isoamyl Acetate from Fusel Oil. Processes 2026, 14, 37. https://doi.org/10.3390/pr14010037
Liz García Aleaga C, Cruz Llerena A, Zumalacárregui de Cárdenas L, Pavão LV, da Silva Sá Ravagnani MA, Costa CBB, Pérez Ones O. Improving the Circularity of Sugarcane Mills: Evaluation of Technologies for Obtaining Isoamyl Acetate from Fusel Oil. Processes. 2026; 14(1):37. https://doi.org/10.3390/pr14010037
Chicago/Turabian StyleLiz García Aleaga, Claudia, Arletis Cruz Llerena, Lourdes Zumalacárregui de Cárdenas, Leandro Vitor Pavão, Mauro Antonio da Silva Sá Ravagnani, Caliane Bastos Borba Costa, and Osney Pérez Ones. 2026. "Improving the Circularity of Sugarcane Mills: Evaluation of Technologies for Obtaining Isoamyl Acetate from Fusel Oil" Processes 14, no. 1: 37. https://doi.org/10.3390/pr14010037
APA StyleLiz García Aleaga, C., Cruz Llerena, A., Zumalacárregui de Cárdenas, L., Pavão, L. V., da Silva Sá Ravagnani, M. A., Costa, C. B. B., & Pérez Ones, O. (2026). Improving the Circularity of Sugarcane Mills: Evaluation of Technologies for Obtaining Isoamyl Acetate from Fusel Oil. Processes, 14(1), 37. https://doi.org/10.3390/pr14010037

