Modeling the Influence of Ionic Strength on Mineral Solubility in Concentrated Brine Solutions
Abstract
1. Introduction
2. Experimental Procedure
2.1. Testing Unit
- −
- Double-jacketed incubating vessel that incubates the test base solution at a constant temperature,
- −
- Condenser that ensures a constant composition of the tested brine solution during the experiments and condenses any vapor produced from the brine solution during incubation,
- −
- Heat exchanger that controls the temperature of the base solution inside the double-jacketed vessel,
- −
- Automatic pressure pump that controls the pressure inside the testing vessel,
- −
- Reflux section that retains any condensate vapor back to the feed water.
- −
- Digital controller with a digital display to control the temperature inside the incubator vessel and the heat exchanger.
- −
- Stirrer mixer with adjustable control speeds.
- −
- Temperature and pressure gauges to monitor the temperature and pressure values.
2.2. Brine Water Samples Collection
2.3. Brine Water Sample Preparation
2.4. Mineral Analysis
3. Ionic Strength Calculations
4. Results
4.1. Solubility Limits of Hydrous CaSO4
4.2. Solubility Limits of Mg(OH)2
5. Discussion
5.1. Calcium Sulfate: Salting-In to Salting-Out Transition
5.2. Magnesium Hydroxide
6. Conclusions
- It is critical to consider the sequential mineral extraction. Calcium sulfate should be targeted at an intermediate concentration stage since its solubility passes through a maximum, thus concentrating the brine too much, making it less soluble, and potentially co-precipitating with other salts. On the other hand, magnesium hydroxide could be recovered at higher concentrations since it has high solubility, and this maximizes the yield.
- The comparison with other studies confirms that the solubility predictions are a function of the region where the investigation has been conducted.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, A.; Haralambous, K.J.; Loizidou, M. Desalination brine disposal methods and treatment technologies—A review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. Energy-water-environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 52–64. [Google Scholar] [CrossRef]
- Cheng, W.T.; Li, Z.B.; Cheng, F.Q. Solubility of Li2CO3 in Na–K–Li–Cl brines from 20 to 90 C. J. Chem. Thermodyn. 2013, 67, 74–82. [Google Scholar] [CrossRef]
- Ojo, O.E.; Oludolapo, O.A. Innovative Recovery Methods for Metals and Salts from Rejected Brine and Advanced Extraction Processes—A Pathway to Commercial Viability and Sustainability in Seawater Reverse Osmosis Desalination. Water 2025, 17, 3141. [Google Scholar] [CrossRef]
- Song, Y.; Qin, W.; Li, T.; Hu, Q.; Gao, C. The role of nanofiltration membrane surface charge on the scale-prone ions concentration polarization for low or medium saline water softening. Desalination 2018, 432, 81–88. [Google Scholar] [CrossRef]
- Mondal, S.; Hassanzadeh, A.; Pénélope, L. Modeling silica polymerization and scaling in high ionic strength geothermal fluids. Geothermics 2023, 111, 102693. [Google Scholar]
- Chitrakar, R.; Makita, Y.; Ooi, K.; Sonoda, A. Lithium recovery from salt lake brine by H2TiO3. Dalton Trans. 2017, 43, 0933. [Google Scholar] [CrossRef]
- Al-Sairfi, H.; Koshuryian, M.Z.A.; Ahmad, M. Membrane distillation of saline feeds and produced water: A comparative study of an air-gap and vacuum driven modules. Desalination Water Treat. 2024, 317, 100145. [Google Scholar] [CrossRef]
- Salman, M.A.; Ahmad, M.; Al-Sairfi, H.; Al-Foudari, Y. Mineral extraction from mixed brine solutions. Separations 2025, 12, 266. [Google Scholar] [CrossRef]
- Al-Sairfi, H.; Koshuryian, M.Z.A.; Ahmad, M. Performance feasibility study of direct membrane distillation systems in the treatment of seawater and oilfield- produced brine: The effect of hot-and-cold channel depth. Desalination Water Treat. 2023, 313, 26–36. [Google Scholar] [CrossRef]
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. (Eds.) Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication. U.S. Department of Commerce, No-AA. 2007. Available online: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/Handbook_2007/Guide_all_in_one.pdf (accessed on 20 May 2025).
- Meijer, J.; Van Rosmalen, G. Solubilities and supersaturations of calcium sulfate and its hydrates in seawater. Desalination 1984, 51, 255–305. [Google Scholar] [CrossRef]
- CRC Handbook of Chemistry and Physics, 103rd ed.; Haynes, W.M., Ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Ksp Table: Solubility Product Constants. Department of Chemistry, University of Massachusetts Amherst: Massachusetts, Amherst, USA. Available online: https://owl.oit.umass.edu/departments/Chemistry/appendix/Ksp.html (accessed on 8 September 2025).
- Gharib, K. Solubility Handbook: Inorganic Compounds. Wikimedia Commons, PDF File. Available online: https://ftpmirror.your.org/pub/wikimedia/images/wikipedia/commons/e/e9/Solubility_handbook_by_Khaled_Gharib.pdf (accessed on 7 October 2025).
- Pitzer, K.S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 1973, 77, 268–277. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch Reaction, One Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey: Reston, VA, USA, 2013; Volume 6, Chapter A43, p. 497.
- Statista. Magnesium Hydroxide—Global Market Prices and Trends. Available online: https://www.statista.com/ (accessed on 1 December 2025).
- IMARC Group. Magnesium Hydroxide Price Trend, Chart and Index 2025. 2024. Available online: https://www.imarcgroup.com/magnesium-hydroxide-price-trend (accessed on 10 October 2025).
- Grand View Research. Magnesium Hydroxide Market Size, Share & Trends Analysis Report by Grade, Region, and Segment Forecasts, 2025–2030. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/magnesium-hydroxide-market-report (accessed on 10 October 2025).
- Market Research Future. Magnesium Hydroxide Market Size, Share & Forecast 2034. 2023. Available online: https://www.marketresearchfuture.com/reports/magnesium-hydroxide-market-19261 (accessed on 10 October 2025).
- Romano, S.; Trespi, S.; Achermann, R.; Battaglia, G.; Raponi, A.; Marchisio, D.; Mazzotti, M.; Micale, G.; Cipollina, A. The Role of Operating Conditions in the Precipitation of Magnesium Hydroxide from Brine. Cryst. Growth Des. 2023, 23, 5303–5312. [Google Scholar] [CrossRef]
- US Geological Survey. Mineral Commodity Summaries: Strontium. 2025. Available online: https://pubs.usgs.gov/periodicals/mcs2025/mcs2025-strontium.pdf (accessed on 12 October 2025).
- U.S. Geological Survey. Mineral Commodity Summaries 2025; U.S. Geological Survey: Reston, VA, USA, 2025; p. 212. Available online: https://pubs.usgs.gov/periodicals/mcs2025/mcs2025.pdf (accessed on 12 October 2025).
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- He, S.; Morse, J.W. The solubility of gypsum in relation to ionic strength at 25 °C. Mar. Chem. 1993, 44, 153–167. [Google Scholar]
- Palmer, D.A.; Wesolowski, D.J.; Benezeth, P. Solubility of Magnesium Hydroxide in Aqueous Solutions. J. Chem. Eng. Data 2000, 45, 1192–1197. [Google Scholar]
- Millero, F. The Physical Chemistry of seawater. Annu. Rev. Earth Planet. Sci. 1974, 2, 101. [Google Scholar] [CrossRef]
- Kopittke, P.M. Gypsum solubility in seawater, and its application to soil amelioration. Aust. J. Soil Res. 2004, 42, 903–911. [Google Scholar]
- Kumar, V.; Trivedi, R.; Shukla, S.; Chattopadhyay, K. Effect of ionic strength on gypsum solubility: NaCl and KCl systems. J. Chem. Thermodyn. 2004, 36, 503–508. [Google Scholar]
- Wang, W.; Chou, I.M.; Song, Y.; Song, K. Experimental determination and modeling of gypsum solubility in multicomponent brines at 25 °C. Chem. Eng. Sci. 2013, 100, 448–457. [Google Scholar]
- Tlili, M.; Ben Amor, M.; Montiel, A.; Bounahmidi, T. Gypsum precipitation kinetics and solubility in the NaCl–MgCl2–CaSO4–H2O system. Ind. Eng. Chem. Res. 2014, 53, 9554–9560. [Google Scholar]
- Reznik, I.J.; Ganor, J.; Kushmaro, A. Kinetics of gypsum crystal growth from high ionic strength solutions. Geochim. Cosmochim. Acta 2011, 75, 2119–2131. [Google Scholar] [CrossRef]
- Trivedi, R.; Kumar, V.; Shukla, S.; Chattopadhyay, K. Measurement and modeling of the solubility of gypsum in NaCl and KCl solutions at 25 °C. J. Chem. Thermodyn. 2013, 60, 13–18. [Google Scholar]
- Altmaier, M.; Freyer, D.; Pannach, M.; Gies, R.; Wolf, M.; Hofmann, A. Solid-liquid equilibria of Mg(OH)2 in aqueous solutions: Experimental data and thermodynamic modeling. Front. Nucl. Eng. 2023, 5, 1188789. [Google Scholar]
- Xiong, Y.; Zhou, Y. Experimental determination of solubility constant of hydromagnesite in NaCl solutions up to 7 M ionic strength. J. Solut. Chem. 2011, 40, 797–812. [Google Scholar]
- Lorimer, J.W. (Ed.) Alkaline Earth Hydroxides in Water and Aqueous Solutions; Solubility Data Series; IUPAC: Research Triangle Park, NC, USA; NIST: Gaithersburg, MD, USA, 1984; Volume 52, pp. 119–123.
- Shaw, C.; Ringham, M.C.; Carter, B.R.; Tyka, M.D.; Eisaman, M.D. Using magnesium hydroxide for ocean alkalinity enhancement: Elucidating the role of formation conditions on material properties and dissolution kinetics. Front. Clim. 2025. [Google Scholar] [CrossRef]
- Al-Ghouti, K.A.H.; Al-Muhtaseb, M.M.; Al-Qaradaghi, M.A. Solubility of calcium sulfate in water at various temperatures. J. Environ. Sci. Health Part A 2010, 45, 1834–1841. [Google Scholar]
- Smith, J.M.; Jones, L.T.; Brown, R.W. Calcium sulfate solubility in water: Implications for drinking water standards. Water Res. 2015, 85, 1–10. [Google Scholar]
- Zhang, X.; Muhammed, M. Calcium sulfate solubility in aqueous solutions. Hydrometallurgy 1989, 23, 1–14. [Google Scholar]
- Taherdangkoo, R.; Tian, M.; Sadighi, A.; Meng, T.; Yang, H.; Butscher, C. Experimental data on solubility of the two calcium sulfates: Gypsum and anhydrite in aqueous solutions. Data Descr. 2025, 7, 9. [Google Scholar] [CrossRef]
- Reiss, A.G.; Gavrieli, I.; Rosenberg, Y.O.; Reznik, I.J.; Luttge, A.; Emmanuel, S.; Ganor, J. Gypsum Precipitation under Saline Conditions. Minerals 2021, 11, 141. [Google Scholar] [CrossRef]
- Berner, U.R.; Gimmi, T.; Griffault, L.; Schäfer, T. Solubility of anhydrite and gypsum at temperatures below 100 °C and the gypsum-anhydrite transition temperature in aqueous solutions: A Re-Assessment. Front. Nucl. Eng. 2023, 2, 1208582. [Google Scholar] [CrossRef]






| Mineral | Solubility in Water (g/100 mL) at 20 °C | Ksp at 25 °C (Approximate) | Reference |
|---|---|---|---|
| Li2CO3 | 1.33 | 5.3 × 10−4 | [5] |
| CaCO3 | 6.6 × 10−4 | 3.3 × 10−9 to 8.7 × 10−9 | [13] |
| CaSO4·2H2O | 0.21 to 0.27 | 3.14 × 10−5 | [14] |
| SrSO4 | 0.0138 | 3.2 × 10−7 | [15] |
| BaSO4 | 2.44 × 10−4 | 1.1 × 10−10 | [13,16] |
| Mg(OH)2 | 9 × 10−4 | 1.5 × 10−11 | [15,16] |
| NaCl | 35.9 | Highly Soluble | [17] |
| KCl | 34.2 | Highly Soluble | [17] |
| MgCl2 | 54.6 | Highly Soluble | [17] |
| CaCl2 | 74.5 | Highly Soluble | [15] |
| BaCl2 | 35.8 | Highly Soluble | [17] |
| Ion | Concentration (mg/L) ± SD | Molar Mass (g/mol) | Charge (z) | Molarity mol/L | Contribution to 0.5 × Ci × Zi2 |
|---|---|---|---|---|---|
| SO42− | 5260 ± 120 | 96.06 | −2 | 0.055 | 0.219 |
| Ca2+ | 750 ± 25 | 40.08 | 2 | 0.019 | 0.076 |
| Mg2+ | 2478 ± 60 | 24.305 | 2 | 0.10196 | 0.408 |
| Cl− | 37,954 ± 800 | 35.45 | −1 | 1.071 | 0.535 |
| Na+ | 21,980 ± 450 | 22.99 | 1 | 0.956 | 0.478 |
| K+ | 1035 ± 35 | 39.1 | 1 | 0.026 | 0.013 |
| HCO3− | 217 ± 15 | 61.02 | −1 | 0.004 | 0.002 |
| Total Ionic Strength (I) | 1.379 ± 0.05 |
| Solution | I | pH | Temp |
|---|---|---|---|
| BSDRP | 1.20 | 7.940 | 20 |
| BSSDP | 1.38 | 7.860 | 20 |
| 50% BSSDP | 1.436 | 7.650 | 20 |
| 60% BSSDP | 1.688 | 7.440 | 20 |
| 70% BSSDP | 1.996 | 7.490 | 20 |
| Solution | I | pH | Temp | Solubility (g/L) | Literature | Reference | Deviation% |
|---|---|---|---|---|---|---|---|
| BSDRP | 1.20 | 7.94 | 20.0 | 2.34 | 2.20–2.35 | [28,31] | −0.43 |
| BSSDP | 1.38 | 7.86 | 20.0 | 2.19 | 2.19–2.3 | [32,33] | −0.46 |
| 50% | 1.42 | 7.94 | 20.0 | 1.12 | 1.1–1.25 | [34] | 2.16 |
| 60% | 1.68 | 7.94 | 20.0 | 0.80 | 0.75–0.85 | [31,35] | 6.58 |
| 70% | 2.00 | 7.92 | 20.0 | 0.51 | 0.45–0.55 | [36] | −7.48 |
| Solution | I | PH | OH | Solubility | Solubility | Solubility | OH | Temperature |
|---|---|---|---|---|---|---|---|---|
| app. | app. | act. | act. | |||||
| mol/L | mg/L | mol/L | mol/L | mol/L | °C | |||
| BSDRP | 1.20 | 10.65 | 4.50 × 10−4 | 12.00 | 2.06 × 10−4 | 1.15 × 10−4 | 3.54 × 10−4 | 20 |
| BSSDP | 1.38 | 10.53 | 3.40 × 10−4 | 9.92 | 1.70 × 10−4 | 9.49 × 10−5 | 2.92 × 10−4 | 20 |
| 50% | 1.42 | 10.51 | 3.20 × 10−4 | 9.33 | 1.60 × 10−4 | 8.93 × 10−5 | 2.75 × 10−4 | 20 |
| 60% | 1.68 | 10.41 | 2.60 × 10−4 | 7.58 | 1.30 × 10−4 | 7.25 × 10−5 | 2.24 × 10−4 | 20 |
| 70% | 2.00 | 10.34 | 2.20 × 10−4 | 6.41 | 1.10 × 10−4 | 6.14 × 10−5 | 1.89 × 10−4 | 20 |
| Ionic Strength (I) | Ksp (mol3/L3) | Ksp Literature (mol3/L3) | Deviation Ksp (%) | Reference |
|---|---|---|---|---|
| 1.20 | 1.44 × 10−11 | 1.5 × 10−11 | −4.03 | [37] |
| 1.38 | 8.11 × 10−12 | 9.0 × 10−12 | −9.64 | [38] |
| 1.42 | 6.76 × 10−12 | 7.5 × 10−12 | −9.79 | [29] |
| 1.68 | 3.63 × 10−12 | 4.0 × 10−12 | −9.29 | [39] |
| 2.00 | 2.20 × 10−12 | 2.3 × 10−12 | −4.60 | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Al-Sairfi, H.; Salman, M.A.; Al-Foudari, Y.; Ahmed, M. Modeling the Influence of Ionic Strength on Mineral Solubility in Concentrated Brine Solutions. Processes 2026, 14, 172. https://doi.org/10.3390/pr14010172
Al-Sairfi H, Salman MA, Al-Foudari Y, Ahmed M. Modeling the Influence of Ionic Strength on Mineral Solubility in Concentrated Brine Solutions. Processes. 2026; 14(1):172. https://doi.org/10.3390/pr14010172
Chicago/Turabian StyleAl-Sairfi, H., M. A. Salman, Y. Al-Foudari, and M. Ahmed. 2026. "Modeling the Influence of Ionic Strength on Mineral Solubility in Concentrated Brine Solutions" Processes 14, no. 1: 172. https://doi.org/10.3390/pr14010172
APA StyleAl-Sairfi, H., Salman, M. A., Al-Foudari, Y., & Ahmed, M. (2026). Modeling the Influence of Ionic Strength on Mineral Solubility in Concentrated Brine Solutions. Processes, 14(1), 172. https://doi.org/10.3390/pr14010172

