Recovery of Carotenoids via Novel Extraction Technologies for the Valorization of Tomato By-Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Processing Procedures
2.2. Chemicals and Reagents
2.3. Semi-Batch Extraction of BACs
2.4. Microwave-Assisted Extraction (MAE) of Carotenoids
2.5. High-Pressure-Assisted Extraction (HPAE) of Carotenoids
2.6. Total Carotenoid and Lycopene Determination
2.7. Determination of the Selectivity of Extraction in Tomato Pomace Extracts
2.8. HPLC-DAD Analyses of the Extracts
2.9. Bioaccessibility of Carotenoids Extracted from Tomato Pomace
2.10. Statistical Analysis
3. Results and Discussion
3.1. Conventional Extraction of Bioactives from Dried TP Powder
3.2. Results from Microwave-Assisted Extraction of Carotenoids from Tomato By-Products
3.3. Results from High-Pressure-Assisted Extraction of Carotenoids from Tomato By-Products
3.4. Bioaccessibility of Extracted Carotenoids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TP | Tomato pomace |
BACs | Bioactive compounds |
MAE | Microwave-assisted extraction |
HPAE | High-pressure-assisted extraction |
CE | Conventional extraction |
DW | Dry weight |
EtOAc | Ethyl acetate |
HPLC-DAD | High-Performance Liquid Chromatography–Diode Array Detection |
OPO | Olive pomace oil |
CO | Corn oil |
FO | Fish oil |
PUFAs | Polyunsaturated Fatty Acids |
MUFAs | Monounsaturated Fatty Acids |
References
- The World Processing Tomato Council. 2020. Available online: https://www.wptc.to (accessed on 20 June 2024).
- Arvanitoyannis, I.S.; Varzakas, T.H. Vegetable Waste Treatment: Comparison and Critical Presentation of Methodologies. Crit. Rev. Food Sci. Nutr. 2008, 48, 205–247. [Google Scholar] [CrossRef]
- Allison, B.J.; Simmons, C.W. Valorization of tomato pomace by sequential lycopene extraction and anaerobic digestion. Biomass Bioenergy 2017, 105, 331–341. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Sanchez-Zapata, E.; Sayas-Barberá, E.; Sendra, E.; Pérez-Álvarez, J.A.; Fernández-López, J. Tomato and Tomato Byproducts. Human Health Benefits of Lycopene and Its Application to Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1032–1049. [Google Scholar] [CrossRef]
- Secondi, L.; Principato, L.; Ruini, L.; Guidi, M. Reusing Food Waste in Food Manufacturing Companies: The Case of the Tomato-Sauce Supply Chain. Sustainability 2019, 11, 2154. [Google Scholar] [CrossRef]
- Liadakis, G.; Katsouli, M.; Chanioti, S.; Giannou, V.; Tzia, C. CHAPTER ONE—Identification, quantification, and characterization of tomato processing by-products. In Tomato Processing by-Products Sustainable Applications; Jeguirim, M., Zorpas, A., Eds.; Academic Press and AOCS Press: Urbana, IL, USA, 2022; pp. 1–32. [Google Scholar]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Human Nutrition Institute: Washington DC, USA, 2001; 64p. [Google Scholar]
- Agarwal, S.; Rao, A.V. Tomato lycopene and its role in human health and chronic diseases. CMAJ 2000, 163, 739–744. [Google Scholar] [PubMed]
- Strati, I.F.; Oreopoulou, V. Process optimisation for recovery of carotenoids from tomato waste. Food Chem. 2011, 129, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Ascenso, A.; Pinho, S.; Eleuterio, C.; Praca, F.G.; Bentley, M.V.L.B.; Oliveira, H.; Santos, C.; Silva, O.; Simões, S. Lycopene from Tomatoes: Vesicular Nanocarrier Formulations for Dermal Delivery. J. Agric. Food Chem. 2013, 61, 7284–7293. [Google Scholar] [CrossRef]
- Luengo, E.; Condón-Abanto, S.; Condón, S.; Álvarez, I.; Javier, R. Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Sep. Purif. Technol. 2014, 136, 130–136. [Google Scholar] [CrossRef]
- Barba, F.J.; Grimi, N.; Vorobiev, E. New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng. Rev. 2014, 7, 45–62. [Google Scholar] [CrossRef]
- Deng, Q.; Zinoviadou, K.G.; Galanakis, C.M.; Orlien, V.; Grimi, N.; Vorobiev, E.; Lebovka, N.; Barba, F.J. The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates: Extraction, degradation, and applications. Food Eng. Rev. 2014, 7, 357–381. [Google Scholar] [CrossRef]
- Barba, F.J.; Puértolas, E.; Brncic, M.; Panchev, I.N.; Dimitrov, D.A.; Athes-Dutour, V.; Mousaa, M.; Souchon, I. Chapter 11—Emerging extraction. In Food Waste Recovery Processing Technologies and Industrial Techniques; Galanakis, C.M., Ed.; Academic Press/Elsevier: San Diego, CA, USA, 2015; pp. 249–272. [Google Scholar]
- Selvamuthukumaran, M.; Shi, J. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 2017, 1, 61–81. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Azwanida, N.N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4, 196. [Google Scholar]
- Veggi, P.C.; Martinez, J.; Meireles, M.A.A. Fundamentals of microwave extraction. In Vol. 4: Microwave-Assisted Extraction for Bioactive Compounds; Chemat, F., Cravotto, G., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Takeuchi, T.; Pereira, C.; Braga, M.; Marostica, M.; Leal, P.; Meireles, A. Low-pressure solvent extraction (solid–liquid extraction, microwave assisted, and ultrasound assisted) from condimentary plants. In Extracting Bioactive Compounds for Food Products: Theory and Applications; Meireles, A., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 140–171. [Google Scholar]
- Tsevdou, M.; Ntzimani, A.; Katsouli, M.; Dimopoulos, G.; Tsimogiannis, D.; Taoukis, P. Comparative study of microwave, pulsed electric fields and high pressure processing on the extraction of antioxidants from olive pomace. Molecules 2024, 29, 2303. [Google Scholar] [CrossRef]
- Lasunon, P.; Phonkerd, N.; Tettawong, P.; Sengkhamparn, N. Effect of microwave-assisted extraction on bioactive compounds from industrial tomato waste and its antioxidant activity. Food Res. 2021, 5, 468–474. [Google Scholar] [CrossRef]
- Chan, R.Y.; Ngoh, G.C.; Kung, F.W.L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Moreira, S.A.; Silva, S.; Costa, E.M.; Saraiva, J.A.; Pintado, M. Effect of high hydrostatic pressure on biological activities of stinging nettle extracts. Food Funct. 2020, 11, 921–931. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, J.; Wang, C. Novel high pressure extraction technology. Int. J. Pharm. 2014, 278, 471–474. [Google Scholar]
- Strati, I.F.; Gogou, E.; Oreopoulou, V. Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food Bioprod. Process. 2015, 94, 668–674. [Google Scholar] [CrossRef]
- Guo, X.; Han, D.; Xi, H.; Rao, L.; Liao, X.; Hu, X.; Wu, J. Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: A comparison. Carbohydr. Polym. 2014, 88, 441–448. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Ostojić, J.; Miletić, V.; Djaković, S.; Bosiljkov, T.; Zorić, Z.; Ježek, D.; Rimac Brnčić, S.; Brnčić, M. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innov. Food Sci. Emerg. Technol. 2020, 64, 102424. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Giovagnoli-Vicuña, C.; Cañas-Sarazúa, R. Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydro-static pressure-assisted extraction. Food Chem. 2019, 278, 751–759. [Google Scholar] [CrossRef]
- Jurić, S.; Ferrari, G.; Velikov, K.P.; Donsì, F. High-pressure homogenization treatment to recover bioactive compounds from tomato peels. J. Food Eng. 2019, 262, 170–180. [Google Scholar] [CrossRef]
- Rodrigues, D.B.; Marques, M.C.; Hacke, A.; Loubet Filho, P.S.; Cazarin, C.B.B.; Mariutti, L.R.B. Trust your gut: Bioavailability and bioaccessibility of dietary compounds. Curr. Res. Food Sci. 2022, 5, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Brodkorb, A. A standardised static in vitro digestion method suitable for food—An interntional consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Yonekura, L.; Nagao, A. Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 2007, 51, 107–115. [Google Scholar] [CrossRef]
- Shilpa, S.; Shwetha, H.J.; Raju, M.; Lakshminarayana, R. Factors affecting bioaccessibility and bio-efficacy of carotenoids. In Carotenoids: Properties, Processing and Applications; Academic Press/Elsevier B.V.: San Diego, CA, USA, 2019; pp. 41–73. [Google Scholar]
- Lara-Abia, S.; Welti-Chanes, J.; Cano, M.P. Effect of High Hydrostatic Pressure on the Extractability and Bioaccessibility of Carotenoids and Their Esters from Papaya (Carica papaya L.) and Its Impact on Tissue Microstructure. Foods 2021, 10, 2435. [Google Scholar] [CrossRef]
- Almeida, P.V.; Gando-Ferreira, L.M.; Quina, M.J. Tomato Residue Management from a Biorefinery Perspective and towards a Circular Economy. Foods 2024, 13, 1873. [Google Scholar] [CrossRef]
- Casa, M.; Miccio, M.; De Feo, G.; Paulillo, A.; Chirone, R.; Paulillo, D.; Lettieri, P.; Chirone, R. A brief overview on valorization of industrial tomato by-products using the biorefinery cascade approach. Detritus 2021, 15, 31–39. [Google Scholar] [CrossRef]
- Kaloudi, T.; Tsimogiannis, D.; Oreopoulou, V. Aronia melanocarpa: Identification and exploitation of its phenolic components. Molecules 2022, 27, 4375. [Google Scholar] [CrossRef]
- Szabo, K.; Dulf, F.V.; Diaconeasa, Z.; Vodnar, D.C. Antimicrobial and antioxidant properties of tomato processing byproducts and their correlation with the biochemical composition. LWT 2019, 116, 108558. [Google Scholar] [CrossRef]
- Chen, J.; Shi, J.; Xue, S.J.; Ma, Y. Comparison of lycopene stability in water- and oil-based food model systems under thermal- and light-irradiation treatments. LWT 2009, 42, 740–747. [Google Scholar] [CrossRef]
- Shi, J.; Dai, Y.; Kakuda, Y.; Mittal, G.; Xue, S.J. Effect of heating and exposure to light on the stability of lycopene in tomato purée. Food Control 2008, 19, 514–520. [Google Scholar] [CrossRef]
- Andreou, V.; Psarianos, M.; Dimopoulos, G.; Tsimogiannis, D.; Taoukis, P. Effect of pulsed electric fields and high pressure on improved recovery of high-added-value compounds from olive pomace. J. Food Sci. Technol. 2020, 85, 1500–1512. [Google Scholar] [CrossRef]
- Tangwonchai, B.; Ledward, D.A.; Ames, J.M. Effect of High-Pressure 487 Treatment on the Texture of Cherry Tomato. J. Agric Food Chem. 2000, 48, 1435–1441. [Google Scholar]
- Sánchez-Moreno, C.; De Ancos, B.; Plaza, L.; Elez-Martínez, P.; Cano, M.P. Nutritional approaches and health-related properties of plant foods processed by high pressure and pulsed electric fields. Crit. Rev. Food Sci. Nutr. 2009, 49, 552–576. [Google Scholar] [CrossRef]
- Wang, X.; Dong, L.; Ma, C.; Wang, Z.; Hu, X.; Chen, F. Impact of high-hydrostatic pressure and thermal processing on the antioxidant profiles and capacity of tomato juice during storage. Food Innov. Adv. 2023, 2, 124–134. [Google Scholar] [CrossRef]
- Sedraoui, S.; Badr, A.; Barba, M.G.M.; Doyen, A.; Tabka, Z.; Desjardins, Y. Optimization of the Ultrahigh-Pressure–Assisted Extraction of Phenolic Compounds and Antioxidant Activity from Palm Dates (Phoenix dactylifera L.). Food Anal. Methods 2020, 13, 1556–1569. [Google Scholar] [CrossRef]
- Meroni, E.; Raikos, V. Physicochemical Stability, Antioxidant Properties and Bioaccessibility of β-Carotene in Orange Oil-in-Water Beverage Emulsions: Influence of Carrier Oil Types. Food Funct. 2018, 9, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yan, J.; Guo, S.; McClements, D.J.; Ma, C.; Liu, X.; Liu, F. Enhancing Lycopene Stability and Bioaccessibility in Homogenized Tomato Pulp Using Emulsion Design Principles. Innov. Food Sci. Emerg. Technol. 2021, 67, 102525. [Google Scholar] [CrossRef]
- Chen, H.; Shun, Y.; Feng, X.; Ma, L.; Dai, H.; Wang, H.; Zhu, H.; Yu, Y.; Zhang, Y. Thermal-induced-stable high internal phase emulsion for lycopene encapsulation and delivery: Pre-heat treatment mediated facilitation on the isomerization, stabilization, and release of lycopene. LWT 2023, 187, 115319. [Google Scholar] [CrossRef]
- Priyadarshani, A.M.B. A review on factors influencing bioaccessibility and bioefficacy of carotenoids. Crit. Rev. Food Sci. Nutr. 2015, 57, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Colle, I.J.P.; Van Buggenhout, S.; Lemmens, L.; Van Loey, A.M.; Hendrix, M.E. The type and quantity of lipids present during digestion influence the in vitro bioaccessibility of lycopene from raw tomato pulp. Food Res. Int. 2012, 45, 250–255. [Google Scholar] [CrossRef]
- Liu, J.; Bi, J.; Liu, X.; Zhang, B.; Wu, X.; Wellala, C.K.D.; Zhang, B. Effects of high pressure homogenization and addition of oil on the carotenoid bioaccessibility of carrot juice. Food Funct. 2019, 10, 458–468. [Google Scholar] [CrossRef]
- González-Casado, S.; Martín-Belloso, O.; Elez-Martínez, P.; Soliva-Fortuny, R. In Vitro Bioaccessibility of Colored Carotenoids in Tomato Derivatives as Affected by Ripeness Stage and the Addition of Different Types of Oil. J. Food Sci. 2018, 83, 1404–1411. [Google Scholar] [CrossRef]
- Failla, M.L.; Chitchumronchokchai, C.; Ferruzzi, M.G.; Goltz, S.R.; Campbell, W.W. Unsaturated Fatty Acids Promote Bioaccessibility and Basolateral Secretion of Carotenoids and α-Tocopherol by Caco-2 Cells. Food Funct. 2014, 5, 1101–1112. [Google Scholar] [CrossRef]
- Goltz, S.R.; Campbell, W.W.; Chitchumroonchokchai, C.; Failla, M.L.; Ferruzzi, M.G. Meal Triacylglycerol Profile Modulates Postprandial Absorption of Carotenoids in Humans. Mol. Nutr. Food Res. 2012, 56, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Li, Z.; McClements, D.; Tang, Z.; Xiao, H. Design of Nanoemulsion-Based Delivery Systems to Enhance Intestinal Lymphatic Transport of Lipophilic Food Bioactives: Influence of Oil Type. Food Chem. 2020, 317, 126229. [Google Scholar] [CrossRef] [PubMed]
- Radić, K.; Galić, E.; Vinković, T.; Golub, N.; Čepo, D.V. Tomate Waste as a Sustainable Source of Antioxidants and Pectins: Processing, Pretreatment and Extraction Challenges. Sustainability 2024, 16, 9158. [Google Scholar] [CrossRef]
Microwave Power (Watt) | Temperature (°C) | Process Time (min) | Solid/Liquid Ratio (g/mL) |
---|---|---|---|
100 300 500 | 30 40 50 | 5 10 20 30 | 1:10 1:30 |
Yield Increase Compared to HPAE-Untreated Pomace | Recovery Compared to Conventionally Extracted Carotenoids | |||||
---|---|---|---|---|---|---|
Solid/Liquid Ratio (g/mL) | 1:30 | 1:10 | 1:5 | 1:30 | 1:10 | 1:5 |
Untreated | - | - | - | 12.5 | 10.3 | 11.9 |
250 MPa | 13.6 | 10.8 | 13.0 | 14.2 | 11.4 | 13.4 |
450 MPa | 24.8 | 9.96 | 3.40 | 15.6 | 11.3 | 12.3 |
650 MPa | 48.1 | 55.1 | 30.1 | 18.5 | 16.0 | 15.4 |
Sample | Lycopene Bioaccessibility (%) |
---|---|
MAE: 150 W, 50 °C, 1:10 g/mL, 20 min | 3.4 a (±0.8) |
HPAE: 650 MPa, 1:30 g/mL, 1 min | 3.9 a (±0.7) |
CE: 2 h | 1.6 b (±0.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntzimani, A.; Tsevdou, M.; Katsouli, M.; Thanou, I.; Tsimogiannis, D.; Giannakourou, M.; Taoukis, P. Recovery of Carotenoids via Novel Extraction Technologies for the Valorization of Tomato By-Products. Processes 2025, 13, 2964. https://doi.org/10.3390/pr13092964
Ntzimani A, Tsevdou M, Katsouli M, Thanou I, Tsimogiannis D, Giannakourou M, Taoukis P. Recovery of Carotenoids via Novel Extraction Technologies for the Valorization of Tomato By-Products. Processes. 2025; 13(9):2964. https://doi.org/10.3390/pr13092964
Chicago/Turabian StyleNtzimani, Athina, Maria Tsevdou, Maria Katsouli, Ioanna Thanou, Dimitrios Tsimogiannis, Maria Giannakourou, and Petros Taoukis. 2025. "Recovery of Carotenoids via Novel Extraction Technologies for the Valorization of Tomato By-Products" Processes 13, no. 9: 2964. https://doi.org/10.3390/pr13092964
APA StyleNtzimani, A., Tsevdou, M., Katsouli, M., Thanou, I., Tsimogiannis, D., Giannakourou, M., & Taoukis, P. (2025). Recovery of Carotenoids via Novel Extraction Technologies for the Valorization of Tomato By-Products. Processes, 13(9), 2964. https://doi.org/10.3390/pr13092964