Numerical Simulation of Multiphase Dust Transport Law and Scaled Model Testing of Spray Suppression Mechanism in Tunnel Blasting
Abstract
1. Introduction
2. Project Overview
3. Numerical Simulation of Dust Transport Characteristics During Tunnel Blasting Construction
3.1. Model Establishment and Mesh Generation
3.2. Boundary Conditions and Key Solver Settings
3.3. Validation of the Numerical Model Based on Field Measurements
3.3.1. Field Testing
3.3.2. Model Validation
3.4. Airflow Field and Dust Transport Characteristics Under Single-End Tunneling
3.4.1. Distribution Characteristics of the Airflow Field and the Mechanism of Pressure Difference
3.4.2. Spatiotemporal Distribution Characteristics and Transport Patterns of Dust
4. Model Experiment Study on Water Mist Dust Suppression Schemes at the Working Face
4.1. Model Experiment Setup
4.2. Experimental Procedure and Working Condition Settings
4.2.1. Working Condition Settings
4.2.2. Monitoring Cross-Section and Point Setup
4.2.3. Experimental Procedure
4.3. Analysis of Influencing Parameters for Spray Dust Suppression
4.3.1. Influence of Different Nozzle Angles
4.3.2. Influence of Different Nozzle Flow Rates
4.4. Discussion on Optimal Dust Removal Process Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Z.; Xu, H.; Liu, G.A. Robust numerical method for modeling ventilation through longtunnels in high temperature regions based on 1D pipe model. Tunn. Undergr. Space Technol. 2021, 115, 104050. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Zhao, Y.; Zhang, H.; Zhong, H. Experimental and numerical study on airflow-dust migration behavior in an underground cavern group construction for cleaner production. Tunn. Undergr. Space Technol. 2024, 144, 105558. [Google Scholar] [CrossRef]
- Tao, Y.C.; Hu, H.; Zhang, H.; Zhang, G.; Hao, Z.; Wang, L. A new ventilation system for extra-long railway tunnel construction by using the air cabin relay: A case study on optimization of air cabin parameters length. J. Build. Eng. 2021, 45, 103480. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.C.; Zhang, G.; Zhou, X.; Pan, Y. Experimental study on the tunnel temperature distribution under the coupling effect of train blocking and fire inside the carriage. Tunn. Undergr. Space Technol. 2021, 112, 103915. [Google Scholar] [CrossRef]
- Rahimi, S.; Ataee-pour, M.; Madani, H.; Aminossadati, S.M. Investigating the impact of gas emission uncertainty on airflow distribution in an auxiliary ventilation system using CFD and Monte-Carlo simulation. Build. Environ. 2021, 204, 108165. [Google Scholar] [CrossRef]
- Nie, W.; Cai, Y.K.; Wang, L.Y.; Liu, Q.; Jiang, C.W.; Hua, Y.; Cheng, C.X.; Zhang, H.N. Coupled diffusion law of windflow-gas-dust in tunnel energy extraction processes and the location of optimal pollution control exhaust duct. Energy 2024, 304, 132145. [Google Scholar] [CrossRef]
- Liu, N.; Wu, X.; Deng, E.; Ni, E.Q.; Yang, W.C.; Li, G.Z. Dust diffusion laws during partition excavation by boom-type roadheader in a metro tunnel. Tunn. Undergr. Space Technol. 2023, 141, 105382. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, S.L.; Dong, C.; Wang, S.S.; Guo, Y.B.; Gao, X.; Sun, B.; Chen, W.; Guo, C. Three-stage numerical simulation of tunnel blasting dust diffusion based on field monitoring and CFD. Tunn. Undergr. Space Technol. 2024, 150, 105830. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhang, H.; Xue, T.; Fang, L. A multi-factor CFD simulation to dust suppression in dynamic tunnel excavation. Tunn. Undergr. Space Technol. 2025, 159, 106458. [Google Scholar] [CrossRef]
- Xu, Y.F.; Wang, S.; Wei, Y.X.; Zhang, Y.R.; Liu, K.H.; Liu, Y.S.; Jin, L.Z. Shengnan Ou Explore the key factors of fine dust particle migration during tunnel construction. Powder Technol. 2025, 452, 120551. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Wang, W.Q.; Hao, C.W.; Cai, F.; Teng, L.Y.; Luo, X.H. Impact analysis of dust evolution pattern and determination of key ventilation parameters in highland highway construction tunnels. Heliyon 2024, 10, e33758. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.H.; Qin, B.T.; Zhou, Q.; Gan, J.; Deng, Z.P.; Zhao, F.J.; Ran, M.; Sun, D.W. Hazard and pollution characteristics of rock-containing dust in coal mine tunneling faces based on experimental and numerical study. Process Saf. Environ. Prot. 2024, 192, 214–229. [Google Scholar] [CrossRef]
- Xie, Z.W. Study on Dust Diffusion Law and Numerical Model of Ventilation-Spray Dust Removal in Tunnels Constructed by Drilling and Blasting Method. Bachelor’s Thesis, Chongqing University, Chongqing, China, 2023. [Google Scholar]
- Liu, H.J.; Wen, X.M.; Lan, J.Q. Study on Equipment Selection, Configuration and Energy-Saving & Environmental Protection Technical Measures for Ventilation, Smoke Elimination and Dust Removal Systems in Extra-Long Tunnels. Transp. Bus. China 2022, 26, 122–124. [Google Scholar] [CrossRef]
- Xue, Y.Q. Study on Ventilation System Layout and Dust Removal Effect of Open-Type TBM Tunnels. Water Resour. Hydropower Eng. 2020, 51, 98–104. [Google Scholar]
- Hu, Y.Z. Study on Dust Removal Efficiency of Negative Ion System During Construction of Long and Large Tunnels. Master’s Thesis, Chang’an University, Xi’an, China, 2019. [Google Scholar]
- Yin, S.; Nie, W.; Guo, L.; Liu, Q.; Hua, Y.; Cai, X.; Cheng, L.; Yang, B.; Zhou, W. CFD simulations of air curtain dust removal effect by ventilation parametersduring tunneling. Adv. Powder Technol. Int. J. Soc. Powder Technol. Jpn. 2020, 31, 2456–2468. [Google Scholar]
- Nie, W.; Cheng, L.; Yin, S.; Liu, Q.; Hua, Y.; Guo, L.; Cai, X.; Ma, Q.; Guo, C. Effects of press-in airflow rate and the distance between the pressure duct andthe side wall on ventilation dust suppression performance in an excavating tunnel. Environ. Pollut. Res. Int. 2022, 29, 19404–19419. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, G.; Wei, X.; Wang, S. Experimental characterization of multi-nozzle atomization interference fordust reduction between hydraulic supports at a fully mechanized coal mining face. Environ. Pollut. Res. Int. 2019, 26, 10023–10036. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.Q. Study on Dust Migration Law and Control Technology in Highway Tunnel Construction by Drilling and Blasting Method. Bachelor’s Thesis, University of Science and Technology Beijing, Beijing, China, 2015. [Google Scholar]
- ANSYSICEMCFD 17.0; UserManual, Hexa; ANSYS, Inc.: Canonsburg, PA, USA, 2016; pp. 37–47.
Parameter Type | Parameter Settings | Settings |
---|---|---|
Computational dust model | time | Unsteady |
DPM | On | |
Viscous model | k-ε model | |
Discrete phase parameters | Interaction with the continuous phase | On |
Number of Continuous Phase Iteration Per DPM iteration | On | |
Update DPM Sources Every FlowIteration | On | |
Unsteady Particle Tracking | On | |
Time Scale Constant | 0.01 | |
Max Number of Steps | 20,000 |
Particle Type | Particle Size | Characteristics of Dust |
---|---|---|
Coarse particles | >40 μm | Settle rapidly in the air |
Fine particles | 10–40 μm | Visible to the naked eye in bright environments |
Micron particles | 0.25–10 μm | Observable only with an optical microscope |
Submicron particles | ≤0.25 μm | Recognizable solely through an electron microscope |
Injection | Setting Status | Boundary | Model Setup |
---|---|---|---|
Injection Type | Surface | Outlet | Escape |
Material | Dolomite | ||
Diameter Distribution | R-R distribution | Wall DPM Conditon | Trap |
Min. Diameter | 1 × 10−6 m | ||
Max. Diameter | 60 × 10−6 m | ||
Mean. Diameter | 11 × 10−6 m | Wall Shear Conditon | No Slip |
Spread Parameter | 1.9 | ||
Total Flow Rate | 0.5 kg/s | Wall Boundary | Reflect |
Turbulent Dispersion | Stochastic Tracking | ||
Drag Law | Spherical | Wall Roughness Constant | 0.5 |
Number of Tries | 1000 | ||
Time Scale Constant | 0.15 |
Test Item | Instruments | Key Technical Parameters | |
---|---|---|---|
Measurement Range | Accuracy | ||
Dust Concentration | CCZ-1000 direct-reading dust meter | 0–1000 mg/m3 | <0.1 |
Wind Speed | Testo 405i thermal anemometer | 0–20 m/s | 0.03 |
CO | EM-20 carbon monoxide sensor | 0–2000 ppm | 1 |
Condition | Nozzle Angle (°) | Nozzle Flow (L/min) | Init. Dust Conc. (mg/m3) |
---|---|---|---|
1-1 | −30 | 0.06 | 400 |
1-2 | −60 | ||
1-3 | 90 | ||
1-4 | 60 | ||
1-5 | 30 | ||
2-1 | 90 | 0.03 | |
2-2 | 0.06 | ||
2-3 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, F.; Ren, K.; Wang, G.; Fang, Y.; Zhou, J.; Zhang, H. Numerical Simulation of Multiphase Dust Transport Law and Scaled Model Testing of Spray Suppression Mechanism in Tunnel Blasting. Processes 2025, 13, 2959. https://doi.org/10.3390/pr13092959
Deng F, Ren K, Wang G, Fang Y, Zhou J, Zhang H. Numerical Simulation of Multiphase Dust Transport Law and Scaled Model Testing of Spray Suppression Mechanism in Tunnel Blasting. Processes. 2025; 13(9):2959. https://doi.org/10.3390/pr13092959
Chicago/Turabian StyleDeng, Fayi, Kaifu Ren, Guofeng Wang, Yongqiao Fang, Jiayu Zhou, and Heng Zhang. 2025. "Numerical Simulation of Multiphase Dust Transport Law and Scaled Model Testing of Spray Suppression Mechanism in Tunnel Blasting" Processes 13, no. 9: 2959. https://doi.org/10.3390/pr13092959
APA StyleDeng, F., Ren, K., Wang, G., Fang, Y., Zhou, J., & Zhang, H. (2025). Numerical Simulation of Multiphase Dust Transport Law and Scaled Model Testing of Spray Suppression Mechanism in Tunnel Blasting. Processes, 13(9), 2959. https://doi.org/10.3390/pr13092959