Geolocation for Low-Carbon Dunaliella salina-Based Biorefineries with Valorization of Industrial Exhaust Gases
Abstract
1. Introduction
2. Materials and Methods
Life Cycle Assessment (LCA)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC—Intergovernmental Panel on Climate Change. Synthesis Report of the IPCC Sixth Assessment Report (AR6), Longer Report, Switzerland; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023; Available online: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed on 24 July 2024).
- Bhatti, U.A.; Bhatti, M.A.; Tang, H.; Syam, M.S.; Awwad, E.M.; Sharaf, M.; Ghadi, Y.Y. Global production patterns: Understanding the relationship between greenhouse gas emissions, agriculture greening and climate variability. Environ. Res. 2024, 245, 118049. [Google Scholar] [CrossRef]
- UNFCCC—United Nations Framework Convention on Climate Change. Why the Global Stocktake Is Important for Climate Action this Decade; United Nations Framework Convention on Climate Change: Bonn, Germany, 2023; Available online: https://unfccc.int/topics/global-stocktake/about-the-global-stocktake/why-the-global-stocktake-is-important-for-climate-action-this-decade (accessed on 1 August 2025).
- Leonzio, G.; Shah, N. Recent advancements and challenges in carbon capture, utilization and storage. Curr. Opin. Green Sustain. Chem. 2024, 46, 100895. [Google Scholar] [CrossRef]
- Wahab, S.; Imran, M.; Ahmed, B.; Rahim, S.; Hassan, T. Navigating environmental concerns: Unveiling the role of economic growth, trade, resources and institutional quality on greenhouse gas emissions in OECD countries. J. Clean. Prod. 2024, 434, 139851. [Google Scholar] [CrossRef]
- IEA International Energy Agency. World Energy Outlook; International Energy Agency: Paris, France, 2022; Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 25 July 2024).
- Wang, J.; Azam, W. Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geosci. Front. 2024, 15, 101757. [Google Scholar]
- Prajapati, M.; Thesia, D.; Thesia, V.; Rakholia, R.; Tailor, J.; Patel, A.; Shah, M. Carbon capture, utilization, and storage (CCUS): A critical review towards carbon neutrality in India. Case Stud. Chem. Environ. Eng. 2024, 10, 100770. [Google Scholar] [CrossRef]
- Severo, I.A.; Deprá, M.C.; Dias, R.R.; Barin, J.S.; de Menezes, C.R.; Wagner, R.; Zepka, L.Q.; Jacob-Lopes, E. Bio-combustion of petroleum coke: The process integration with photobioreactors. Part II—Sustainability metrics and bioeconomy. Chem. Eng. Sci. 2020, 213, 115412. [Google Scholar]
- Okeke, E.S.; Ejeromedoghene, O.; Okoye, C.O.; Ezeorba, T.P.C.; Nyaruaba, R.; Ikechukwu, C.K.; Oladipo, A.; Orege, J.I. Microalgae biorefinery: An integrated route for the sustainable production of high-value-added products. Energy Convers. Manag. X 2022, 16, 100323. [Google Scholar]
- Chhandama, M.V.L.; Rai, P.K. Coupling bioremediation and biorefinery prospects of microalgae for circular economy. Bioresour. Technol. Rep. 2023, 22, 101479. [Google Scholar] [CrossRef]
- Renganathan, P.; Gaysina, L.A.; Holguín-Peña, R.J.; Sainz-Hernández, J.C.; Ortega-García, J.; Rueda-Puente, E.O. Phycoremediated microalgae and cyanobacteria biomass as biofertilizer for sustainable agriculture: A holistic biorefinery approach to promote circular bioeconomy. Biomass 2024, 4, 1047–1077. [Google Scholar] [CrossRef]
- Rodrigues Dias, R.; Deprá, M.C.; Ragagnin de Menezes, C.; Queiroz Zepka, L.; Jacob-Lopes, E. The high-value product, bio-waste, and eco-friendly energy as the tripod of the microalgae biorefinery: Connecting the dots. Sustainability 2023, 15, 11494. [Google Scholar] [CrossRef]
- Gurreri, L.; Rindina, M.C.; Luciano, A.; Falqui, L.; Fino, D.; Mancini, G. Microalgae production in an industrial-scale photobioreactors plant: A comprehensive Life Cycle assessment. Sustain. Chem. Pharm. 2024, 39, 101598. [Google Scholar] [CrossRef]
- Arbour, A.J.; Bhatt, P.; Simsek, H.; Brown, P.B.; Huang, J.Y. Life cycle assessment on environmental feasibility of microalgae-based wastewater treatment for shrimp recirculating aquaculture systems. Bioresour. Technol. 2024, 399, 130578. [Google Scholar] [CrossRef]
- Dias, R.R.; Deprá, M.C.; de Menezes, C.R.; Zepka, L.Q.; Jacob-Lopes, E. Microalgae cultivation in wastewater: How realistic is this approach for value-added product production? Processes 2025, 13, 2052. [Google Scholar] [CrossRef]
- Park, S.; Ahn, Y.; Pandi, K.; Ji, M.K.; Yun, H.S.; Choi, J.Y. Microalgae cultivation in pilot scale for biomass production using exhaust gas from thermal power plants. Energies 2019, 12, 3497. [Google Scholar] [CrossRef]
- Nagappan, S.; Tsai, P.C.; Devendran, S.; Alagarsamy, V.; Ponnusamy, V.K. Enhancement of biofuel production by microalgae using cement flue gas as substrate. Environ. Sci. Pollut. Res. 2020, 27, 17571–17586. [Google Scholar] [CrossRef]
- Severo, I.A.; Porto-Hernández, L.Á.; Balmant, W.; Mariano, A.B.; Ordonez, J.C.; Vargas, J.V. Flue gas capture using microalgae cultivated in photobioreactors. In Sustainable Industrial Processes Based on Microalgae; Elsevier: Amsterdam, The Netherlands, 2024; pp. 131–156. [Google Scholar]
- Mallick, N.C.; Mozammil, S.; Koshta, E. Investigation on Chlorella sp. HS2 microalgae growth using CO2 from engine exhaust to study carbon sequestration. Biofuels 2024, 15, 279–290. [Google Scholar] [CrossRef]
- Lara-Gil, J.A.; Senés-Guerrero, C.; Pacheco, A. Cement flue gas as a potential source of nutrients during CO2 mitigation by microalgae. Algal Res. 2016, 17, 285–292. [Google Scholar] [CrossRef]
- Kandimalla, P.; Vatte, P.; Bandaru, C.S.R. Phycoremediation of automobile exhaust gases using green microalgae. Environ. Dev. Sustain. 2021, 23, 6301–6322. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Ma, X.; Fang, X.; Zhu, B.; Pan, K. Screening and application of Chlorella strains on biosequestration of the power plant exhaust gas evolutions of biomass growth and accumulation of toxic agents. Environ. Sci. Pollut. Res. 2022, 29, 6744–6754. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y.; Zhang, Y.; Cui, G. Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy 2015, 89, 347–357. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Zhu, T. Research progress and application of carbon sequestration in industrial flue gas by microalgae: A review. J. Environ. Sci. 2025, 152, 14–28. [Google Scholar] [CrossRef]
- Kunitomi, S.; Ogasawara, K.; Narita, H.; Yamamoto, S. Low-energy-consumption CO2 recovery by combining H2 sweeping and methanation with the conventional VTSA approach. J. CO2 Util. 2023, 72, 102482. [Google Scholar] [CrossRef]
- Romagnoli, F.; Thedy, A.; Ievina, B.; Feofilovs, M. Life cycle assessment of an innovative microalgae cultivation system in the Baltic region: Results from SMORP project. Environ. Clim. Technol. 2023, 27, 117–136. [Google Scholar] [CrossRef]
- ISO-14040; Environmental Management–Life Cycle Assessment–Principles and Framework: International Organization for Standardization. The International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Deprá, M.C.; Severo, I.A.; dos Santos, A.M.; Zepka, L.Q.; Jacob-Lopes, E. Environmental impacts on commercial microalgae-based products: Sustainability metrics and indicators. Algal Res. 2020, 51, 102056. [Google Scholar] [CrossRef]
- Wu, Z.; Dejtisakdi, W.; Kermanee, P.; Ma, C.; Arirob, W.; Sathasivam, R.; Juntawong, N. Outdoor cultivation of Dunaliella salina KU 11 using brine and saline lake water with raceway ponds in northeastern Thailand. Biotechnol. Appl. Biochem. 2017, 64, 938–943. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Rohani, T.; Raeisossadati, M.; Vadiveloo, A.; Bahri, P.A.; Moheimani, N.R. Monochromatic light filters to enhance biomass and carotenoid productivities of Dunaliella salina in raceway ponds. Bioresour. Technol. 2021, 340, 125689. [Google Scholar] [CrossRef]
- Chuka-ogwude, D.; Nafisi, M.; Vadiveloo, A.; Taher, H.; Bahri, P.A.; Moheimani, N.R. Effect of medium recycling culture depth mixing duration on, D. salina growth. Algal Res. 2021, 60, 102495. [Google Scholar] [CrossRef]
- dos Santos, A.M.; Deprá, M.C.; dos Santos, A.M.; Cichoski, A.J.; Zepka, L.Q.; Jacob-Lopes, E. Sustainability metrics on microalgae-based wastewater treatment system. Desalin. Water Treat. 2020, 185, 51–61. [Google Scholar] [CrossRef]
- Ritchie, H.; Rosado, P.; Roser, M. Electricity Mix; Our World in Data: Oxford, UK, 2023. [Google Scholar]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Wang, Z.; Wu, X.; Cong, W. Evaluation of power consumption of paddle wheel in an open raceway pond. Bioprocess Biosyst. Eng. 2014, 37, 1325–1336. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Y.; Zhang, Q. A review of energy consumption in the acquisition of bio-feedstock for microalgae biofuel production. Sustainability 2021, 13, 8873. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.; Zepka, L.Q.; Deprá, M.C. Sustainability Metrics and Indicators of Environmental Impact: Industrial and Agricultural Life Cycle Assessment; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Dias, R.R.; Deprá, M.C.; Zepka, L.Q.; Jacob-Lopes, E. Roadmap to net-zero carbon emissions in commercial microalgae-based products: Environmental sustainability and carbon offset costs. J. Appl. Phycol. 2022, 34, 1255–1268. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sayama, S.; Kunitomi, S.; Ogasawara, K.; Baba, N. Demonstration of a high-efficiency carbon dioxide capture and methanation system with heat/material integration for power-to-gas and zero carbon dioxide emissions in flue gasses. Int. J. Greenh. Gas Control 2022, 114, 103584. [Google Scholar] [CrossRef]
- Xi, Y.; Wang, J.; Chu, Y.; Chi, Z.; Xue, S. Effects of different light regimes on Dunaliella salina growth and β-carotene accumulation. Algal Res. 2020, 52, 102111. [Google Scholar] [CrossRef]
- Nguyen, P.T.H.; Nguyen, D.T.; Vo, T. Determination of carotenoid and beta-carotene content in Dunaliella microalgae powder. Eur. J. Med. Health Res. 2025, 3, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Monte, J.; Ribeiro, C.; Parreira, C.; Costa, L.; Brive, L.; Casal, S.; Brazinha, C.; Crespo, J.G. Biorefinery of Dunaliella salina: Sustainable recovery of carotenoids, polar lipids and glycerol. Bioresour. Technol. 2020, 297, 122509. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Kataki, S.; Banerjee, I.; Pohrmen, C.B.; Jaiswal, K.K.; Jaiswal, A.K. Microalgal biorefineries in sustainable biofuel production and other high-value products. New Biotechnol. 2025, 87, 39–59. [Google Scholar] [CrossRef]
- Prabha, S.; Vijay, A.K.; Paul, R.R.; George, B. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. Sci. Total Environ. 2022, 814, 152795. [Google Scholar] [CrossRef]
- Kingsley, P.R.; Braud, L.; Mediboyina, M.K.; McDonnell, K.; Murphy, F. Prospects for commercial microalgal biorefineries: Integrated pilot demonstrations and process simulations-based techno-economic assessment of single and multi-product value chains. Algal Res. 2023, 74, 103190. [Google Scholar] [CrossRef]
- A4F Sustainable, Multi-Method, Multi-Product Microalgae Biorefinery That Integrates Industrial Side Streams to Create Value-Added Products. 2024. Available online: https://a4f.pt/pt/projetos-rd/multistream-pt (accessed on 3 June 2025).
- Thomassen, G.; Egiguren Vila, U.; Van Dael, M.; Lemmens, B.; Van Passel, S. A techno-economic assessment of an algal-based biorefinery. Clean Technol. Environ. Policy 2016, 18, 1849–1862. [Google Scholar] [CrossRef]
- Duarte, J.H.; Fanka, L.S.; Costa, J.A.V. CO2 biofixation via Spirulina sp. cultures: Evaluation of initial biomass concentration in tubular and raceway photobioreactors. Bioenergy Res. 2020, 13, 939–943. [Google Scholar] [CrossRef]
- Deprá, M.C.; dos Santos, A.M.; Jacob-Lopes, E. Sustainability metrics in the microalgae-based pigments production: A life cycle assessment approach. In Pigments from Microalgae Handbook; Springer International Publishing: Cham, Switzerland, 2020; pp. 363–390. [Google Scholar]
- Lopes, T.F.; Ortigueira, J.; Matos, C.T.; Costa, L.; Ribeiro, C.; Reis, A.; Gírio, F. Conceptual design of an autotrophic multi-strain microalgae-based biorefinery: Preliminary techno-economic and life cycle assessments. Fermentation 2023, 9, 255. [Google Scholar] [CrossRef]
- López-Herrada, E.; Gallardo-Rodríguez, J.J.; López-Rosales, L.; Cerón-García, M.C.; Sánchez-Mirón, A.; García-Camacho, F. Life-cycle assessment of a microalgae-based fungicide under a biorefinery approach. Bioresour. Technol. 2023, 383, 129244. [Google Scholar] [CrossRef]
- Amponsah, L.; Chuck, C.; Parsons, S. Life cycle assessment of a marine biorefinery producing protein, bioactives and polymeric packaging material. Int. J. Life Cycle Assess. 2024, 29, 174–191. [Google Scholar] [CrossRef]
- Bradley, T.; Rajaeifar, M.A.; Kenny, A.; Hainsworth, C.; del Pino, V.; del Valle Inclán, Y.; Povoa, I.; Mendonça, P.; Brown, L.; Heidrich, O.; et al. Life cycle assessment of microalgae-derived biodiesel. Int. J. Life Cycle Assess. 2023, 28, 590–609. [Google Scholar] [CrossRef]
- Gurreri, L.; Rindina, M.C.; Luciano, A.; Falqui, L.; Mancini, G. Life cycle assessment based on primary data of an industrial plant for microalgae cultivation. Chem. Eng. Trans. 2024, 109, 493–498. [Google Scholar]
- Gamero, E.; Ruppert, S.; Miehe, R.; Sauer, A. Process model and life cycle assessment of biorefinery concept using agricultural and industrial residues for biohydrogen production. Energies 2024, 17, 4282. [Google Scholar] [CrossRef]
- Rafiq, A.; Morris, C.; Schudel, A.; Gheewala, S. Life cycle assessment of microalgae-based products for carbon dioxide utilization in Thailand: Biofertilizer, fish feed, and biodiesel. F1000Research 2025, 13, 1503. [Google Scholar] [CrossRef]
- Khandelwal, N.; Kumari, S.; Poduval, S.; Behera, S.K.; Kumar, A.; Gedam, V.V. Life-cycle assessment of three biorefinery pathways across different generations. Sci. Rep. 2025, 15, 13135. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Meng, J.; Zheng, H.; Parikh, P.; Guan, D. Achieving decent living standards in emerging economies challenges national mitigation goals for CO2 emissions. Nat. Commun. 2023, 14, 6342. [Google Scholar] [CrossRef]
- Bi, Z.; Guo, R.; Khan, R. Renewable adoption, energy reliance, and CO2 emissions: A comparison of developed and developing economies. Energies 2024, 17, 3111. [Google Scholar] [CrossRef]
- Douziech, M.; Hellweg, S.; Verones, F. Are wave and tidal energy plants new green technologies? Environ. Sci. Technol. 2016, 50, 7870–7878. [Google Scholar] [CrossRef] [PubMed]
- World Nuclear Association, Carbon Dioxide Emissions from Electricity. 2024. Available online: https://world-nuclear.org/information-library/energy-and-the-environment/carbon-dioxide-emissions-from-electricity (accessed on 5 January 2025).
- Cowi, Comparing CO2 Emissions from Different Energy Sources. 2023. Available online: https://www.cowi.com/news-and-press/news/2023/comparing-co2-emissions-from-different-energy-sources/ (accessed on 5 January 2025).
Process | Unit | Base Case |
---|---|---|
Cultivation | ||
Raceway pond | m3 | 63.2 |
Production days | days | 330 |
Batches per year | b year−1 | 22 |
Energy for paddle wheel | kWh | 270,122.7 |
Energy for water pumping | kWh | 50,022.7 |
Energy for CO2 recovery from exhaust gases | kWh | 13,549.0 |
Energy for CO2 injection | kWh | 165,075.0 |
Water evaporation | m3 | 8.2 |
CO2 consumption | tCO2 t−1 dry biomass | 2.0 |
Biomass productivity | t m3 year−1 | 1.5 × 10−1 |
Output | ||
Algal liquid | t | 50.0 |
Harvest | ||
Input | ||
Energy consumption centrifugation | kWh | 1894.8 |
Drying | ||
Input | ||
Wet biomass | t | 12.5 |
Spray-dryer | kWh | 13,632.3 |
Output | ||
Dry biomass | t | 9.4 |
Pigment extraction | ||
Input | ||
Dry biomass | t | 9.4 |
sCO2 | kWh | 7504.0 |
Output | ||
β-carotene pigment | t | 1.0 |
Bulk oil production | ||
Input | ||
Residual biomass | t | 8.4 |
Extractor | kWh | 594.5 |
Energy consumption centrifugation | kWh | 875.2 |
Solvent recuperation | kWh | 1037.7 |
Evaporation/Stripper | kWh | 194.1 |
Desolventizer | kWh | 328.2 |
Output | ||
Bulk oil | t | 1.51 |
Defatted biomass production | ||
Residual biomass | t | 6.7 |
Desolventizer–toaster–dryer–cooler | kWh | 922.7 |
Defatted biomass | t | 2.34 |
Total energy requirement | kWh year−1 | 525,753.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, R.R.; Machado, R.L.S.; Deprá, M.C.; Zepka, L.Q.; Jacob-Lopes, E. Geolocation for Low-Carbon Dunaliella salina-Based Biorefineries with Valorization of Industrial Exhaust Gases. Processes 2025, 13, 2958. https://doi.org/10.3390/pr13092958
Dias RR, Machado RLS, Deprá MC, Zepka LQ, Jacob-Lopes E. Geolocation for Low-Carbon Dunaliella salina-Based Biorefineries with Valorization of Industrial Exhaust Gases. Processes. 2025; 13(9):2958. https://doi.org/10.3390/pr13092958
Chicago/Turabian StyleDias, Rosangela Rodrigues, Richard Luan Silva Machado, Mariany Costa Deprá, Leila Queiroz Zepka, and Eduardo Jacob-Lopes. 2025. "Geolocation for Low-Carbon Dunaliella salina-Based Biorefineries with Valorization of Industrial Exhaust Gases" Processes 13, no. 9: 2958. https://doi.org/10.3390/pr13092958
APA StyleDias, R. R., Machado, R. L. S., Deprá, M. C., Zepka, L. Q., & Jacob-Lopes, E. (2025). Geolocation for Low-Carbon Dunaliella salina-Based Biorefineries with Valorization of Industrial Exhaust Gases. Processes, 13(9), 2958. https://doi.org/10.3390/pr13092958