A Review of Intelligent Modeling for Microalgae Systems: Integrating Data Mining, Machine Learning, and Hybrid Approaches
Abstract
1. Introduction
2. Methodology
3. Overview of Data Mining and Machine Learning Methods
3.1. Application of Supervised Learning Methods Using Microalgae-Based Datasets
3.2. Application of Supervised Learning with Artificial Neural Network Models
3.3. Application of Other Learning Methods Using Microalgae-Based Datasets
ML Model | Task | Microalgae Classes/Species | Dataset/Modalities | Target(s) | Performance Metrics/Outputs | Reference |
---|---|---|---|---|---|---|
ANN | Classification | Chlorella vulgaris | Imaging data and morphological properties | Living and dead microalgae cell category | AUC of 84.8%, accuracy of 75.9%, precision of 76.8%, and recall of 82.6% | [40] |
ANN-GA | Regression | Scenedesmus sp., Chlorella sp. | Tabular data: pH, retention times, phosphate, nitrate, and nitrite concentrations | Biomass yield | R2 of 0.98, RMSE of 0.056, and MAE of 0.04 | [44] |
MLP | Classification | Phytoplankton | Spectral data: absorption spectra | Pigment composition and size structure | Average relative errors between 27% and 51% for pigments and between 19% and 33% for three size classes | [69] |
MLP | Regression | Scenedesmus sp., Chlorella sp. | Tabular data: pH, retention times, phosphate, nitrate, and nitrite concentrations | Biomass yield | R2 of 0.96 | [44] |
MLP | Regression | Arthrospira platensis | Tabular data: pH, culture temperature, and light intensity | Biomass concentration of the next day | R2 > 0.94 | [68] |
CNN | Classification | Cyanobacteria, Chlorophyta | Imaging data: light microscopy and scanning electron microscopy images | Recognition of microalgal species | Highest accuracy was 99% | [82] |
CNN | Classification | Planktothrix agardhii | Imaging data | Detection of morphological changes | Highest median accuracy was 93.33% | [83] |
CNN | Classification | C. vulgaris, C. reinhardtii, A. platensis | Morphological and texture descriptors | Microalgae species designation | Accuracy of 97.86%, precision of 97.87%, recall of 94.44%, and F1-score of 96.07% | [41] |
CNN | Regression | Chlorella vulgaris | Imaging data | Microalgae density | R2 of 0.9997 | [84] |
LSTM | Classification | Not Available | Time series data and imaging data | Mapping dense floating blooms | OA was between 95% and 99% | [61] |
LSTM | Regression | Cyanobacteria | Tabular data: properties of microalgae, influent, and effluent | Biomass production | R2 of 0.8646 and RMSE of 0.06 | [88] |
LSTM | Regression | Nannochloropsis sp. | Time series data: biomass concentration, pH, and temperature | Microalgae growth | R2 of 0.91 and RMSE of 0.061 | [89] |
LSTM | Regression | Phaeodactylum tricornutum | Time series data: biomass concentration, incident light intensity, and light history | Specific growth rate | R2 of 0.91 and RMSE of 0.0276 | [58] |
4. Strategies for Enhancing Data-Driven Modeling of Microalgae Systems
4.1. Data Acquisition Techniques and Their Influence on Microalgae-Based Datasets
4.2. Approaches for Improving Model Performance
5. Importance of the Hybrid Modeling Approach
6. Future Directions in the Field of Microalgae Systems
7. Conclusions
- (1)
- Enhance data quality and acquisition: Reliable and standardized datasets are essential for model performance. Implementation of more advanced data acquisition techniques, such as biosensors, microfluidic systems, and remote sensing technologies, should be expanded to generate accurate and high-resolution data.
- (2)
- Adopt advanced preprocessing and modeling strategies: The application of advanced preprocessing techniques, including data augmentation and ensemble methods, in combination with different learning approaches, such as deep learning, semi-supervised learning, and reinforcement learning, should be prioritized to enhance predictive accuracy and robustness.
- (3)
- Expand the use of hybrid approaches: Hybrid modeling is a powerful tool for optimizing microalgae systems by integrating empirical data with theoretical understanding, improving scalability, efficiency, and predictive power. Its application in microalgae systems should be further explored.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AL | Active Learning |
ANN | Artificial Neural Network |
AUC | Area Under the Curve |
CNN | Convolutional Neural Network |
DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
DCNN | Deep Convolutional Neural Network |
DL | Deep Learning |
DM | Data Mining |
DTs | Decision Trees |
FTIR | Fourier Transform Infrared |
GAN | Generative Adversarial Network |
GB | Gradient Boosting |
GC | Gaussian Classifier |
GSDAM | Grayscale Surface Direction Angle Model |
HAB | Harmful Algal Blooms |
HAC | Hierarchical Agglomerative Clustering |
HCA | Hierarchical Cluster Analysis |
HE | Harvesting Efficiency |
HM | Hybrid Modeling |
kNN | k-Nearest Neighbor |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
ML | Machine Learning |
MLP | Multilayer Perceptron |
MLR | Multiple Linear Regression |
MNPs | Magnetic Nanoparticles |
NIR | Near Infrared |
PBR | Photobioreactor |
PCA | Principal Component Analysis |
PCR | Principal Component Regression |
PR | Polynomial Regression |
PRI | Probability Rand Index |
RF | Random Forest |
RL | Reinforcement Learning |
RMSE | Root Mean Square Error |
SSL | Semi-Supervised Learning |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
t-SNE | t-distributed Stochastic Neighbor Embedding |
UL | Unsupervised Learning |
VAE | Variational Autoencoder |
XGBoost | Extreme Gradient Boosting |
References
- Borowitzka, M.A. Dunaliella: Biology, Production, and Markets. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology; Richmond, A., Hu, Q., Eds.; Wiley Blackwell: Chichester, UK, 2013; pp. 359–368. ISBN 9780470673898. [Google Scholar]
- Polle, J.E.W.; Tran, D.; Ben-Amotz, A. The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology, 1st ed.; Ben-Amotz, A., Polle, J.E.W., Rao, D.V.S., Eds.; Science Publishers: Enfield, NH, USA, 2009. [Google Scholar]
- Alvarez, A.L.; Weyers, S.L.; Goemann, H.M.; Peyton, B.M.; Gardner, R.D. Microalgae, Soil and Plants: A Critical Review of Microalgae as Renewable Resources for Agriculture. Algal Res. 2021, 54, 102200. [Google Scholar] [CrossRef]
- Aghaalipour, E.; Akbulut, A.; Güllü, G. Carbon Dioxide Capture with Microalgae Species in Continuous Gas-Supplied Closed Cultivation Systems. Biochem. Eng. J. 2020, 163, 107741. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.S. Bioremediation of Heavy Metals Using Microalgae: Recent Advances and Mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhu, J.; Yang, S.; Liu, J.; Sun, Z.; Sun, H. Microalgal Metabolic Engineering Facilitates Precision Nutrition and Dietary Regulation. Sci. Total Environ. 2024, 951, 175460. [Google Scholar] [CrossRef]
- Laamanen, C.A.; Desjardins, S.M.; Senhorinho, G.N.A.; Scott, J.A. Harvesting Microalgae for Health Beneficial Dietary Supplements. Algal Res. 2021, 54, 102189. [Google Scholar] [CrossRef]
- Kassim, M.A.; Meng, T.K. Carbon Dioxide (CO2) Biofixation by Microalgae and Its Potential for Biorefinery and Biofuel Production. Sci. Total Environ. 2017, 584–585, 1121–1129. [Google Scholar] [CrossRef]
- Xu, X.; Gu, X.; Wang, Z.; Shatner, W.; Wang, Z. Progress, Challenges and Solutions of Research on Photosynthetic Carbon Sequestration Efficiency of Microalgae. Renew. Sustain. Energy Rev. 2019, 110, 65–82. [Google Scholar] [CrossRef]
- Nagappan, S.; Devendran, S.; Tsai, P.C.; Dahms, H.U.; Ponnusamy, V.K. Potential of Two-Stage Cultivation in Microalgae Biofuel Production. Fuel 2019, 252, 339–349. [Google Scholar] [CrossRef]
- Peng, L.; Fu, D.; Chu, H.; Wang, Z.; Qi, H. Biofuel Production from Microalgae: A Review. Environ. Chem. Lett. 2020, 18, 285–297. [Google Scholar] [CrossRef]
- Ambat, I.; Tang, W.Z.; Sillanpää, M. Statistical Analysis of Sustainable Production of Algal Biomass from Wastewater Treatment Process. Biomass Bioenergy 2019, 120, 471–478. [Google Scholar] [CrossRef]
- Zhao, D.; Cheah, W.Y.; Lai, S.H.; Ng, E.P.; Khoo, K.S.; Show, P.L.; Ling, T.C. Symbiosis of Microalgae and Bacteria Consortium for Heavy Metal Remediation in Wastewater. J. Environ. Chem. Eng. 2023, 11, 109943. [Google Scholar] [CrossRef]
- Tripathi, S.; Choudhary, S.; Meena, A.; Poluri, K.M. Carbon Capture, Storage, and Usage with Microalgae: A Review. Environ. Chem. Lett. 2023, 21, 2085–2128. [Google Scholar] [CrossRef]
- Razzak, S.A.; Hossain, M.M.; Lucky, R.A.; Bassi, A.S.; De Lasa, H. Integrated CO2 Capture, Wastewater Treatment and Biofuel Production by Microalgae Culturing—A Review. Renew. Sustain. Energy Rev. 2013, 27, 622–653. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Alvim-Ferraz, M.C.M.; Martins, F.G. Photobioreactor Design for Microalgae Production through Computational Fluid Dynamics: A Review. Renew. Sustain. Energy Rev. 2017, 79, 248–254. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Bock, F.E.; Aydin, R.C.; Cyron, C.J.; Huber, N.; Kalidindi, S.R.; Klusemann, B. A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics. Front. Mater. 2019, 6, 110. [Google Scholar] [CrossRef]
- Järvinen, P.; Siltanen, P.; Kirschenbaum, A. Data Analytics and Machine Learning. In Big Data in Bioeconomy—Results from the European DataBio Project; Södergård, C., Mildorf, T., Habyarimana, E., Berre, A.J., Fernandes, J.A., Zinke-Wehlmann, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Han, J., Kamber, M., Pei, J., Eds.; Morgan Kaufmann Publishers—Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Mondal, P.P.; Galodha, A.; Verma, V.K.; Singh, V.; Show, P.L.; Awasthi, M.K.; Lall, B.; Anees, S.; Pollmann, K.; Jain, R. Review on Machine Learning-Based Bioprocess Optimization, Monitoring, and Control Systems. Bioresour. Technol. 2023, 370, 128523. [Google Scholar] [CrossRef]
- Alpaydin, E. Introduction to Machine Learning, 2nd ed.; Dietterich, T., Ed.; MIT Press: Cambridge, UK, 2010; ISBN 026201243X. [Google Scholar]
- Zhang, D.; Savage, T.R.; Cho, B.A. Combining Model Structure Identification and Hybrid Modelling for Photo-Production Process Predictive Simulation and Optimisation. Biotechnol. Bioeng. 2020, 117, 3356–3367. [Google Scholar] [CrossRef]
- Psichogios, D.C.; Ungar, L.H. A Hybrid Neural Network-First Principles Approach to Process Modeling. AIChE J. 1992, 38, 1499–1511. [Google Scholar] [CrossRef]
- Oliveira, R. Combining First Principles Modelling and Artificial Neural Networks: A General Framework. Comput. Chem. Eng. 2004, 28, 755–766. [Google Scholar] [CrossRef]
- VOSviewer, Version 1.6.20; 31 October 2023. Available online: http://www.vosviewer.com/ (accessed on 30 July 2025).
- Garrido-Cardenas, J.A.; Manzano-Agugliaro, F.; Acien-Fernandez, F.G.; Molina-Grima, E. Microalgae Research Worldwide. Algal Res. 2018, 35, 50–60. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Data Mining; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-14141-1. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A. What’s It All About? In Data Mining: Practical Machine Learning Tools and Techniques; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3–38. [Google Scholar]
- Bellazzi, R.; Zupan, B. Predictive Data Mining in Clinical Medicine: Current Issues and Guidelines. Int. J. Med. Inform. 2008, 77, 81–97. [Google Scholar] [CrossRef]
- Tan, P.-N.; Steinbach, M.; Karpatne, A.; Kumar, V. Introduction to Data Mining, 2nd ed.; Addison Wesley: New York, NY, USA, 2018. [Google Scholar]
- Alzubi, J.; Nayyar, A.; Kumar, A. Machine Learning from Theory to Algorithms: An Overview. J. Phys. Conf. Ser. 2018, 1142, 12012. [Google Scholar] [CrossRef]
- Dhage, S.N.; Raina, C.K. A Review on Machine Learning Techniques. Int. J. Recent Innov. Trends Comput. Commun. 2016, 4, 395–399. [Google Scholar]
- Ota, M.; Takenaka, M.; Sato, Y.; Lee Smith, R.; Inomata, H. Effects of Light Intensity and Temperature on Photoautotrophic Growth of a Green Microalga, Chlorococcum Littorale. Biotechnol. Rep. 2015, 7, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Laurens, L.M.L.; Wolfrum, E.J. High-Throughput Quantitative Biochemical Characterization of Algal Biomass by NIR Spectroscopy; Multiple Linear Regression and Multivariate Linear Regression Analysis. J. Agric. Food Chem. 2013, 61, 12307–12314. [Google Scholar] [CrossRef]
- Yan, Q.; Yang, C.; Wan, Z. A Comparative Regression Analysis between Principal Component and Partial Least Squares Methods for Flight Load Calculation. Appl. Sci. 2023, 13, 8428. [Google Scholar] [CrossRef]
- Karakach, T.K.; McGinn, P.J.; Choi, J.; MacQuarrie, S.P.; Tartakovsky, B. Real-Time Monitoring, Diagnosis, and Time-Course Analysis of Microalgae Scenedesmus AMDD Cultivation Using Dual Excitation Wavelength Fluorometry. J. Appl. Phycol. 2015, 27, 1823–1832. [Google Scholar] [CrossRef]
- Horton, R.B.; Duranty, E.; McConico, M.; Vogt, F. Fourier Transform Infrared (FT-IR) Spectroscopy and Improved Principal Component Regression (PCR) for Quantification of Solid Analytes in Microalgae and Bacteria. Appl. Spectrosc. 2011, 65, 442–453. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, J.J.; Yoon, H. Automatic Bridge Design Parameter Extraction for Scan-to-BIM. Appl. Sci. 2020, 10, 7346. [Google Scholar] [CrossRef]
- Reimann, R.; Zeng, B.; Jakopec, M.; Burdukiewicz, M.; Petrick, I.; Schierack, P.; Rödiger, S. Classification of Dead and Living Microalgae Chlorella Vulgaris by Bioimage Informatics and Machine Learning. Algal Res. 2020, 48, 101908. [Google Scholar] [CrossRef]
- Chong, J.W.R.; Khoo, K.S.; Chew, K.W.; Ting, H.Y.; Iwamoto, K.; Ruan, R.; Ma, Z.; Show, P.L. Artificial Intelligence-Driven Microalgae Autotrophic Batch Cultivation: A Comparative Study of Machine and Deep Learning-Based Image Classification Models. Algal Res. 2024, 79, 103400. [Google Scholar] [CrossRef]
- Anuntakarun, S.; Lertampaiporn, S.; Laomettachit, T.; Wattanapornprom, W.; Ruengjitchatchawalya, M. MSRFR: A Machine Learning Model Using Microalgal Signature Features for NcRNA Classification. BioData Min. 2022, 15, 8. [Google Scholar] [CrossRef]
- Chen, W.H.; Felix, C.B. Thermo-Kinetics Study of Microalgal Biomass in Oxidative Torrefaction Followed by Machine Learning Regression and Classification Approaches. Energy 2024, 301, 131677. [Google Scholar] [CrossRef]
- Meenatchisundaram, K.; Gowd, S.C.; Lee, J.; Barathi, S.; Rajendran, K. Data-Driven Model Development for Prediction and Optimization of Biomass Yield of Microalgae-Based Wastewater Treatment. Sustain. Energy Technol. Assess. 2024, 63, 103670. [Google Scholar] [CrossRef]
- Yew, G.Y.; Puah, B.K.; Chew, K.W.; Teng, S.Y.; Show, P.L.; Nguyen, T.H.P. Chlorella Vulgaris FSP-E Cultivation in Waste Molasses: Photo-to-Property Estimation by Artificial Intelligence. Chem. Eng. J. 2020, 402, 126230. [Google Scholar] [CrossRef]
- Jung, W.S.; Jo, B.G.; Kim, Y. Do A Study on the Occurrence Characteristics of Harmful Blue-Green Algae in Stagnant Rivers Using Machine Learning. Appl. Sci. 2023, 13, 3699. [Google Scholar] [CrossRef]
- Razzak, S.A.; Alam, M.S.; Hossain, S.M.Z.; Rahman, S.M. Tree-Based Machine Learning for Predicting Neochloris Oleoabundans Biomass Growth and Biological Nutrient Removal from Tertiary Municipal Wastewater. Chem. Eng. Res. Des. 2024, 210, 614–624. [Google Scholar] [CrossRef]
- Singh, V.; Mishra, V. Exploring the Effects of Different Combinations of Predictor Variables for the Treatment of Wastewater by Microalgae and Biomass Production. Biochem. Eng. J. 2021, 174, 108129. [Google Scholar] [CrossRef]
- Singh, V.; Verma, M.; Chivate, M.S.; Mishra, V. Machine Learning-Based Optimisation of Microalgae Biomass Production by Using Wastewater. J. Environ. Chem. Eng. 2023, 11, 111387. [Google Scholar] [CrossRef]
- Coşgun, A.; Günay, M.E.; Yıldırım, R. Exploring the Critical Factors of Algal Biomass and Lipid Production for Renewable Fuel Production by Machine Learning. Renew. Energy 2021, 163, 1299–1317. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, Y.; Ji, J.; Forsberg, E.; Li, Y.; He, S. Classification, Identification, and Growth Stage Estimation of Microalgae Based on Transmission Hyperspectral Microscopic Imaging and Machine Learning. Opt. Express 2020, 28, 30686. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Porter, M.D.; Colosi, L.M. Is Hydrothermal Treatment Coupled with Carbon Capture and Storage an Energy-Producing Negative Emissions Technology? Energy Convers. Manag. 2020, 203, 112252. [Google Scholar] [CrossRef]
- Lopez-Exposito, P.; Negro, C.; Blanco, A. Direct Estimation of Microalgal Flocs Fractal Dimension through Laser Reflectance and Machine Learning. Algal Res. 2019, 37, 240–247. [Google Scholar] [CrossRef]
- López Expósito, P.; Blanco Suárez, A.; Negro Álvarez, C. Laser Reflectance Measurement for the Online Monitoring of Chlorella Sorokiniana Biomass Concentration. J. Biotechnol. 2017, 243, 10–15. [Google Scholar] [CrossRef]
- Ning, H.; Li, R.; Zhou, T. Machine Learning for Microalgae Detection and Utilization. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Harmon, J.; Mikami, H.; Kanno, H.; Ito, T.; Goda, K. Accurate Classification of Microalgae by Intelligent Frequency-Division-Multiplexed Fluorescence Imaging Flow Cytometry. OSA Contin. 2020, 3, 430. [Google Scholar] [CrossRef]
- Chong, J.W.R.; Khoo, K.S.; Chew, K.W.; Ting, H.-Y.; Koji, I.; Show, P.L. Digitalised Prediction of Blue Pigment Content from Spirulina Platensis: Next-Generation Microalgae Bio-Molecule Detection. Algal Res. 2024, 83, 103642. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Syed, T.; Brinitzer, G.; Frick, K.; Schmid-Staiger, U.; Haasdonk, B.; Tovar, G.E.M.; Krujatz, F.; Mädler, J.; Urbas, L. Improving Microalgae Growth Modeling of Outdoor Cultivation with Light History Data Using Machine Learning Models: A Comparative Study. Bioresour. Technol. 2023, 390, 129882. [Google Scholar] [CrossRef]
- Trizoglou, P.; Liu, X.; Lin, Z. Fault Detection by an Ensemble Framework of Extreme Gradient Boosting (XGBoost) in the Operation of Offshore Wind Turbines. Renew. Energy 2021, 179, 945–962. [Google Scholar] [CrossRef]
- Magalhães, V.; Pinto, V.; Sousa, P.; Afonso, J.A.; Gonçalves, L.; Fernández, E.; Minas, G. A Portable and Low-Cost Optical Device for Pigment-Based Taxonomic Classification of Microalgae Using Machine Learning. Sens. Actuators B Chem. 2025, 423, 136819. [Google Scholar] [CrossRef]
- Colkesen, I.; Ozturk, M.Y.; Altuntas, O.Y. Comparative Evaluation of Performances of Algae Indices, Pixel- and Object-Based Machine Learning Algorithms in Mapping Floating Algal Blooms Using Sentinel-2 Imagery. Stoch. Environ. Res. Risk Assess 2024, 38, 1613–1634. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Q.; Tan, Z.; Yu, S.; Zhang, Y. Predicting Harvesting Efficiency of Microalgae with Magnetic Nanoparticles Using Machine Learning Models. J. Environ. Chem. Eng. 2025, 13, 115406. [Google Scholar] [CrossRef]
- Meenatchi Sundaram, K.; Kumar, D.; Lee, J.; Barathi, S.; Rajendran, K. Time Series Forecasting of Microalgae Cultivation for a Sustainable Wastewater Treatment. Process Saf. Environ. Prot. 2025, 196, 106845. [Google Scholar] [CrossRef]
- Syed, T.; Krujatz, F.; Ihadjadene, Y.; Mühlstädt, G.; Hamedi, H.; Mädler, J.; Urbas, L. A Review on Machine Learning Approaches for Microalgae Cultivation Systems. Comput. Biol. Med. 2024, 172, 108248. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016. [Google Scholar]
- Szelag, B.; González-Camejo, J.; Eusebi, A.L.; Barat, R.; Kiczko, A.; Fatone, F. Multi-Criteria Analysis of the Continuous Operation of a Membrane Photobioreactor to Treat Sewage: Modeling and Sensitivity Analysis. Chem. Eng. J. 2024, 496, 154202. [Google Scholar] [CrossRef]
- You, H.; Ma, Z.; Tang, Y.; Wang, Y.; Yan, J.; Ni, M.; Cen, K.; Huang, Q. Comparison of ANN (MLP), ANFIS, SVM, and RF Models for the Online Classification of Heating Value of Burning Municipal Solid Waste in Circulating Fluidized Bed Incinerators. Waste Manag. 2017, 68, 186–197. [Google Scholar] [CrossRef]
- Susanna, D.; Dhanapal, R.; Mahalingam, R.; Ramamurthy, V. Increasing Productivity of Spirulina Platensis in Photobioreactors Using Artificial Neural Network Modeling. Biotechnol. Bioeng. 2019, 116, 2960–2970. [Google Scholar] [CrossRef]
- Bricaud, A.; Mejia, C.; Blondeau-Patissier, D.; Claustre, H.; Crepon, M.; Thiria, S. Retrieval of Pigment Concentrations and Size Structure of Algal Populations from Their Absorption Spectra Using Multilayered Perceptrons. Appl. Opt. 2007, 46, 1251–1260. [Google Scholar] [CrossRef]
- Géron, A. Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly: Beijing, China, 2018; ISBN 9781491962299. [Google Scholar]
- Chong, J.W.R.; Khoo, K.S.; Chew, K.W.; Vo, D.V.N.; Balakrishnan, D.; Banat, F.; Munawaroh, H.S.H.; Iwamoto, K.; Show, P.L. Microalgae Identification: Future of Image Processing and Digital Algorithm. Bioresour. Technol. 2023, 369, 128418. [Google Scholar] [CrossRef]
- Xu, W.; Niu, J.; Gan, W.; Gou, S.; Zhang, S.; Qiu, H.; Jiang, T. Identification of Paralytic Shellfish Toxin-Producing Microalgae Using Machine Learning and Deep Learning Methods. J. Oceanol. Limnol. 2022, 40, 2202–2217. [Google Scholar] [CrossRef]
- Yadav, D.P.; Jalal, A.S.; Garlapati, D.; Hossain, K.; Goyal, A.; Pant, G. Deep Learning-Based ResNeXt Model in Phycological Studies for Future. Algal Res. 2020, 50, 102018. [Google Scholar] [CrossRef]
- Pant, G.; Yadav, D.P.; Gaur, A. ResNeXt Convolution Neural Network Topology-Based Deep Learning Model for Identification and Classification of Pediastrum. Algal Res. 2020, 48, 101932. [Google Scholar] [CrossRef]
- Kloster, M.; Langenkämper, D.; Zurowietz, M.; Beszteri, B.; Nattkemper, T.W. Deep Learning-Based Diatom Taxonomy on Virtual Slides. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Zhuo, Z.; Wang, H.; Liao, R.; Ma, H. Machine Learning Powered Microalgae Classification by Use of Polarized Light Scattering Data. Appl. Sci. 2022, 12, 3422. [Google Scholar] [CrossRef]
- Park, J.; Baek, J.; Kim, J.; You, K.; Kim, K. Deep Learning-Based Algal Detection Model Development Considering Field Application. Water 2022, 14, 1275. [Google Scholar] [CrossRef]
- Otálora, P.; Guzmán, J.L.; Acién, F.G.; Berenguel, M.; Reul, A. Microalgae Classification Based on Machine Learning Techniques. Algal Res. 2021, 55, 102256. [Google Scholar] [CrossRef]
- Baek, S.S.; Pyo, J.C.; Pachepsky, Y.; Park, Y.; Ligaray, M.; Ahn, C.Y.; Kim, Y.H.; Ahn Chun, J.; Hwa Cho, K. Identification and Enumeration of Cyanobacteria Species Using a Deep Neural Network. Ecol. Indic. 2020, 115, 106395. [Google Scholar] [CrossRef]
- Park, J.; Lee, H.; Park, C.Y.; Hasan, S.; Heo, T.Y.; Lee, W.H. Algal Morphological Identification in Watersheds for Drinking Water Supply Using Neural Architecture Search for Convolutional Neural Network. Water 2019, 11, 1338. [Google Scholar] [CrossRef]
- D’Orazio, M.; Gianangeli, A.; Monni, F.; Quagliarini, E. Automatic Monitoring of the Bio-Colonisation of Historical Building’s Facades through Convolutional Neural Networks (CNN). J. Cult. Herit. 2024, 70, 80–89. [Google Scholar] [CrossRef]
- Sonmez, M.E.; Altinsoy, B.; Ozturk, B.Y.; Gumus, N.E.; Eczacioglu, N. Deep Learning-Based Classification of Microalgae Using Light and Scanning Electron Microscopy Images. Micron 2023, 172, 103506. [Google Scholar] [CrossRef] [PubMed]
- Carloto, I.; Johnston, P.; Pestana, C.J.; Lawton, L.A. Detection of Morphological Changes Caused by Chemical Stress in the Cyanobacterium Planktothrix Agardhii Using Convolutional Neural Networks. Sci. Total Environ. 2021, 784, 146956. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Nguyen, D.K.; Nguyen, T.; Nghiem, T.X. Convolutional Neural Network Regression for Low-Cost Microalgal Density Estimation. e-Prime Adv. Electr. Eng. Electron. Energy 2024, 9, 100653. [Google Scholar] [CrossRef]
- del Rio-Chanona, E.A.; Wagner, J.L.; Ali, H.; Fiorelli, F.; Zhang, D.; Hellgardt, K. Deep Learning-Based Surrogate Modeling and Optimization for Microalgal Biofuel Production and Photobioreactor Design. AIChE J. 2019, 65, 915–923. [Google Scholar] [CrossRef]
- Yang, C.T.; Kristiani, E.; Leong, Y.K.; Chang, J.S. Machine Learning in Microalgae Biotechnology for Sustainable Biofuel Production: Advancements, Applications, and Prospects. Bioresour. Technol. 2024, 413, 131549. [Google Scholar] [CrossRef]
- Omole, O.A.; Ogbaga, C.C.; Okolie, J.A.; Akande, O.; Kimera, R.; Dayil, J.L. Advancing Algal Biofuel Production through Data-Driven Insights: A Comprehensive Review of Machine Learning Applications. Comput. Chem. Eng. 2025, 196, 109049. [Google Scholar] [CrossRef]
- Rodríguez-Rangel, H.; Arias, D.M.; Morales-Rosales, L.A.; Gonzalez-Huitron, V.; Partida, M.V.; García, J. Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems. Energies 2022, 15, 2500. [Google Scholar] [CrossRef]
- Syed, T.; Kalliadan, S.; Mädler, J.; Laukens, K.; Roef, L.; Urbas, L. LSTM-Based Soft Sensor for the Prediction of Microalgae Growth. In Computer Aided Chemical Engineering; Elsevier B.V.: Amsterdam, The Netherland, 2024; Volume 53, pp. 3145–3150. [Google Scholar]
- Mazzelli, A.; Cicci, A.; Di Caprio, F.; Altimari, P.; Toro, L.; Iaquaniello, G.; Pagnanelli, F. Multivariate Modeling for Microalgae Growth in Outdoor Photobioreactors. Algal Res. 2020, 45, 101663. [Google Scholar] [CrossRef]
- Davani, L.; Terenzi, C.; Tumiatti, V.; De Simone, A.; Andrisano, V.; Montanari, S. Integrated Analytical Approaches for the Characterization of Spirulina and Chlorella Microalgae. J. Pharm. Biomed. Anal. 2022, 219, 114943. [Google Scholar] [CrossRef]
- Hegazi, N.; Khattab, A.R.; Saad, H.H.; Abib, B.; Farag, M.A. A Multiplex Metabolomic Approach for Quality Control of Spirulina Supplement and Its Allied Microalgae (Amphora & Chlorella) Assisted by Chemometrics and Molecular Networking. Sci. Rep. 2024, 14, 2809. [Google Scholar] [CrossRef]
- Wei, P.J.; Pang, Z.Z.; Jiang, L.J.; Tan, D.Y.; Su, Y.S.; Zheng, C.H. Promoter Prediction in Nannochloropsis Based on Densely Connected Convolutional Neural Networks. Methods 2022, 204, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Kobayashi, K.; Wakisaka, Y.; Deng, D.; Tanaka, S.; Huang, C.-J.; Lei, C.; Sun, C.-W.; Liu, H.; Fujiwaki, Y.; et al. Label-Free Chemical Imaging Flow Cytometry by High-Speed Multicolor Stimulated Raman Scattering. Proc. Natl. Acad. Sci. USA 2019, 116, 15842–15848. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Mishra, V. Analysing the Effects of Culture Parameters on Wastewater Treatment Capability of Microalgae through Association Rule Mining. J. Environ. Chem. Eng. 2022, 10, 108444. [Google Scholar] [CrossRef]
- Sancho, A.; Ribeiro, J.C.; Reis, M.S.; Martins, F.G. Cluster Analysis of Crude Oils with K-Means Based on Their Physicochemical Properties. Comput. Chem. Eng. 2022, 157, 107633. [Google Scholar] [CrossRef]
- Sánchez, C.; Vállez, N.; Bueno, G.; Cristóbal, G. Diatom Classification Including Morphological Adaptations Using CNNs. In Proceedings of the Iberian Conference on Pattern Recognition and Image Analysis, Madrid, Spain, 1–4 July 2019; Springer: Berlin, Germany, 2019; pp. 317–328. [Google Scholar]
- Pozzobon, V.; Levasseur, W.; Viau, E.; Michiels, E.; Clément, T.; Perré, P. Machine Learning Processing of Microalgae Flow Cytometry Readings: Illustrated with Chlorella Vulgaris Viability Assays. J. Appl. Phycol. 2020, 32, 2967–2976. [Google Scholar] [CrossRef]
- Manian, V.; Alfaro-Mejía, E.; Tokars, R.P. Hyperspectral Image Labeling and Classification Using an Ensemble Semi-Supervised Machine Learning Approach. Sensors 2022, 22, 1623. [Google Scholar] [CrossRef]
- Drews-Jr, P.; Colares, R.G.; Machado, P.; de Faria, M.; Detoni, A.; Tavano, V. Microalgae Classification Using Semi-Supervised and Active Learning Based on Gaussian Mixture Models. J. Braz. Comput. Soc. 2013, 19, 411–422. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; Bradford Books: Cambridge, MA, USA, 2018. [Google Scholar]
- Petsagkourakis, P.; Sandoval, I.O.; Bradford, E.; Zhang, D.; del Rio-Chanona, E.A. Reinforcement Learning for Batch Bioprocess Optimization. Comput. Chem. Eng. 2020, 133, 106649. [Google Scholar] [CrossRef]
- Pandian, B.J.; Noel, M.M. Control of a Bioreactor Using a New Partially Supervised Reinforcement Learning Algorithm. J. Process Control 2018, 69, 16–29. [Google Scholar] [CrossRef]
- Treloar, N.J.; Fedorec, A.J.H.; Ingalls, B.; Barnes, C.P. Deep Reinforcement Learning for the Control of Microbial Co-Cultures in Bioreactors. PLoS Comput. Biol. 2020, 16, e1007783. [Google Scholar] [CrossRef]
- Doan, Y.T.-T.; Ho, M.-T.; Nguyen, H.-K.; Han, H.-D. Optimization of Spirulina Sp. Cultivation Using Reinforcement Learning with State Prediction Based on LSTM Neural Network. J. Appl. Phycol. 2021, 33, 2733–2744. [Google Scholar] [CrossRef]
- Tang, N.; Zhou, F.; Gu, Z.; Zheng, H.; Yu, Z.; Zheng, B. Unsupervised Pixel-Wise Classification for Chaetoceros Image Segmentation. Neurocomputing 2018, 318, 261–270. [Google Scholar] [CrossRef]
- von Stosch, M.; Oliveira, R.; Peres, J.; Feyo de Azevedo, S. Hybrid Semi-Parametric Modeling in Process Systems Engineering: Past, Present and Future. Comput. Chem. Eng. 2014, 60, 86–101. [Google Scholar] [CrossRef]
- Baughman, D.R.; Liu, Y.A. Neural Networks in Bioprocessing and Chemical Engineering; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Zhang, D.; del Rio-Chanona, E.A.; Petsagkourakis, P.; Wagner, J. Hybrid Physics-Based and Data-Driven Modeling for Bioprocess Online Simulation and Optimization. Biotechnol. Bioeng. 2019, 116, 2919–2930. [Google Scholar] [CrossRef]
- Thiviyanathan, V.A.; Ker, P.J.; Hoon Tang, S.G.; Amin, E.P.; Yee, W.; Hannan, M.A.; Jamaludin, Z.; Nghiem, L.D.; Indra Mahlia, T.M. Microalgae Biomass and Biomolecule Quantification: Optical Techniques, Challenges and Prospects. Renew. Sustain. Energy Rev. 2024, 189, 113926. [Google Scholar] [CrossRef]
- Allouzi, M.M.A.; Allouzi, S.; Al-Salaheen, B.; Khoo, K.S.; Rajendran, S.; Sankaran, R.; Sy-Toan, N.; Show, P.L. Current Advances and Future Trend of Nanotechnology as Microalgae-Based Biosensor. Biochem. Eng. J. 2022, 187, 108653. [Google Scholar] [CrossRef]
- Chuong, J.J.C.C.; Rahman, M.; Ibrahim, N.; Heng, L.Y.; Tan, L.L.; Ahmad, A. Harmful Microalgae Detection: Biosensors versus Some Conventional Methods. Sensors 2022, 22, 3144. [Google Scholar] [CrossRef]
- Zhou, Z.; Tian, D.; Yang, Y.; Cui, H.; Li, Y.; Ren, S.; Han, T.; Gao, Z. Machine Learning Assisted Biosensing Technology: An Emerging Powerful Tool for Improving the Intelligence of Food Safety Detection. Curr. Res. Food Sci. 2024, 8, 100679. [Google Scholar] [CrossRef]
- Huang, C.W.; Lin, C.; Nguyen, M.K.; Hussain, A.; Bui, X.T.; Ngo, H.H. A Review of Biosensor for Environmental Monitoring: Principle, Application, and Corresponding Achievement of Sustainable Development Goals. Bioengineered 2023, 14, 58–80. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial Intelligence Biosensors: Challenges and Prospects. Biosens. Bioelectron. 2020, 165, 112412. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.; Poudel, S.; Krukiewicz, K.; Kunwar, A. A Topical Review on AI-Interlinked Biodomain Sensors for Multi-Purpose Applications. Measurement 2024, 227, 114123. [Google Scholar] [CrossRef]
- Wieser, W.; Assaf, A.A.; Le Gouic, B.; Dechandol, E.; Herve, L.; Louineau, T.; Dib, O.H.; Gonçalves, O.; Titica, M.; Couzinet-Mossion, A.; et al. Development and Application of an Automated Raman Sensor for Bioprocess Monitoring: From the Laboratory to an Algae Production Platform. Sensors 2023, 23, 9746. [Google Scholar] [CrossRef] [PubMed]
- Solovchenko, A. Seeing Good and Bad: Optical Sensing of Microalgal Culture Condition. Algal Res. 2023, 71, 103071. [Google Scholar] [CrossRef]
- Kim, H.S.; Devarenne, T.P.; Han, A. Microfluidic Systems for Microalgal Biotechnology: A Review. Algal Res. 2018, 30, 149–161. [Google Scholar] [CrossRef]
- Sebastiá-Frasquet, M.T.; Aguilar-Maldonado, J.A.; Herrero-Durá, I.; Santamaría-Del-ángel, E.; Morell-Monzó, S.; Estornell, J. Advances in the Monitoring of Algal Blooms by Remote Sensing: A Bibliometric Analysis. Appl. Sci. 2020, 10, 7877. [Google Scholar] [CrossRef]
- Stauffer, B.A.; Bowers, H.A.; Buckley, E.; Davis, T.W.; Johengen, T.H.; Kudela, R.; McManus, M.A.; Purcell, H.; Smith, G.J.; Woude, A.V.; et al. Considerations in Harmful Algal Bloom Research and Monitoring: Perspectives from a Consensus-Building Workshop and Technology Testing. Front. Mar. Sci. 2019, 6, 399. [Google Scholar] [CrossRef]
- Zahir, M.; Su, Y.; Shahzad, M.I.; Ayub, G.; Rahman, S.U.; Ijaz, J. A Review on Monitoring, Forecasting, and Early Warning of Harmful Algal Bloom. Aquaculture 2024, 593, 741351. [Google Scholar] [CrossRef]
- Plouviez, M.; Bhatia, N.; Shurygin, B.; Solovchenko, A. Advanced Imaging for Microalgal Biotechnology. Algal Res. 2024, 82, 103649. [Google Scholar] [CrossRef]
- Barsanti, L.; Birindelli, L.; Gualtieri, P. Water Monitoring by Means of Digital Microscopy Identification and Classification of Microalgae. Environ. Sci. Process Impacts 2021, 23, 1443–1457. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zhou, Y.; Zhang, X.; Liu, X. Artificial Intelligence-Based Microfluidic Platform for Detecting Contaminants in Water: A Review. Sensors 2024, 24, 4350. [Google Scholar] [CrossRef]
- Hou, C.; Zheng, X.; Song, Y.; Yu, Z.; Zhang, K.; Wang, J.; Zhou, X.; Zhang, Y.; Shen, Z. Prediction of Product Properties and Identification of Key Influencing Parameters in Microwave Pyrolysis of Microalgae Using Machine Learning. Algal Res. 2024, 82, 103662. [Google Scholar] [CrossRef]
- Liu, D.; Yuan, G.; Tan, H.; Jiang, Y.; Bi, H.; Cheng, Y. AlgaeClass_Net: Optimizing Few-Shot Marine Microalgae Classification with Multi-Scale Feature Enhancement Network. IEEE Access 2024, 13, 16223–16237. [Google Scholar] [CrossRef]
- Sonmez, M.E.; Eczacıoglu, N.; Gumuş, N.E.; Aslan, M.F.; Sabanci, K.; Aşikkutlu, B. Convolutional Neural Network—Support Vector Machine Based Approach for Classification of Cyanobacteria and Chlorophyta Microalgae Groups. Algal Res. 2022, 61, 102568. [Google Scholar] [CrossRef]
- Correa, I.; Drews, P.; Botelho, S.; De Souza, M.S.; Tavano, V.M. Deep Learning for Microalgae Classification. In Proceedings of the 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017. [Google Scholar]
- Abdullah; Ali, S.; Khan, Z.; Hussain, A.; Athar, A.; Kim, H.C. Computer Vision Based Deep Learning Approach for the Detection and Classification of Algae Species Using Microscopic Images. Water 2022, 14, 2219. [Google Scholar] [CrossRef]
- Lyu, Y.; Chen, J.; Song, Z.; Zhang, Q. Synthesizing Data by Transferring Information in Data-Intensive Regions to Enhance Process Monitoring Performance in Data-Scarce Region. Can. J. Chem. Eng. 2021, 99, S521–S539. [Google Scholar] [CrossRef]
- Hao, X.; Liu, L.; Yang, R.; Yin, L.; Zhang, L.; Li, X. A Review of Data Augmentation Methods of Remote Sensing Image Target Recognition. Remote Sens. 2023, 15, 827. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Y.; Zhang, Q. Assessing Global Carbon Sequestration and Bioenergy Potential from Microalgae Cultivation on Marginal Lands Leveraging Machine Learning. Sci. Total Environ. 2024, 948, 174462. [Google Scholar] [CrossRef]
- Hu, W.; Su, S.; Mohamed, H.F.; Xiao, J.; Kang, J.; Krock, B.; Xie, B.; Luo, Z.; Chen, B. Assessing the Global Distribution and Risk of Harmful Microalgae: A Focus on Three Toxic Alexandrium Dinoflagellates. Sci. Total Environ. 2024, 948, 174767. [Google Scholar] [CrossRef]
- Andriopoulos, V.; Kornaros, M. LASSO Regression with Multiple Imputations for the Selection of Key Variables Affecting the Fatty Acid Profile of Nannochloropsis Oculata. Mar. Drugs 2023, 21, 483. [Google Scholar] [CrossRef]
- Ching, P.M.L.; Mayol, A.P.; Juan, J.L.G.S.; So, R.H.Y.; Sy, C.L.; Mandia, E.; Ubando, A.T.; Culaba, A.B. Early Prediction of Spirulina Platensis Biomass Yield for Biofuel Production Using Machine Learning. Clean. Technol. Environ. Policy 2022, 24, 2283–2293. [Google Scholar] [CrossRef]
- Teixeira, A.P.; Alves, C.; Alves, P.M.; Carrondo, M.J.T.; Oliveira, R. Hybrid Elementary Flux Analysis/Nonparametric Modeling: Application for Bioprocess Control. BMC Bioinform. 2007, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- von Stosch, M.; Carinhas, N.; Oliveira, R. Chapter 7—Hybrid Modeling for Systems Biology: Theory and Practice. In Large-Scale Networks in Engineering and Life Sciences; Benner, P., Findeisen, R., Flockerzi, D., Reichl, U., Sundmacher, K., Eds.; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Von Stosch, M.; Oliveira, R.; Peres, J.; Feyo De Azevedo, S. A General Hybrid Semi-Parametric Process Control Framework. J. Process Control 2012, 22, 1171–1181. [Google Scholar] [CrossRef]
- Härdle, W.; Müller, M.; Sperlich, S.; Werwatz, A. Nonparametric and Semiparametric Models; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Tulleken, H.J.A.F. Grey-Box Modelling and Identification Using Physical Knowledge and Bayesian Techniques. Automatica 1993, 29, 285–308. [Google Scholar] [CrossRef]
- Rogers, A.W.; Cardenas, I.O.S.; del Rio-Chanona, E.A.; Zhang, D. Investigating Physics-Informed Neural Networks for Bioprocess Hybrid Model Construction. Comput. Aided Chem. Eng. 2023, 52, 83–88. [Google Scholar] [CrossRef]
- Montague, G.; Morris, J. Neural-Network Contributions in Biotechnology Artificial Neural Network Representations The Problem of Identifying the Parameters of a Model Structure Essentially Reduces to the Determi. Trends Biotechnol. 1994, 12, 312–324. [Google Scholar] [CrossRef]
- Pinto, J.; Mestre, M.; Ramos, J.; Costa, R.S.; Striedner, G.; Oliveira, R. A General Deep Hybrid Model for Bioreactor Systems: Combining First Principles with Deep Neural Networks. Comput. Chem. Eng. 2022, 165, 107952. [Google Scholar] [CrossRef]
- Ramos, J.R.C.; Pinto, J.; Poiares-Oliveira, G.; Peeters, L.; Dumas, P.; Oliveira, R. Deep Hybrid Modeling of a HEK293 Process: Combining Long Short-Term Memory Networks with First Principles Equations. Biotechnol. Bioeng. 2024, 121, 1554–1568. [Google Scholar] [CrossRef]
- Pinto, J.; Ramos, J.R.C.; Costa, R.S.; Rossell, S.; Dumas, P.; Oliveira, R. Hybrid Deep Modeling of a CHO-K1 Fed-Batch Process: Combining First-Principles with Deep Neural Networks. Front. Bioeng. Biotechnol. 2023, 11, 1237963. [Google Scholar] [CrossRef]
- Wu, W.; Huang, C.M.; Tsai, Y.H. Design and Validation of a Microalgae Biorefinery Using Machine Learning-Assisted Modeling of Hydrothermal Liquefaction. Algal Res. 2023, 74, 103230. [Google Scholar] [CrossRef]
- Thompson, M.L.; Kramer, M.A. Modeling Chemical Processes Using Prior Knowledge and Neural Networks. AIChE J. 1994, 40, 1328–1340. [Google Scholar] [CrossRef]
- Lee, D.S.; Jeon, C.O.; Park, J.M.; Chang, K.S. Hybrid Neural Network Modeling of a Full-Scale Industrial Wastewater Treatment Process. Biotechnol. Bioeng. 2002, 78, 670–682. [Google Scholar] [CrossRef] [PubMed]
- Walsh, I.; Myint, M.; Nguyen-Khuong, T.; Ho, Y.S.; Ng, S.K.; Lakshmanan, M. Harnessing the Potential of Machine Learning for Advancing “Quality by Design” in Biomanufacturing. MAbs 2022, 14, 2013593. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, B. Hybrid Modeling in Bioprocess Dynamics: Structural Variabilities, Implementation Strategies, and Practical Challenges. Biotechnol. Bioeng. 2023, 120, 2072–2091. [Google Scholar] [CrossRef]
- Kay, S.; Kay, H.; Rogers, A.W.; Zhang, D. Integrating Hybrid Modelling and Transfer Learning for New Bioprocess Predictive Modelling. In Proceedings of the 33rd European Symposium on Computer Aided Chemical Engineering (ESCAPE33), Athens, Greece, 18–21 June 2023; Elsevier B.V.: Burlington, MA, USA, 2023; Volume 52, pp. 2595–2600. [Google Scholar]
- Wang, H.; Kontoravdi, C.; del Rio Chanona, E.A. A Hybrid Modelling Framework for Dynamic Modelling of Bioprocesses. In Proceedings of the 33rd European Symposium on Computer Aided Chemical Engineering (ESCAPE33), Athens, Greece, 18–21 June 2023; Elsevier B.V.: Burlington, MA, USA, 2023; Volume 52, pp. 469–474. [Google Scholar]
- Shahhoseyni, S.; Greco, L.; Sivaram, A.; Mansouri, S.S. A Reduced-Order Hybrid Model for Photobioreactor Performance and Biomass Prediction. Algal Res. 2024, 84, 103750. [Google Scholar] [CrossRef]
- del Rio-Chanona, E.A.; Ahmed, N.; Zhang, D.; Lu, Y.; Jing, K. Kinetic Modeling and Process Analysis for Desmodesmus Sp. Lutein Photo-Production. AIChE J. 2017, 63, 2546–2554. [Google Scholar] [CrossRef]
- del Rio-Chanona, E.A.; Dechatiwongse, P.; Zhang, D.; Maitland, G.C.; Hellgardt, K.; Arellano-Garcia, H.; Vassiliadis, V.S. Optimal Operation Strategy for Biohydrogen Production. Ind. Eng. Chem. Res. 2015, 54, 6334–6343. [Google Scholar] [CrossRef]
- Oruganti, R.K.; Biji, A.P.; Lanuyanger, T.; Show, P.L.; Sriariyanun, M.; Upadhyayula, V.K.K.; Gadhamshetty, V.; Bhattacharyya, D. Artificial Intelligence and Machine Learning Tools for High-Performance Microalgal Wastewater Treatment and Algal Biorefinery: A Critical Review. Sci. Total Environ. 2023, 876, 162797. [Google Scholar] [CrossRef]
- Prayaga, L.; Devulapalli, K.; Prayaga, C.; Wade, A.; Reddy, G.S.; Pola, S.S.H. Integrating Unsupervised and Supervised ML Models for Analysis of Synthetic Data From VAE, GAN, and Clustering of Variables. Int. J. Data Anal. 2024, 5, 1–19. [Google Scholar] [CrossRef]
- Santos, M.S.; Pereira, R.C.; Costa, A.F.; Soares, J.P.; Santos, J.; Abreu, P.H. Generating Synthetic Missing Data: A Review by Missing Mechanism. IEEE Access 2019, 7, 11651–11667. [Google Scholar] [CrossRef]
ML Model | Task | Microalgae Classes/Species | Dataset/Modalities | Target(s) | Performance Metrics/Outputs | Reference |
---|---|---|---|---|---|---|
MLR | Regression | Chlorococcum littorale | Tabular data: temperature and light intensity | Growth rate | Average Relative Deviation was around 6.6% | [34] |
MLR | Regression | Chlorella sp., Scenedesmus sp., Nannochloropsis sp. | Spectral data: NIR spectra | Lipid content | R2 of 0.86 and 0.77 when NIR spectra with wavelength of 1725 and 2305 cm−1 were used, respectively | [35] |
PCR | Regression | Scenedesmus sp. AMDD | Spectral data: fluorescence emission spectra | Protein concentration | R2 of 0.8 was obtained from the more complex PCR model | [37] |
PCR | Regression | Scenedesmus subspicatus, Neochloris oleobundans | Spectral data: FT-IR spectra | Solid analyte concentration | Relative deviations were around 7% and 8% when spectra with wavelength of 2901 and 1595 cm−1 were used, respectively | [38] |
kNN | Classification | Chlorella vulgaris | Imaging data and morphological properties | Living and dead microalgae cell category | Area Under the Curve (AUC) of 79.5%, accuracy of 74.3%, precision of 76.6%, and recall of 77.2% | [40] |
kNN | Classification | Chlorella vulgaris, Chlamydomonas reinhardtii, Arthrospira platensis | Morphological and texture descriptors | Microalgae species designation | Accuracy of 96.93%, precision of 96.16%, recall of 96.08%, and F1-score of 96.09% | [41] |
kNN | Regression | Chlorella vulgaris | Imaging data and tabular data: total lipids, proteins, and carbohydrates | Biomass concentration, nitrate, and pH | Average Deviation was around 0.10 | [45] |
kNN | Regression | Scenedesmus sp., Chlorella sp. | Tabular data: pH, retention times, and phosphate, nitrate, and nitrite concentrations | Biomass yield | R2 of 0.94, and MAE was around 0.13 | [44] |
DT | Classification | Chlorella vulgaris | Imaging data and morphological properties | Living and dead microalgae cell category | AUC of 85.1%, accuracy of 77.4%, precision of 79.2%, and recall of 80.5% | [40] |
DT | Classification | Chlorophyceae, Cyanophyceae, Eustigmatophyceae, Trebouxiophyceae, Chlorodendrophyceae, Xanthophyceae | Categorical data: microalgae class and reactor type; numerical data: CO2 content and pH | Microalgae biomass production and growth rate | Accuracy on biomass production of 81.25% | [49] |
DT | Classification | Phaeocystis, Chlamydomonas, Chaetoceros | Hyperspectral imaging | Growth stage of microalgae in a growth cycle | Accuracy of 97.5% | [51] |
DT | Regression | Scenedesmus sp., Chlorella sp. | Tabular data: pH, retention times, and phosphate, nitrate, and nitrite concentrations | Biomass yield | R2 of 0.91; however, abnormal deviations from the prediction line were present | [44] |
DT | Regression | Multiple microalgae species | Properties of magnetic nanoparticles, conditions of magnetic flocculation, and properties of microalgae: biomass concentration and cell diameter | Harvesting efficiency of microalgae in magnetic flocculation | R2 of 0.85 and MAE higher than 6% | [62] |
RF | Classification | Phaeocystis, Chlamydomonas, Chaetoceros | Hyperspectral imaging | Growth stage of microalgae in a growth cycle | Accuracy of 98.1% | [51] |
RF | Classification | Chlorella vulgaris | Imaging data and morphological properties | Living and dead microalgae cell category | AUC of 85.6%, accuracy of 77.7%, precision of 79.3%, and recall of 80.6% | [40] |
RF | Classification | Bacillariophyta, Chlorophyta, Ochrophyta, Miozoa, Haptophyta, Cryptophyta, Cyanobacteria | Spectral data: fluorescence spectra | Identification of microalgae at the phylum level | Accuracy of 29% for training dataset | [60] |
RF | Regression | Scenedesmus sp., Chlorella sp. | Tabular data: pH, retention times, phosphate, nitrate, and nitrite concentrations | Biomass yield | R2 of 0.79 but presence of abnormal deviations | [44] |
RF | Regression | Chlorella sorokiniana | Imaging data: microscopic images; properties: suspension chord length distribution and floc average geometry | Average fractal dimension of microalgae flocs | R2 of 0.98 and RMSE of 0.003 | [53] |
RF | Regression | Multiple microalgae species | Properties of magnetic nanoparticles, conditions of magnetic flocculation, and properties of microalgae: biomass concentration and cell diameter | Harvesting efficiency of microalgae in magnetic flocculation | R2 of 0.9 and MAE higher than 5% | [62] |
SVM | Classification | Chlorella vulgaris, Chlamydomonas reinhardtii, Arthrospira platensis | Morphological and texture descriptors | Microalgae species designation | Accuracy of 97.63%, precision of 97.81%, recall of 97.78%, and F1-score of 97.79% | [41] |
SVM | Classification | Scenedesmus aff. acutus, Gloeomonas anomalipyrenoide, Chlamydomonas reinhardtii, Hamakko caudatus, Chlorella sorokiniana, Haematococcus lacustris | Morphological properties and imaging data: frequency-division-multiplexed fluorescence imaging | Identification of spherical microalgal species | High classification accuracy of 99.8% | [56] |
SVM | Classification | Phaeocystis, Chlamydomonas, Chaetoceros | Hyperspectral imaging | Growth stage of microalgae in a cycle | Accuracy of 94.4% | [51] |
SVM | Classification | Bacillariophyta, Chlorophyta, Ochrophyta, Miozoa, Haptophyta, Cryptophyta, Cyanobacteria | Spectral data: fluorescence spectra | Identification of microalgae at the phylum level | Accuracy of 93% for training dataset and 89% for test dataset | [60] |
SVR | Regression | Phaeodactylum tricornutum | Time series data: biomass concentration, incident light intensity, and light history | Specific growth rate | R2 of 0.87 and RMSE of 0.0315 | [58] |
SVR | Regression | Arthrospira platensis | Imaging data: microscopic images | Blue pigment content | R2 of 0.9903 | [57] |
SVR | Regression | Scenedesmus sp., Chlorella sp. | Tabular data: pH, retention times, and phosphate, nitrate, and nitrite concentrations | Biomass yield | R2 of 0.98 | [44] |
XGBoost | Classification | Bacillariophyta, Chlorophyta, Ochrophyta, Miozoa, Haptophyta, Cryptophyta, Cyanobacteria | Spectral data: fluorescence spectra | Identification of microalgae at the phylum level | Accuracy of 92% and 97% for training and test datasets, respectively, and a weighted average of 97% and 98% for recall and precision, respectively | [60] |
XGBoost | Classification | Not available | Time series data and imaging data | Mapping dense floating blooms | Overall accuracy was between 94% and 98% | [61] |
XGBoost | Regression | Multiple microalgae species | Properties of microalgae, properties of magnetic nanoparticles, and conditions of magnetic flocculation | Harvesting efficiency in magnetic flocculation | R2 of 0.932, RMSE of 6.96%, and MAE of 4.17% | [62] |
XGBoost | Regression | Scenedesmus sp. | Time series data: temperature, pH, and light intensity | Microalgae biomass yield and growth curve | R2 of 0.3 for the test dataset | [63] |
ML Model | Task | Microalgae Classes/Species | Dataset/Modalities | Target(s) | Performance Metrics/Outputs | Reference |
---|---|---|---|---|---|---|
UL | Gray-scale surface direction angle model (GSDAM) and Canny combined with deep convolutional neural network (DCNN) | Chaetoceros | Imaging data: microscopic images | Automatic segmentation of microalgae | Boundary Displacement Error, Probability Rand Index (PRI), and F1 measure of 70.6359, 0.8569, and 0.6928, respectively | [106] |
SSL combined with AL | Gaussian mixture model combined with expectation-minimization algorithm and AL | Phytoplankton | Imaging data | Identification of microalgae | Accuracy of 92% | [100] |
UL | CNN combined with HAC | Diatoms | Imaging data | Identification of diatoms in their life cycle | PRI and homogeneity of 0.9959 and 0.9951, respectively, and accuracy of 99.07% | [97] |
Ensemble SSL | SVM combined with gradient boosting (GB), Gaussian classifier (GC), and linear perceptron | HAB and surface scum | Imaging data: hyperspectral images | Identification of cyanobacteria | Accuracy of 99.92% using GB for 3 PCA bands | [99] |
UL | CNN combined with t-SNE | Euglena gracilis | Imaging data: microscopy images | Identification and classification of different cultures | Accuracy greater than 99% for all of the cultures | [94] |
UL | DBSCAN | Chlorella vulgaris | Data obtained from flow cytometry readings | Automatic segregation and microalgae identification | Results with −0.10% absolute deviation compared to human processing | [98] |
RL | RL combined with LSTM network | Arthrospira sp. HH | Numeric sensor data | Optimization of the dry-weight biomass production and prediction of light intensity | Achieved 17% higher biomass yield compared to traditional methods and 10% higher yield compared to the threshold-based method | [105] |
UL | Hierarchical cluster analysis (HCA) and PCA | Arthrospira, Amphora, Chlorella | Spectral data: gas chromatography–mass spectrometry profiles | Assessment of the metabolome similarity of the three microalgae species | PCA explained 95.9% of the total variance present in the dataset, while HCA was able to identify 2 clusters | [92] |
Mechanistic Model | Data-Driven Model | Description | Performance Metrics/Outputs | Reference |
---|---|---|---|---|
Kinetic model is determined by an automatic model structure identification method | 2nd-degree polynomial regression | Parallel HM scheme consisting of a kinetic model to describe the overall dynamic trajectory of the process and a data-driven model to estimate the differences between the outcomes of the kinetic model and the process data. | Fitting error was 1.7%, 4.6%, and 2.9% for concentrations of microalgae biomass, nitrate, and lutein, respectively | [23] |
Kinetic model is designed to account for the effects of light intensity and nitrate concentration | ANN with 4, 20, 15, and 3 neurons in the input, first hidden, second hidden, and output layers, respectively | HM approach was used to predict the interaction of light intensity, nitrate concentration, and attenuation on biomass growth and lutein production, and to administer the optimal actions related to nitrate inflow rate. | HM provided high predictive and flexible capabilities with deviations of 5.1%, 11.7%, and 2.6% for the concentration of biomass, nitrate, and lutein, respectively | [109] |
Kinetic model of lutein production based on modified Monod kinetics | ANN with 3, 9, and 2 neurons in the input, hidden, and output layers, respectively | HM approach was used to predict biomass growth and lutein production of the microalgae under various operating conditions. Transfer learning was applied to update the HM using limited process data from a newly isolated strain. | HM captured the underlying mechanisms involved in the evolution of biomass, substrate, and product concentration over time to a considerable extent | [153] |
Mechanistic backbone is designed by applying a mass balance on microalgae biomass and nutrients | 3rd-degree polynomial regression | HM approach was proposed and tested on a microalgae case study, in which different statistical information criteria were used to discriminate the best HM structure under different noise levels. | HM framework showed good prediction capabilities under different noise levels | [154] |
Kinetic model is based on Monod equation with the inclusion of light intensity as a variable | Polynomial regression with light-dependent terms | HM approach was used for photobioreactor modeling tailored to microalgae cultivation. Kinetic model incorporated light intensity as a key decision variable, while polynomial regression was used to calculate the optimal set of model coefficients. | HM presented better prediction with higher R2 and lower MAPE compared to the model that did not incorporate light intensity | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, G.R.; Badenes, S.; Oliveira, R.; Martins, F.G. A Review of Intelligent Modeling for Microalgae Systems: Integrating Data Mining, Machine Learning, and Hybrid Approaches. Processes 2025, 13, 2956. https://doi.org/10.3390/pr13092956
Freitas GR, Badenes S, Oliveira R, Martins FG. A Review of Intelligent Modeling for Microalgae Systems: Integrating Data Mining, Machine Learning, and Hybrid Approaches. Processes. 2025; 13(9):2956. https://doi.org/10.3390/pr13092956
Chicago/Turabian StyleFreitas, Geovani R., Sara Badenes, Rui Oliveira, and Fernando G. Martins. 2025. "A Review of Intelligent Modeling for Microalgae Systems: Integrating Data Mining, Machine Learning, and Hybrid Approaches" Processes 13, no. 9: 2956. https://doi.org/10.3390/pr13092956
APA StyleFreitas, G. R., Badenes, S., Oliveira, R., & Martins, F. G. (2025). A Review of Intelligent Modeling for Microalgae Systems: Integrating Data Mining, Machine Learning, and Hybrid Approaches. Processes, 13(9), 2956. https://doi.org/10.3390/pr13092956