Process Route for Electric Arc Furnace Dust (EAFD) Rinse Wastewater Desalination
Abstract
1. Introduction
2. Materials and Methods
2.1. Wastewater for Experiments
2.2. Sorption Experiments
2.3. Electrodialysis Experiments
3. Results and Discussion
3.1. Characterization of Uncalcined LDH
3.2. Characterization of Calcined Products of LDH
3.3. Sorption Tests
3.4. Sorption from EAFD Wastewater
3.5. SEM Observation and Structural Characterization of the LHD After Sorption
3.6. Electrodialysis Tests
3.7. Sorption and Electrodialysis as a Two-Stage Treatment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takacova, Z.; Piroskova, J.; Miskufova, A.; Vindt, T.; Hezelova, M.; Orac, D. Removal of Impurities from EAFD Ammonium Carbonate Leachate and Upgrading the Purity of Prepared ZnO. Materials 2023, 16, 5004. [Google Scholar] [CrossRef]
- Lin, X.; Peng, Z.; Yan, J.; Li, Z.; Hwang, J.Y.; Zhang, Y.; Li, G.; Jiang, T. Pyrometallurgical Recycling of Electric Arc Furnace Dust. J. Clean. Prod. 2017, 149, 1079–1100. [Google Scholar] [CrossRef]
- Steel Data Viewer-Worldsteel. Available online: https://worldsteel.org/data/steel-data-viewer/ (accessed on 11 June 2025).
- Kukurugya, F.; Vindt, T.; Havlík, T. Behavior of Zinc, Iron and Calcium from Electric Arc Furnace (EAF) Dust in Hydrometallurgical Processing in Sulfuric Acid Solutions: Thermodynamic and Kinetic Aspects. Hydrometallurgy 2015, 154, 20–32. [Google Scholar] [CrossRef]
- Kirkelund, G.M.; Magro, C.; Guedes, P.; Jensen, P.E.; Ribeiro, A.B.; Ottosen, L.M. Electrodialytic Removal of Heavy Metals and Chloride from Municipal Solid Waste Incineration Fly Ash and Air Pollution Control Residue in Suspension–Test of a New Two Compartment Experimental Cell. Electrochim. Acta 2015, 181, 73–81. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Shahid, M.K.; Mainali, B.; Rout, P.R.; Lim, J.W.; Aslam, M.; Al-Rawajfeh, A.E.; Choi, Y. A Review of Membrane-Based Desalination Systems Powered by Renewable Energy Sources. Water 2023, 15, 534. [Google Scholar] [CrossRef]
- Hidalgo, A.M.; Charcosset, C. Classical and Recent Developments of Membrane Processes for Desalination and Natural Water Treatment. Membranes 2022, 12, 267. [Google Scholar] [CrossRef] [PubMed]
- Aljumaily, M.M.; Alshami, A.W.; Ismael, B.H.; Hameed, M.M.; AlOmar, M.K.; Hussain, I.R.; Hameed, M.S.; Alsalhy, Q.F.; Alsaadi, M.A. A Review On Membrane Desalination Process in Water Treatment. IOP Conf. Ser. Earth Environ. Sci. 2022, 1120, 012035. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Yang, K.; Wei, J.; Li, Z.; Ma, C.; Yang, X.; Wang, T.; Zeng, G.; Yu, G.; et al. Removal of Chloride from Water and Wastewater: Removal Mechanisms and Recent Trends. Sci. Total Environ. 2022, 821, 153174. [Google Scholar] [CrossRef]
- Dron, J.; Dodi, A. Comparison of Adsorption Equilibrium Models for the Study of CL−, NO3− and SO42− Removal from Aqueous Solutions by an Anion Exchange Resin. J. Hazard. Mater. 2011, 190, 300–307. [Google Scholar] [CrossRef]
- Hilal, N.; Kochkodan, V.; Al Abdulgader, H.; Mandale, S.; Al-Jlil, S.A. A Combined Ion Exchange–Nanofiltration Process for Water Desalination: I. Sulphate–Chloride Ion-Exchange in Saline Solutions. Desalination 2015, 363, 44–50. [Google Scholar] [CrossRef]
- Darracq, G.; Baron, J.; Joyeux, M. Kinetic and Isotherm Studies on Perchlorate Sorption by Ion-Exchange Resins in Drinking Water Treatment. J. Water Process Eng. 2014, 3, 123–131. [Google Scholar] [CrossRef]
- Dutta, R.; Ahmed, S.P.; Dolui, S.; Chandra Ray, B. Desalination of Oil Field Produced Water Using Ion Exchange System: As a Remediation Environmental Hazard. Nat. Hazards Res. 2024, 4, 596–603. [Google Scholar] [CrossRef]
- Hashem, E.; El-Halim, A.; El-Gayar, D.A.; Farag, H.A. Treatment of Wastewater by Ion Exchange Resin Using a Pulsating Disc. Desalination Water Treat. 2020, 193, 133–141. [Google Scholar] [CrossRef]
- Zhou, D.; Zhu, L.; Fu, Y.; Zhu, M.; Xue, L. Development of Lower Cost Seawater Desalination Processes Using Nanofiltration Technologies—A Review. Desalination 2015, 376, 109–116. [Google Scholar] [CrossRef]
- Fu, C.; Li, F.; Li, H.; Yi, X.; Xie, B.; Fu, C.; Li, F.; Li, H.; Yi, X. Performance Study on Brackish Water Desalination Efficiency Based on a Novel Coupled Electrodialysis–Reverse Osmosis (EDRO) System. Water 2024, 16, 794. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, Y.; Zhu, Q.; Cheng, M.; Zhang, Y.; Zhou, Z. Removal of Chloride Ions from Aqueous Phase as Layered Double Hydroxides via Uptake Strategies: A Critical Review. Desalination 2025, 595, 118317. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, H.; Tian, Z.; Zhao, J.; Shen, X.; Lu, L. Variations in Chloride Ion Sorption within Layered Double Hydroxides Engineered with Different Cation Types. Appl. Surf. Sci. 2024, 655, 159610. [Google Scholar] [CrossRef]
- Chen, Q.B.; Wang, J.; Liu, Y.; Zhao, J.; Li, P. Novel Energy-Efficient Electrodialysis System for Continuous Brackish Water Desalination: Innovative Stack Configurations and Optimal Inflow Modes. Water Res. 2020, 179, 115847. [Google Scholar] [CrossRef]
- Alrashidi, A.; Aleisa, E.; Alshayji, K. Life Cycle Assessment of Hybrid Electrodialysis and Reverse Osmosis Seawater Desalination Systems. Desalination 2024, 578, 117448. [Google Scholar] [CrossRef]
- Monat, L.; Liu, R.; Elimelech, M.; Nir, O. Integrating Divalent-Selective Electrodialysis in Brackish Water Desalination. Environ. Sci. Technol. Lett. 2024, 11, 172–178. [Google Scholar] [CrossRef]
- Rotta, E.H.; Bitencourt, C.S.; Marder, L.; Bernardes, A.M. Phosphorus Recovery from Low Phosphate-Containing Solution by Electrodialysis. J. Memb. Sci. 2019, 573, 293–300. [Google Scholar] [CrossRef]
- Benvenuti, T.; Krapf, R.S.; Rodrigues, M.A.S.; Bernardes, A.M.; Zoppas-Ferreira, J. Recovery of Nickel and Water from Nickel Electroplating Wastewater by Electrodialysis. Sep. Purif. Technol. 2014, 129, 106–112. [Google Scholar] [CrossRef]
- Mahendra, C.; Satya Sai, P.M.; Anand Babu, C. Current–Voltage Characteristics in a Hybrid Electrodialysis–Ion Exchange System for the Recovery of Cesium Ions from Ammonium Molybdophosphate-Polyacrylonitrile. Desalination 2014, 353, 8–14. [Google Scholar] [CrossRef]
- Mitko, K.; Rosiński, A.R.; Turek, M. Energy Consumption in Membrane Capacitive Deionization and Electrodialysis of Low Salinity Water. Desalination Water Treat. 2021, 214, 294–301. [Google Scholar] [CrossRef]
- Mokhtar, M.; Inayat, A.; Ofili, J.; Schwieger, W. Thermal Decomposition, Gas Phase Hydration and Liquid Phase Reconstruction in the System Mg/Al Hydrotalcite/Mixed Oxide: A Comparative Study. Appl. Clay Sci. 2010, 50, 176–181. [Google Scholar] [CrossRef]
- Santos, P.S.; Santos, H.S.; Toledo, S.P. Standard Transition Aluminas. Electron Microscopy Studies. Mater. Res. 2000, 3, 104–114. [Google Scholar] [CrossRef]
- Mališová, M.; Horňáček, M.; Mikulec, J.; Hudec, P.; Jorík, V. FTIR Study of Hydrotalcite. Acta Chim. Slovaca 2018, 11, 147–166. [Google Scholar] [CrossRef]
- Zhang, X.; Huestis, P.L.; Pearce, C.I.; Hu, J.Z.; Page, K.; Anovitz, L.M.; Aleksandrov, A.B.; Prange, M.P.; Kerisit, S.; Bowden, M.E.; et al. Boehmite and Gibbsite Nanoplates for the Synthesis of Advanced Alumina Products. ACS Appl. Nano Mater. 2018, 1, 7115–7128. [Google Scholar] [CrossRef]
- Inside Front Cover (Ed Board). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 123, IFC. [CrossRef]
- Theiss, F.; López, A.; Frost, R.L.; Scholz, R. Spectroscopic Characterisation of the LDH Mineral Quintinite Mg4Al2(OH)12CO3·3H2O. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 150, 758–764. [Google Scholar] [CrossRef]
- Busca, G. The Surface of Transitional Aluminas: A Critical Review. Catal. Today 2014, 226, 2–13. [Google Scholar] [CrossRef]
- Frost, R.L.; Scholz, R.; López, A.; Theiss, F.L. Vibrational Spectroscopic Study of the Natural Layered Double Hydroxide Manasseite Now Defined as Hydrotalcite-2H–Mg6Al2(OH)16[CO3]⋅4H2O. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 118, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Jauffret, G.; Morrison, J.; Glasser, F.P. On the Thermal Decomposition of Nesquehonite. J. Therm. Anal. Calorim. 2015, 122, 601–609. [Google Scholar] [CrossRef]
- Van, K.V.; Habashi, F. Identification and Thermal Stability of Copper(I) Sulfate. Can. J. Chem. 2011, 50, 3872–3875. [Google Scholar] [CrossRef]
- Babilas, D.; Dydo, P. Zinc Salt Recovery from Electroplating Industry Wastes by Electrodialysis Enhanced with Complex Formation. Sep. Sci. Technol. 2020, 55, 2250–2258. [Google Scholar] [CrossRef]
- Kameda, T.; Yoshioka, T.; Hoshi, T.; Uchida, M.; Okuwaki, A. Treatment of Hydrochloric Acid with Magnesium–Aluminum Oxide at Ambient Temperatures. Sep. Purif. Technol. 2006, 51, 272–276. [Google Scholar] [CrossRef]
- Horváthová, H.; Miškufová, A.; Takáčová, Z.; Bernardes, A.M.; Bureš, R.; Fáberová, M.; Oráč, D. Simultaneous Removal of Chlorides and Calcium from EAF Dust Wastewater. Minerals 2025, 15, 239. [Google Scholar] [CrossRef]
- Xavier, L.D.; Yokoyama, L.; de Oliveira, V.R.; Ribeiro, G.T.; Araújo, O. The Role of Coagulation-Flocculation in the Pretreatment of Reverse Osmosis in Power Plant. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 118–131. [Google Scholar] [CrossRef]
- Rojas, R. Layered double hydroxides applications as sorbents for environmental remediation. In Hydroxides: Synthesis, Types and Applications; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012; Chapter 2; pp. 39–71. ISBN 978-1-62081-021-7. Available online: https://www.researchgate.net/publication/230634843_Layered_double_hydroxides_applications_as_sorbents_for_environmental_remediation#fullTextFileContent/ (accessed on 10 May 2025).
- Vaccari, A. Layered Double Hydroxides: Present and Future: V. Rives (Ed.), Nova Science Publishers, Inc., New York, 2001, IX+439 Pp., ISBN 1-59033-060-9. Appl. Clay Sci. 2002, 22, 75–76. [Google Scholar] [CrossRef]
- Káňavová, N.; Machuča, L.; Tvrzník, D. Determination of Limiting Current Density for Different Electrodialysis Modules. Chem. Pap. 2014, 68, 324–329. [Google Scholar] [CrossRef]
- Nikonenko, V.V.; Kovalenko, A.V.; Urtenov, M.K.; Pismenskaya, N.D.; Han, J.; Sistat, P.; Pourcelly, G. Desalination at Overlimiting Currents: State-of-the-Art and Perspectives. Desalination 2014, 342, 85–106. [Google Scholar] [CrossRef]
- Chandramowleeswaran, M.; Palanivelu, K. Treatability Studies on Textile Effluent for Total Dissolved Solids Reduction Using Electrodialysis. Desalination 2006, 201, 164–174. [Google Scholar] [CrossRef]
- Moura Bernardes, A.; Zoppas Ferreira, J.; Siqueira Rodrigues, M.A. Electrodialysis and Water Reuse: Novel Approaches; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–144. [Google Scholar] [CrossRef]
- Lee, H.J.; Strathmann, H.; Moon, S.H. Determination of the Limiting Current Density in Electrodialysis Desalination as an Empirical Function of Linear Velocity. Desalination 2006, 190, 43–50. [Google Scholar] [CrossRef]
- Marder, L.; Sulzbach, G.O.; Bernardes, A.M.; Zoppas Ferreira, J. Removal of Cadmium and Cyanide from Aqueous Solutions through Electrodialysis. J. Braz. Chem. Soc. 2003, 14, 610–615. [Google Scholar] [CrossRef]
- Kabay, N.; Arar, Ö.; Samatya, S.; Yüksel, Ü.; Yüksel, M. Separation of Fluoride from Aqueous Solution by Electrodialysis: Effect of Process Parameters and Other Ionic Species. J. Hazard. Mater. 2008, 153, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, M.A.; Gil, V.V.; Pismenskaya, N.D.; Dammak, L.; Kononenko, N.A.; Larchet, C.; Grande, D.; Nikonenko, V.V. Mitigation of Membrane Scaling in Electrodialysis by Electroconvection Enhancement, PH Adjustment and Pulsed Electric Field Application. J. Memb. Sci. 2018, 549, 129–140. [Google Scholar] [CrossRef]
- Cournoyer, A.; Bazinet, L. Electrodialysis Processes an Answer to Industrial Sustainability: Toward the Concept of Eco-Circular Economy?—A Review. Membranes 2023, 13, 205. [Google Scholar] [CrossRef]
Parameter | Unit | S1 | RW | S2 |
---|---|---|---|---|
pH | - | 11.75 ± 0.44 | 12.15 ± 0.48 | 12.10 ± 0.37 |
Electrical Conductivity (k) | mS cm−1 | 8.54 ± 0.05 | 11.88 ± 0.11 | 8.95 ± 0.16 |
Calcium | mg L−1 | 684 ± 0.09 | 664 ± 1.17 | * |
Chloride | mg L−1 | 1800 ± 1.91 | 1276 ± 1.61 | * |
Sulphate | mg L−1 | 1400 ± 1.98 | 800 ± 2.22 | 1250 ± 0.97 |
Sodium | mg L−1 | 825 ± 5.29 | 739 ± 5.77 | 730 ± 6.1 |
Potassium | mg L−1 | 2951 ± 6.03 | 1379 ± 5.58 | 1320 ± 6.44 |
Lead | mg L−1 | 8.95 ± 0.21 | 22.3 ± 0.22 | 2.52 ± 0.17 |
Chromium | mg L−1 | 0.17 ± 0.23 | 0.76 ± 0.34 | * |
Zinc | mg L−1 | - | 3.48 ± 0.12 | 0.145 ± 0.14 |
Carbonates | mg L−1 | - | 240 ± 0.14 | 360 ± 0.7 |
Ionic Species | Symbol | Ion Removal (%) | |
---|---|---|---|
S1 Solution | RW Solution | ||
Chloride | Cl− | 98 ± 0.9 | 100 ± 0.91 |
Sulphate | SO42− | 100 ± 0.7 | 100 ± 0.12 |
Sodium | Na+ | 0 ± 9.7 | 0 ± 0.11 |
Potassium | K+ | 0 ± 14.2 | 0 ± 15.1 |
Calcium | Ca2+ | 100 ± 0.21 | 100 ± 2.1 |
Carbonates | CO32− | - | 0 ± 0.01 |
Zinc | Zn2+ | 100 ± 0.09 | 95.6 ± 3.2 |
Lead | Pb2+ | 100 ± 0.01 | 88.7 ± 11.8 |
Ionic Species | Symbol | Ion Removal (%) | |
---|---|---|---|
S1 Solution | RW Solution | ||
Chloride | Cl− | 99.60 ± 0.11 | 83.49 ± 0.20 |
Sulphate | SO42− | 99.36 ± 0.21 | 69.84 ± 3.12 |
Sodium | Na+ | 98.28 ± 0.28 | 75.18 ± 12.50 |
Potassium | K+ | 99.47 ± 0.08 | 82.77 ± 7.78 |
Calcium | Ca2+ | 98.91 ± 0.04 | 72.83 ± 3.31 |
Carbonates | CO32− | - | 56.46 ± 5.35 |
Zinc | Zn2+ | - | 83.10 ± 5.20 |
Lead | Pb2+ | 90.32 ± 3.82 | 95.12 ± 1.10 |
Ionic Species | Symbol | Ion Removal (%) S2 Solution |
---|---|---|
Sulphate | SO42− | 76.98 ± 2.95 |
Sodium | Na+ | 97.85 ± 0.21 |
Potassium | K+ | 98.86 ± 0.27 |
Carbonates | CO32− | 98.31 ± 0.45 |
Zinc | Zn+ | >90% |
Lead | Pb2+ | >93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horváthová, H.; Rotta, E.H.; Benvenuti, T.; Bernardes, A.M.; Miskufova, A.; Takáčová, Z. Process Route for Electric Arc Furnace Dust (EAFD) Rinse Wastewater Desalination. Processes 2025, 13, 2919. https://doi.org/10.3390/pr13092919
Horváthová H, Rotta EH, Benvenuti T, Bernardes AM, Miskufova A, Takáčová Z. Process Route for Electric Arc Furnace Dust (EAFD) Rinse Wastewater Desalination. Processes. 2025; 13(9):2919. https://doi.org/10.3390/pr13092919
Chicago/Turabian StyleHorváthová, Hedviga, Eduardo Henrique Rotta, Tatiane Benvenuti, Andréa Moura Bernardes, Andrea Miskufova, and Zita Takáčová. 2025. "Process Route for Electric Arc Furnace Dust (EAFD) Rinse Wastewater Desalination" Processes 13, no. 9: 2919. https://doi.org/10.3390/pr13092919
APA StyleHorváthová, H., Rotta, E. H., Benvenuti, T., Bernardes, A. M., Miskufova, A., & Takáčová, Z. (2025). Process Route for Electric Arc Furnace Dust (EAFD) Rinse Wastewater Desalination. Processes, 13(9), 2919. https://doi.org/10.3390/pr13092919