Behavior of Phenolic Compounds During In Vitro Digestion of an Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Habanero Pepper Leaf Polyphenol Extraction by NADES
2.2.1. Habanero Pepper Leaf Pretreatment
2.2.2. Polyphenol Extraction Using an Optimized NADES
2.2.3. Determination of Cytotoxicity and Oral Toxicity of Optimized NADES
2.3. Microencapsulation of the Habanero Pepper Extract Obtained by NADES
2.4. Enriched Isotonic Beverage with Microencapsulated Habanero Pepper Leaf Extract
2.4.1. Preparation of the Control and Enriched Isotonic Beverage
2.4.2. Determination of Total Polyphenol Content and Antioxidant Capacity of the Enriched Isotonic Beverage
2.5. In Vitro Digestion of an Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf Extract
2.5.1. Experimental Design
2.5.2. Standard Food Preparation for Postprandial In Vitro Digestion of the Beverage Enriched with Microencapsulated Habanero Pepper Leaf Extract
2.5.3. In Vitro Fasted and Postprandial Digestion Simulation of the Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf Extract
2.5.4. Total Polyphenol Content and Antioxidant Capacity from In Vitro Digestion Stages of the Enriched Isotonic Beverage
2.5.5. Determination and Quantification of Individual Polyphenols in an Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf During In Vitro Digestion
2.6. Statistical Analysis
3. Results
3.1. Cytotoxicity and Acute Oral Toxicity of the Optimized NADES
3.2. Total Polyphenol Content, Polyphenol Profile and Antioxidant Capacity of an Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf Extract During In Vitro Digestion
# Exp | Main Factors | Variables Response | ||||
---|---|---|---|---|---|---|
BT | Digestion Type | Digestive Phase | Sampling Time | TPC | Ax | |
1 | CT | FsT | GaT | ErL | 2.08 ± 0.34 a | 0.00 a |
2 | CT | FsT | GaT | MdL | 2.17 ± 0.13 a | 0.00 a |
3 | CT | FsT | GaT | FnL | 2.32 ± 0.14 ab | 0.00 a |
4 | CT | FsT | InT | ErL | 2.54 ± 0.13a bc | 0.00 a |
5 | CT | FsT | InT | MdL | 4.83 ± 0.05 e | 0.00 a |
6 | CT | FsT | InT | FnL | 5.02 ± 0.22 e | 0.00 a |
7 | CT | PtP | GaT | ErL | 13.77 ± 0.63 ghi | 63.58 ± 1.67 jk |
8 | CT | PtP | GaT | MdL | 14.40 ± 1.47 hij | 64.76 ± 1.93 k |
9 | CT | PtP | GaT | FnL | 15.33 ± 0.19 jklm | 56.16 ± 0.22 gh |
10 | CT | PtP | InT | ErL | 14.30 ± 1.67 hij | 72.94 ± 0.16 l |
11 | CT | PtP | InT | MdL | 16.18 ±0.38 klmn | 64.34 ± 3.94 k |
12 | CT | PtP | InT | FnL | 17.34 ± 0.70 n | 61.39 ± 0.36 ijk |
13 | ECh | FsT | GaT | ErL | 3.43 ± 0.86 bcd | 56.21 ± 1.78 gh |
14 | ECh | FsT | GaT | MdL | 5.06 ± 0.16 e | 60.08 ± 0.36 ij |
15 | ECh | FsT | GaT | FnL | 4.91 ±0.41 e | 50.91 ± 1.33 f |
16 | ECh | FsT | InT | ErL | 4.43 ± 0.71 de | 43.17 ± 3.32 e |
17 | ECh | FsT | InT | MdL | 7.08 ± 0.26 f | 34.19 ± 1.44 d |
18 | ECh | FsT | InT | FnL | 6.98 ± 0.03 f | 35.86 ± 4.23 d |
19 | ECh | PtP | GaT | ErL | 13.09 ±0.36 g | 63.09 ± 2.98 jk |
20 | ECh | PtP | GaT | MdL | 14.82 ±0.35 ij | 61.46 ± 3.37 ijk |
21 | ECh | PtP | GaT | FnL | 14.97 ±0.37 ijk | 59.07 ± 3.13 hi |
22 | ECh | PtP | InT | ErL | 13.55 ±2.76 gh | 54.63 ± 0.22 g |
23 | ECh | PtP | InT | MdL | 16.50 ± 0.94 mn | 11.75 ± 1.72 b |
24 | ECh | PtP | InT | FnL | 16.43 ± 0.11l mn | 35.29 ±3.32 d |
25 | StF | - | GaT | ErL | 14.02 ± 0.20 ghi | 53.79 ± 2.30 fg |
26 | StF | - | GaT | MdL | 15.23 ± 0.52 jkl | 62.80 ± 1.51 jk |
27 | StF | - | GaT | FnL | 15.50 ± 0.08 jklm | 58.85 ± 0.86 hi |
28 | StF | - | InT | ErL | 16.18 ± 0.09 klmn | 73.49 ± 2.31 l |
29 | StF | - | InT | MdL | 16.38 ±0.18 lmn | 76.16 ± 1.52 l |
30 | StF | - | InT | FnL | 16.32 ± 0.70 lmn | 73.92 ± 6.04 l |
31 | CTExT | - | - | - | 1.80 ± 0.03 a | 0.00 a |
32 | EChExT | - | - | - | 3.61 ± 0.10 cd | 21.19 ± 0.33 c |
3.3. Polyphenol Profile of an Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf During In Vitro Digestion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto Mexicano de la Propiedad Industrial (IMPI). Declaración de Protección de la Denominación de Origen “Chile Habanero de la Península de Yucatán”. Diario Oficial de la Federación. 4 October 2010. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5159400&fecha=04/10/2010 (accessed on 15 March 2025).
- Olguín-Rojas, J.A.; Vázquez-León, L.A.; Palma, M.; Fernández-Ponce, M.T.; Casas, L.; Fernández Barbero, G.; Rodríguez-Jimenes, G.C. Re-Valorization of Red Habanero Chili Pepper (Capsicum chinense Jacq.) Waste by Recovery of Bioactive Compounds: Effects of Different Extraction Processes. Agronomy 2024, 14, 660. [Google Scholar] [CrossRef]
- Chel-Guerrero, L.D.; Oney-Montalvo, J.E.; Rodríguez-Buenfil, I.M. Phytochemical Characterization of By-Products of Habanero Pepper Grown in Two Different Types of Soils from Yucatán, Mexico. Plants 2021, 10, 779. [Google Scholar] [CrossRef]
- Herrera-Pool, E.; Ramos-Díaz, A.L.; Lizardi-Jiménez, M.A.; Pech-Cohuo, S.; Ayora-Talavera, T.; Cuevas-Bernardino, J.C.; García-Cruz, U.; Pacheco, N. Effect of Solvent Polarity on the Ultrasound-Assisted Extraction and Antioxidant Activity of Phenolic Compounds from Habanero Pepper Leaves (Capsicum chinense) and Its Identification by UPLC-PDA-ESI-MS/MS. Ultrason. Sonochem. 2021, 76, 105658. [Google Scholar] [CrossRef]
- Rudrapal, M.; Rakshit, G.; Singh, R.P.; Garse, S.; Khan, J.; Chakraborty, S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants 2024, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Villegas, R.; González-Amaro, R.M.; Figueroa-Hernández, C.Y.; Rodríguez-Buenfil, I.M. The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition. Molecules 2023, 28, 4239. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Commun. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Ivanković, A. Review of 12 Principles of Green Chemistry in Practice. Int. J. Sustain. Green Energy 2017, 6, 39–45. [Google Scholar] [CrossRef]
- Huang, M.M.; Yiin, C.L.; Mun Lock, S.S.; Fui Chin, B.L.; Othman, I.; Binti Ahmad Zauzi, N.S.; Chan, Y.H. Natural Deep Eutectic Solvents (NADES) for Sustainable Extraction of Bioactive Compounds from Medicinal Plants: Recent Advances, Challenges, and Future Directions. J. Mol. Liq. 2025, 425, 127202. [Google Scholar] [CrossRef]
- Puma-Isuiza, G.; García-Chacón, J.M.; Osorio, C.; Betalleluz-Pallardel, I.; Chue, J.; Inga, M. Extraction of Phenolic Compounds from Lucuma (Pouteria lucuma) Seeds with Natural Deep Eutectic Solvents: Modelling Using Response Surface Methodology and Artificial Neural Networks. Front. Sustain. Food Syst. 2024, 8, 1401825. [Google Scholar] [CrossRef]
- Cabrera, L.; Xavier, L.; Zecchi, B. Extraction of Phenolic Compounds with Antioxidant Activity from Olive Pomace Using Natural Deep Eutectic Solvents: Modelling and Optimization by Response Surface Methodology. Discov. Food 2024, 4, 29. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef]
- Aznar-Ramos, M.J.; Razola-Díaz, M.d.C.; Verardo, V.; Gómez-Caravaca, A.M. Comparison between Ultrasonic Bath and Sonotrode Extraction of Phenolic Compounds from Mango Peel By-Products. Horticulturae 2022, 8, 1014. [Google Scholar] [CrossRef]
- Duarte, H.; Gomes, V.; Aliaño-González, M.J.; Faleiro, L.; Romano, A.; Medronho, B. Ultrasound-Assisted Extraction of Polyphenols from Maritime Pine Residues with Deep Eutectic Solvents. Foods 2022, 11, 3754. [Google Scholar] [CrossRef]
- Abdel-Aty, A.M.; Gad, A.A.M.; Barakat, A.Z.; Mohamed, S.A. Microencapsulation of Antioxidant Phenolics from Tamarind Seed Peels Using Chia Gum and Maltodextrin. Sci. Rep. 2025, 15, 89792. [Google Scholar] [CrossRef]
- Yeasmen, N.; Orsat, V. Microencapsulation of Ultrasound-Assisted Phenolic Extracts of Sugar Maple Leaves: Characterization, in vitro Gastrointestinal Digestion, and Storage Stability. Food Res. Int. 2024, 182, 114133. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of Polyphenols—A Review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Avilés-Betanzos, K.A.; Cauich-Rodríguez, J.V.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Optimization of Spray Drying Conditions for a Capsicum chinense Leaf Extract Rich in Polyphenols Obtained by Ultrasonic Probe/NADES. ChemEngineering 2024, 8, 131. [Google Scholar] [CrossRef]
- Fitri, R.; Lestari, T.; Sari, Y.; Sutriyo, S.; Mun’Im, A. Freeze Drying of Natural Deep Eutectic Solvent (NADES) Extract of Green Coffee Bean Coffea canephora Pierre ex A. Froehner. J. Res. Pharm. 2020, 24, 225–232. [Google Scholar] [CrossRef]
- Bernal-Millán, M.D.J.; Gutiérrez-Grijalva, E.P.; Contreras-Angulo, L.; Muy-Rangel, M.D.; López-Martínez, L.X.; Heredia, J.B. Spray-Dried Microencapsulation of Oregano (Lippia graveolens) Polyphenols with Maltodextrin Enhances Their Stability during in vitro Digestion. J. Chem. 2022, 2022, 8740141. [Google Scholar] [CrossRef]
- Wyspiańska, D.; Kucharska, A.Z.; Sokół-Łętowska, A.; Kolniak-Ostek, J. Effect of Microencapsulation on Concentration of Isoflavones during Simulated in vitro Digestion of Isotonic Drink. Food Sci. Nutr. 2019, 7, 805–816. [Google Scholar] [CrossRef]
- Detchewa, P.; Aphibanthammakit, C.; Moongngarm, A.; Avallone, S.; Prasajak, P.; Boonpan, C.; Ruangdath, V.; Sriwichai, W. Microencapsulation Techniques and Encapsulating Materials Influenced the Shelf Life and Digestion Release of Vitamin E and Isoflavones in Soymilk Powder. Sci. Rep. 2025, 15, 95284. [Google Scholar] [CrossRef]
- Vásquez-Velázquez, M.V.; López-Vázquez, J.S.; Ruiz-Sánchez, E.; Medina-Dzul, K.B.; Latournerie-Moreno, L. Agronomic Behavior and Fruit Quality in Habanero Peppers (Capsicum chinense Jacq.) as a Response to Formative Pruning. Agro Prod. 2021, 14, 107–112. [Google Scholar] [CrossRef]
- Avilés-Betanzos, K.A.; Cauich-Rodríguez, J.V.; González-Ávila, M.; Scampicchio, M.; Morozova, K.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Natural Deep Eutectic Solvent Optimization to Obtain an Extract Rich in Polyphenols from Capsicum chinense Leaves Using an Ultrasonic Probe. Processes 2023, 11, 1729. [Google Scholar] [CrossRef]
- Farmacopea de los Estados Unidos Mexicanos. MGA-DM 10993-1: Pruebas de Biocompatibilidad. Pruebas para Citotoxicidad In Vitro; Suplemento 2020; Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS): Ciudad de México, Mexico, 2020. [Google Scholar]
- OECD. Test No. 425: Acute Oral Toxicity—Up-and-Down Procedure. In OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2008. [Google Scholar] [CrossRef]
- Secretaría de Salud. NOM-218-SSA1-2011. Productos y Servicios: Bebidas Saborizadas No Alcohólicas, Sus Congelados, Productos Concentrados para Prepararlas y Bebidas Adicionadas con Cafeína. Especificaciones y Disposiciones Sanitarias. Métodos de Prueba. Diario Oficial de la Federación, 10 February 2012. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5223556&fecha=10/02/2012 (accessed on 15 February 2025).
- Johnson, J.B.; Mani, J.S.; Naiker, M. Microplate Methods for Measuring Phenolic Content and Antioxidant Capacity in Chickpea: Impact of Shaking. Eng. Proc. 2023, 48, 15167. [Google Scholar] [CrossRef]
- Hernández-Moreno, L.V.; Salazar, J.R.; Pabón, L.C.; Hernández-Rodríguez, P. Antioxidant Activity and Quantification of Phenols and Flavonoids of Colombian Plants Used in Urinary Tract Infections. Rev. UDCA Actual. Divulg. Cient. 2022, 25, 1690. [Google Scholar] [CrossRef]
- Santana, M.; Freitas-Silva, O.; Mariutti, L.R.B.; Teodoro, A.J. A Review of in vitro Methods to Evaluate the Bioaccessibility of Phenolic Compounds in Tropical Fruits. Crit. Rev. Food Sci. Nutr. 2024, 64, 1780–1790. [Google Scholar] [CrossRef]
- Pérez-Tepayo, S.; Rodríguez-Ramírez, S.; Unar-Munguía, M.; Shamah-Levy, T. Trends in the Dietary Patterns of Mexican Adults by Sociodemographic Characteristics. Nutr. J. 2020, 19, 68. [Google Scholar] [CrossRef]
- Torres-Martínez, B.M.; Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; González-Ávila, M.; Rodríguez-Carpena, J.G.; Huerta-Leidenz, N.; Pérez-Álvarez, J.A.; Fernández-López, J.; Sánchez-Escalante, A. Use of Pleurotus ostreatus to Enhance the Oxidative Stability of Pork Patties during Storage and in vitro Gastrointestinal Digestion. Foods 2022, 11, 4075. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Antonopoulou, S. Postprandial Effects of Wine Consumption Along with a Meal on the Main Pathophysiological Systems. In Wine and Health; Moreno-Arribas, M.V., Bartolomé Suáldea, B., Eds.; Academic Press: London, UK, 2018; Chapter 6; pp. 125–146. [Google Scholar]
- Popović, B.M.; Gligorijević, N.; Aranđelović, S.; Macedo, A.C.; Jurić, T.; Uka, D.; Mocko-Blažek, K.; Serra, A.T. Cytotoxicity Profiling of Choline Chloride-Based Natural Deep Eutectic Solvents. RSC Adv. 2023, 13, 3520–3527. [Google Scholar] [CrossRef]
- Zhao, B.Y.; Xu, P.; Yang, F.X.; Wu, H.; Zong, M.H.; Lou, W.Y. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. [Google Scholar] [CrossRef]
- Koh, Q.Q.; Kua, Y.L.; Gan, S.; Tan, K.W.; Lee, T.Z.E.; Cheng, W.K.; Lau, H.L.N. Sugar-Based Natural Deep Eutectic Solvent (NADES): Physicochemical Properties, Antimicrobial Activity, Toxicity, Biodegradability and Potential Use as Green Extraction Media for Phytonutrients. Sustain. Chem. Pharm. 2023, 35, 101218. [Google Scholar] [CrossRef]
- Hayyan, M.; Mbous, Y.P.; Looi, C.Y.; Wong, W.F.; Hayyan, A.; Salleh, Z.; Mohd-Ali, O. Natural Deep Eutectic Solvents: Cytotoxic Profile. SpringerPlus 2016, 5, 913. [Google Scholar] [CrossRef] [PubMed]
- Radošević, K.; Čanak, I.; Panić, M.; Markov, K.; Bubalo, M.C.; Frece, J.; Srček, V.G.; Redovniković, I.R. Antimicrobial, Cytotoxic and Antioxidative Evaluation of Natural Deep Eutectic Solvents. Environ. Sci. Pollut. Res. 2018, 25, 14188–14196. [Google Scholar] [CrossRef]
- Bezerra, F.S.; Ramos, G.M.S.; Carvalho, M.G.O.; Carvalho, H.S.; de Souza, J.P.; de Carvalho Neto, S.L.; de Souza, S.M.A.G.U.; Ferraz, D.C.C.; Koblitz, M.G.B. Cytotoxic Potential of Sunflower Meal NaDES and Liquid–Liquid Extracts. Food Chem. 2025, 474, 143148. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Q.; Liu, M.; Zhang, L. The Effect of Deep Eutectic Solvent on the Pharmacokinetics of Salvianolic Acid B in Rats and Its Acute Toxicity Test. J. Chromatogr. B 2017, 1063, 60–66. [Google Scholar] [CrossRef]
- Benlebna, M.; Ruesgas-Ramón, M.; Bonafos, B.; Fouret, G.; Casas, F.; Coudray, C.; Durand, E.; Cruz Figueroa-Espinoza, M.; Feillet-Coudray, C. Toxicity of Natural Deep Eutectic Solvent Betaine:Glycerol in Rats. J. Agric. Food Chem. 2018, 66, 6205–6212. [Google Scholar] [CrossRef]
- Radhouane, M.F.; da Silveira, T.F.F.; Ribeiro, J.; Rodrigues, P.; Guimarães, R.; Calhelha, R.; Mandim, F.; Charfi, I.; Ferreira, I.C.F.R.; Alves, M.J.; et al. Development, Characterization and Stability of a Novel Sport Drink Based on Thermal Water, Apple Juice and Hibiscus. Food Chem. Adv. 2024, 5, 100823. [Google Scholar] [CrossRef]
- Bendaali, Y.; Vaquero, C.; González, C.; Morata, A. Contribution of Grape Juice to Develop New Isotonic Drinks with Antioxidant Capacity and Interesting Sensory Properties. Front. Nutr. 2022, 9, 890640. [Google Scholar] [CrossRef]
- Antonio-Gómez, M.V.; Salinas-Moreno, Y.; Hernández-Rosas, F.; Herrera-Corredor, J.A.; Contreras-Oliva, A. Color and Stability of Anthocyanins of Chagalapoli (Ardisia compressa K.) Fruit Added to an Isotonic Beverage as Microcapsules and as Free Extract. Foods 2023, 12, 2009. [Google Scholar] [CrossRef]
- Tomczyk, M.; Zaguła, G.; Dżugan, M. A Simple Method of Enrichment of Honey Powder with Phytochemicals and Its Potential Application in Isotonic Drink Industry. LWT 2020, 125, 109204. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of Polyphenols with Carbohydrates, Lipids and Proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.S.; Gomes, M.H.G.; de Carvalho, L.M.; Abreu, T.L.; dos Santos Lima, M.; Madruga, M.S.; Kurozawa, L.E.; Bezerra, T.K.A. Microencapsulation of Organic Coffee Husk Polyphenols: Effects on Release, Bioaccessibility, and Antioxidant Capacity of Phenolics in a Simulated Gastrointestinal Tract. Food Chem. 2024, 434, 137435. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.; Gultekin Subasi, B.; Celebioglu, H.U.; Ozdal, T.; Capanoglu, E. Chemistry of Protein-Phenolic Interactions Toward the Microbiota and Microbial Infections. Front. Nutr. 2022, 9, 914118. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, L.; Liu, Y.; Li, J. Effects of Interface Generation, Droplet Size and Antioxidant Partitioning on the Oxidation Rate and Oxidative Stability of Water–in–Oil Emulsions: A Comparison of Coarse Emulsions and Nanoemulsions. Food Hydrocoll. 2023, 136, 108227. [Google Scholar] [CrossRef]
- Shahidi, F.; Dissanayaka, C.S. Phenolic–Protein Interactions: Insight from In-Silico Analyses—A Review. Food Prod. Process. Nutr. 2023, 5, 2. [Google Scholar] [CrossRef]
- Al-Shabib, N.A.; Khan, J.M.; Malik, A.; Rehman, M.T.; AlAjmi, M.F.; Husain, F.M.; Hisamuddin, M.; Altwaijry, N. Molecular interaction of tea catechin with bovine β-lactoglobulin: A spectroscopic and in silico studies. Saudi Pharm. J. 2020, 28, 238–245. [Google Scholar] [CrossRef]
- Buchweitz, M.; Kroon, P.A.; Rich, G.T.; Wilde, P.J. Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate. Food Chem. 2016, 211, 356–364. [Google Scholar] [CrossRef]
- Deng, N.; Deng, Z.; Tang, C.; Hu, X. Formation, structure and properties of the starch-polyphenol inclusion complex: A review. Trends Food Sci. Technol. 2021, 112, 667–675. [Google Scholar] [CrossRef]
- Kwaśny, D.; Borczak, B.; Kapusta-Duch, J.; Kron, I. The Influence of Different Polyphenols on the Digestibility of Various Kinds of Starch and the Value of the Estimated Glycemic Index. Appl. Sci. 2024, 14, 8065. [Google Scholar] [CrossRef]
- Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Giusti, M.M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Xue, H.; Feng, J.; Tang, Y.; Wang, X.; Tang, J.; Cai, X.; Zhong, H. Research progress on the interaction of the polyphenol–protein–polysaccharide ternary systems. Chem. Biol. Technol. Agric. 2024, 11, 95. [Google Scholar] [CrossRef]
- Ramírez-Damián, M.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velázquez, T.; Téllez-Medina, D.I.; Ramos-Monroy, O.A. Microencapsulation of Red Banana Peel Extract and Bioaccessibility Assessment by in vitro Digestion. Processes 2022, 10, 768. [Google Scholar] [CrossRef]
- Martinović, J.; Ambrus, R.; Planinić, M.; Perković, G.; Šelo, G.; Klarić, A.M.; Bucić-Kojić, A. Spray-Drying Microencapsulation of Grape Pomace Extracts with Alginate-Based Coatings and Bioaccessibility of Phenolic Compounds. Gels 2025, 11, 130. [Google Scholar] [CrossRef]
- Cegledi, E.; Garofulić, I.E.; Zorić, Z.; Roje, M.; Dragović-Uzelac, V. Effect of Spray Drying Encapsulation on Nettle Leaf Extract Powder Properties, Polyphenols and Their Bioavailability. Foods 2022, 11, 2852. [Google Scholar] [CrossRef]
- Farooq, M.; Hou, X.; Zheng, W.; Li, C.; Wang, B.; Ullah, A.; Li, J.; Tang, Z. A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil–water interface of food emulsions. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4250–4283. [Google Scholar] [CrossRef]
- Laguerre, M.; Bayrasy, C.; Panya, A.; Weiss, J.; McClements, D.J.; Lecomte, J.; Decker, E.A.; Villeneuve, P. What Makes Good Antioxidants in Lipid-Based Systems? The Next Theories Beyond the Polar Paradox. Crit. Rev. Food Sci. Nutr. 2015, 55, 183–201. [Google Scholar] [CrossRef]
- Zheng, L.; Lin, L.; Su, G.; Zhao, Q.; Zhao, M. Pitfalls of using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to assess the radical scavenging activity of peptides: Its susceptibility to interference and low reactivity towards peptides. Food Res. Int. 2015, 76 Pt 3, 359–365. [Google Scholar] [CrossRef]
- Avilés-Betanzos, K.A.; Oney-Montalvo, J.E.; Cauich-Rodríguez, J.V.; González-Ávila, M.; Scampicchio, M.; Morozova, K.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent. Plants 2022, 11, 2060. [Google Scholar] [CrossRef]
- Berton-Carabin, C.; Villeneuve, P. Targeting Interfacial Location of Phenolic Antioxidants in Emulsions: Strategies and Benefits. Annu. Rev. Food Sci. Technol. 2023, 14, 63–83. [Google Scholar] [CrossRef]
- Laguerre, M.; López Giraldo, L.J.; Lecomte, J.; Figueroa-Espinoza, M.C.; Baréa, B.; Weiss, J.; Decker, E.A.; Villeneuve, P. Chain length affects antioxidant properties of chlorogenate esters in emulsion: The cutoff theory behind the polar paradox. J. Agric. Food Chem. 2009, 57, 11335–11342. [Google Scholar] [CrossRef] [PubMed]
- Chat, O.A.; Najar, M.H.; Mir, M.A.; Rather, G.M.; Dar, A.A. Effects of surfactant micelles on solubilization and DPPH radical scavenging activity of Rutin. J. Colloid Interface Sci. 2011, 355, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Durand, E.; Troncho, T.; Villeneuve, P. Evaluation of Antioxidant–Surfactant Interactions Using Size Distribution Taylor Dispersion Analysis: Measuring Antioxidant Partitioning and Size of Native-State Micelles. Curr. Res. Food Sci. 2025, 11, 101142. [Google Scholar] [CrossRef]
- Corsale, I.; Carrieri, P.; Martellucci, J.; Piccolomini, A.; Verre, L.; Rigutini, M.; Panicucci, S. Flavonoid mixture (diosmin, troxerutin, rutin, hesperidin, quercetin) in the treatment of I–III degree hemorrhoidal disease: A double-blind multicenter prospective comparative study. Int. J. Colorectal Dis. 2018, 33, 1595–1600. [Google Scholar] [CrossRef]
- Mel, M.M.R.D.; Gunathilake, K.D.P.P.; Fernando, C.A.N. Formulation of microencapsulated rutin and evaluation of bioactivity and stability upon in vitro digestive and dialysis conditions. Int. J. Biol. Macromol. 2020, 159, 316–323. [Google Scholar] [CrossRef]
- Carbonaro, M.; Grant, G. Absorption of quercetin and rutin in rat small intestine. Ann. Nutr. Metab. 2005, 49, 178–182. [Google Scholar] [CrossRef]
- Farha, A.K.; Gan, R.Y.; Li, H.-B.; Wu, D.T.; Atanasov, A.G.; Gul, K.; Zhang, J.R.; Yang, Q.Q.; Corke, H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 832–859. [Google Scholar] [CrossRef]
- Ahmad, R.; Singh, A.; Purba, A.; Rashidinejad, A. Novel Rutin-Casein Composites as Functional Dry Ingredients for the Delivery of High Concentration of Rutin in Dairy Beverages: In Vitro Bioaccessibility, Cytotoxicity, Absorption, and Intestinal Barrier Integrity. Food Hydrocoll. 2025, 170, 111735. [Google Scholar] [CrossRef]
- Carrillo-Martinez, E.J.; Flores-Hernández, F.Y.; Salazar-Montes, A.M.; Nario-Chaidez, H.F.; Hernández-Ortega, L.D. Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules 2024, 29, 1000. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, F.; Alonso-Castro, A.J.; Anaya, M.; González-Trujano, M.E.; Salgado-Ceballos, H.; Orozco-Suárez, S. Mexican Traditional Medicine: Traditions of Yesterday and Phytomedicines of Tomorrow. In Therapeutic Medicinal Plants: From Lab to the Market; Tiwari, A.K., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–34. [Google Scholar]
- Frenț, O.D.; Stefan, L.; Morgovan, C.M.; Duteanu, N.; Dejeu, I.L.; Marian, E.; Vicaș, L.; Manole, F. A Systematic Review: Quercetin—Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int. J. Mol. Sci. 2024, 25, 12091. [Google Scholar] [CrossRef]
- Yuan, M.; Sun, T.; Zhang, Y.; Guo, C.; Wang, F.; Yao, Z.; Yu, L. Quercetin Alleviates Insulin Resistance and Repairs Intestinal Barrier in db/db Mice by Modulating Gut Microbiota. Nutrients 2024, 16, 1870. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Wang, T.; Li, Z.; Gao, Y.; Cui, S.W.; Qiu, J. Comparison of Quercetin and Rutin Inhibitory Influence on Tartary Buckwheat Starch Digestion In Vitro and Their Differences in Binding Sites with the Digestive Enzyme. Food Chem. 2022, 367, 130762. [Google Scholar] [CrossRef]
- Zieliński, H.; Wiczkowski, W.; Honke, J.; Piskuła, M.K. In Vitro Expanded Bioaccessibility of Quercetin-3-Rutinoside and Quercetin Aglycone from Buckwheat Biscuits Formulated from Flours Fermented by Lactic Acid Bacteria. Antioxidants 2021, 10, 571. [Google Scholar] [CrossRef]
Dose (mg/kg) | Dose (mg/animal) | Animal ID | Weight (g) Before Treatment | Weight (g) 7 Days Post-Treatment | Weight (g) 14 Days Post-Treatment |
---|---|---|---|---|---|
2000 | 41.4 | 1 | 20.7 | 21.7 | 21.9 |
2000 | 45.8 | 2 | 22.9 | 22.8 | 22.8 |
2000 | 45.0 | 3 | 22.5 | 22.7 | 22.4 |
2000 | 44.6 | 4 | 22.3 | 23.2 | 23.3 |
2000 | 43.2 | 5 | 21.6 | 22.2 | 22.4 |
Mean | 22 ± 0.77 a | 22.52 ± 0.51 a | 22.56 ± 0.46 a |
Hours | Days | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose (mg/kg) | Animal | 0.5 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
2000 | 1 | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø |
2000 | 2 | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø |
2000 | 3 | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø |
2000 | 4 | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø |
2000 | 5 | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø |
Factors | p-Value | |
---|---|---|
TPC | Ax | |
A | 0.0001 | <0.0001 |
B | <0.0001 | <0.0001 |
C | 0.0060 | <0.0001 |
D | 0.0842 | 0.9365 |
AB | <0.0001 | <0.0001 |
AC | 0.5735 | <0.0001 |
AD | 0.4839 | 0.2837 |
BC | 0.7161 | 0.0690 |
BD | 0.3676 | 0.2776 |
CD | 0.1119 | 0.7164 |
ABC | 0.9990 | 0.0324 |
ABD | 0.5873 | 0.6021 |
ACD | 0.4382 | 0.4039 |
BCD | 0.6977 | 0.2706 |
Main Factors | Individual Polyphenols (mg/100 mL Isotonic Beverage) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
BT | DTy | DPh | STi | Ctc | ChAc | CuAc | CiAc | Rt | Q + L | Hpn |
CT | FsT | GaT | ErL | ND | 0.12 ± 0.00 b | ND | 1.00 ± 0.00 m | ND | ND | ND |
CT | FsT | GaT | MdL | ND | 0.12 ± 0.00 b | ND | 0.94 ± 0.02 lm | ND | ND | ND |
CT | FsT | GaT | FnL | ND | 0.12 ± 0.00 b | ND | 0.92 ± 0.00 klm | ND | ND | ND |
CT | FsT | InT | ErL | ND | 0.12 ± 0.00 b | ND | 1.00 ± 0.00 m | ND | ND | ND |
CT | FsT | InT | MdL | 0.16 ± 0.00 a | 0.12 ± 0.00 b | 0.24 ± 0.00 a | 1.16 ± 0.00 n | 0.24 ± 0.00 b | 0.70 ± 0.00 bcd | ND |
CT | FsT | InT | FnL | 0.26 ± 0.02 b | 0.16 ± 0.00 b | ND | 1.16 ± 0.00 n | 0.16 ± 0.00 a | 0.72 ± 0.02 cde | ND |
CT | PtP | GaT | ErL | ND | 0.14 ± 0.02 b | 0.24 ± 0.00 a | 0.82 ± 0.02 hij | ND | ND | ND |
CT | PtP | GaT | MdL | ND | 0.08 ± 0.00 ab | 0.24 ± 0.00 a | 0.74 ± 0.02 fgh | ND | ND | ND |
CT | PtP | GaT | FnL | 0.12 ± 0.00 a | 0.08 ± 0.00 ab | 0.24 ± 0.00 a | 0.68 ± 0.00 fg | ND | ND | ND |
CT | PtP | InT | ErL | ND | 0.08 ± 0.00 ab | ND | 0.84 ± 0.00 ijk | ND | 0.84 ± 0.00 fg | ND |
CT | PtP | InT | MdL | 0.26 ± 0.02 b | 0.16 ± 0.00 b | 0.24 ± 0.00 a | 0.88 ± 0.00 jkl | 0.20 ± 0.00 ab | 0.74 ± 0.02 cde | ND |
CT | PtP | InT | FnL | 0.14 ± 0.02 a | 0.12 ± 0.00 b | 0.24 ± 0.00 a | 0.96 ± 0.00 lm | 0.20 ± 0.00 ab | 0.74 ± 0.02 cde | ND |
ECh | FsT | GaT | ErL | 0.42 ± 0.02 cd | 2.42 ± 0.02 k | 0.44 ± 0.00 cd | 0.04 ± 0.00 a | 0.48 ± 0.00 c | 0.60 ± 0.00 a | ND |
ECh | FsT | GaT | MdL | 0.48 ± 0.00 efg | 0.60 ± 0.08 defg | 0.36 ± 0.06 b | 1.00 ± 0.16 m | 1.72 ± 0.08 j | 1.78 ± 0.10 j | ND |
ECh | FsT | GaT | FnL | 0.50 ± 0.02 fgh | 0.62 ± 0.02 defg | 0.38 ± 0.02 bc | 1.50 ± 0.02 p | 0.64 ± 0.00 d | 1.22 ± 0.06 i | ND |
ECh | FsT | InT | ErL | 0.60 ± 0.00 k | 0.60 ± 0.00 defg | 0.86 ± 0.10 j | 0.88 ± 0.00 jkl | 1.60 ± 0.04 i | 0.80 ± 0.00 ef | ND |
ECh | FsT | InT | MdL | 0.84 ± 0.00 m | 0.64 ± 0.00 efg | 0.98 ± 0.02 k | 0.66 ± 0.02 f | 1.36 ± 0.06 g | 0.90 ± 0.02 g | ND |
ECh | FsT | InT | FnL | 0.48 ± 0.00 efg | 0.56 ± 0.00 def | 0.72 ± 0.00 h | 0.20 ± 0.00 b | 0.62 ± 0.0 d | 0.68 ± 0.00 abc | ND |
ECh | PtP | GaT | ErL | 0.38 ± 0.02 c | 0.54 ± 0.02 cde | 0.54 ± 0.02 ef | 0.08 ± 0.00 a | 1.20 ± 0.00 ef | 0.62 ± 0.02 ab | 0.70 ± 0.10 d |
ECh | PtP | GaT | MdL | 0.46 ± 0.02 def | 0.56 ± 0.00 def | 0.58 ± 0.02 fg | ND | 0.46 ± 0.02 c | 0.66 ± 0.06 abc | ND |
ECh | PtP | GaT | FnL | 0.52 ± 0.04 ghi | 0.44 ± 0.16 c | 0.62 ± 0.06 g | 0.92 ± 0.00 klm | 0.52 ± 0.04 c | 0.75 ± 0.06 def | 0.28 ± 0.00 c |
ECh | PtP | InT | ErL | 0.42 ± 0.02 cd | 0.52 ± 0.00 cd | 0.72 ± 0.00 h | 0.76 ± 0.04 ghi | 1.86 ± 0.02 k | 1.22 ± 0.02 i | 0.16 ± 0.00 b |
ECh | PtP | InT | MdL | 0.54 ± 0.02 hij | 0.60 ± 0.00 defg | 0.72 ± 0.08 h | 0.50 ± 0.02 de | 1.50 ± 0.02 h | 1.28 ± 0.00 i | ND |
ECh | PtP | InT | FnL | 0.56 ± 0.04 ijk | 0.60 ± 0.00 defg | 0.50 ± 0.02 de | 0.52 ± 0.04 e | 1.24 ± 0.08 f | 1.10 ± 0.10 h | ND |
StF | - | GaT | ErL | 0.44 ± 0.00 de | 0.66 ± 0.06 fgh | 0.56 ± 0.00 efg | ND | 1.16 ± 0.00 e | 0.60 ± 0.00 a | ND |
StF | - | GaT | MdL | 0.72 ± 0.00 l | 0.78 ± 0.06 ij | 0.78 ± 0.02 hi | 0.50 ± 0.02 de | 1.70 ± 0.02 j | 1.06 ± 0.02 h | 0.10 ± 0.02 a |
StF | - | GaT | FnL | 0.70 ± 0.02 l | 0.76 ± 0.00 hij | 0.76 ± 0.00 hi | 0.42 ± 0.02 cd | 1.68 ± 0.00 j | 1.02 ± 0.02 h | ND |
StF | - | InT | ErL | 0.58 ± 0.02 jk | 0.78 ± 0.02 ij | 0.80 ± 0.00 ij | 0.48 ± 0.00 cde | 1.34 ± 0.02 g | 1.20 ± 0.04 i | ND |
StF | - | InT | MdL | 0.74 ± 0.02 l | 0.68 ± 0.04g hi | 0.78 ± 0.02 hi | 0.40 ± 0.04 c | 1.24 ± 0.00 f | 1.26 ± 0.02 i | ND |
StF | - | InT | FnL | 0.74 ± 0.02 l | 0.80 ± 0.00 j | 0.60 ± 0.00 fg | 0.08 ± 0.00 a | 0.66 ± 0.02 d | 0.68 ± 0.00 abc | ND |
CTExT | - | - | - | ND | ND | ND | 1.30 ± 0.02 o | 0.18 ± 0.02 a | ND | ND |
EChExT | - | - | - | ND | 0.16 ± 0.00 b | 0.28 ± 0.00 a | ND | 0.16 ± 0.00 ab | ND | ND |
Factors | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Ctq | AcCl | AcCu | AcCi | Rt | Q + L | Kmp | Hsp | |
Main Factors | ||||||||
A | 0.0004 | <0.0001 | <0.0001 | <0.0001 | 0.0242 | 0.0040 | 0.0005 | <0.0001 |
B | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0005 | <0.0001 |
C | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0005 | <0.0001 |
D | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Interactions | ||||||||
AB | <0.0001 | <0.0001 | <0.0001 | 0.1869 | 0.0242 | <0.0001 | 0.0005 | <0.0001 |
AC | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0005 | <0.0001 |
AD | 0.0001 | <0.0001 | 0.0365 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
BC | 0.8104 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0005 | <0.0001 |
BD | <0.0001 | <0.0001 | 0.0004 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
CD | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0098 | <0.0001 | <0.0001 |
ABC | 0.0135 | <0.0001 | 0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0005 | <0.0001 |
ABD | <0.0001 | <0.0001 | 0.2726 | <0.0001 | <0.0001 | 0.0002 | <0.0001 | <0.0001 |
ACD | 0.7921 | <0.0001 | 0.0904 | <0.0001 | <0.0001 | 0.0007 | <0.0001 | <0.0001 |
BCD | <0.0001 | <0.0001 | 0.0002 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avilés-Betanzos, K.A.; González-Ávila, M.; Cauich-Rodríguez, J.V.; Ramírez-Sucre, M.O.; Padilla-Camberos, E.; Rodríguez-Buenfil, I.M. Behavior of Phenolic Compounds During In Vitro Digestion of an Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf Extracts. Processes 2025, 13, 2826. https://doi.org/10.3390/pr13092826
Avilés-Betanzos KA, González-Ávila M, Cauich-Rodríguez JV, Ramírez-Sucre MO, Padilla-Camberos E, Rodríguez-Buenfil IM. Behavior of Phenolic Compounds During In Vitro Digestion of an Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf Extracts. Processes. 2025; 13(9):2826. https://doi.org/10.3390/pr13092826
Chicago/Turabian StyleAvilés-Betanzos, Kevin Alejandro, Marisela González-Ávila, Juan Valerio Cauich-Rodríguez, Manuel Octavio Ramírez-Sucre, Eduardo Padilla-Camberos, and Ingrid Mayanin Rodríguez-Buenfil. 2025. "Behavior of Phenolic Compounds During In Vitro Digestion of an Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf Extracts" Processes 13, no. 9: 2826. https://doi.org/10.3390/pr13092826
APA StyleAvilés-Betanzos, K. A., González-Ávila, M., Cauich-Rodríguez, J. V., Ramírez-Sucre, M. O., Padilla-Camberos, E., & Rodríguez-Buenfil, I. M. (2025). Behavior of Phenolic Compounds During In Vitro Digestion of an Isotonic Beverage Enriched with Microencapsulated Habanero Pepper Leaf Extracts. Processes, 13(9), 2826. https://doi.org/10.3390/pr13092826