Thermal State Simulation and Parameter Optimization of Circulating Fluidized Bed Boiler
Abstract
1. Introduction
2. Model Description
2.1. Gas-Phase Governing Equations
2.2. Particle-Phase Governing Equations
2.3. Heat Transfer Model
2.3.1. Convective Heat Transfer Between Fluid and Wall [30]
2.3.2. Convective Heat Exchange Between Particles and Wall [30]
2.3.3. Radiative Heat Transfer
2.4. Chemical Reaction Model
3. Simulation Conditions and Model Validation
3.1. Model Boundary Conditions
3.2. Model Validation
4. Results and Discussion
4.1. Gas–Solid Flow Characteristics
4.2. Distributions of Temperature and Gas Component
4.3. Effect of Coal Particle Size Distribution
4.4. Effect of the Primary-to-Secondary Air Ratio
4.5. Effect of Upper-to-Lower Secondary Air Volume Ratio
4.6. Effect of Operation Loads
5. Conclusions
- (1)
- Particle distribution exhibits “core-annulus” flow with a dense-phase bottom region and dilute-phase upper zone. Maximum temperature (910 °C) occurs in the dense-phase region, decreasing to 850 °C at the outlet.
- (2)
- Rapid carbon depletion and O2-deficient combustion at the bottom of the furnace increases CO, which oxidizes to CO2 when secondary air is injected with O2 supplementation.
- (3)
- A higher primary air ratio (0.8~1.5) enhances axial gas velocity and bed temperature but reduces secondary air zone (2.5~5.8 m) temperature. A higher primary air ratio also decreases the outlet O2 mole fraction and increases the fly ash carbon content. When the primary-to-secondary air ratio is controlled at 1.0, the boiler thermal efficiency is the highest (89.3%). Increasing the upper-to-lower flow ratio lowers velocity in secondary air zones but elevates it above the transition zone. Fly ash carbon minimizes at a ratio of 1.33, correlating with enhanced lower furnace (0~7.5 m) cooling and upper furnace (>7 m) heating. When the upper-to-lower secondary air flow ratio is 1.33, the fly ash carbon content is the lowest (6.8%).
- (4)
- Reducing the median size (d50 = 7.2~1.8 mm) improves combustion (fly ash carbon: 13.5~6.8%; O2 depletion mitigated). Further reduction (d50 = 0.9 mm) shortens particle residence time, increasing fly ash carbon to 18.2%. The most recommended median particle size of pulverized coal is 1.8 mm. High load (70% BMCR) intensifies particle recirculation and wall heat accumulation, while low load (50% BMCR) induces O2 stratification. Under a 70% BMCR load, attention should be paid to the local high temperature caused by enhanced particle circulation. Under a 50% BMCR load, air distribution should be optimized to alleviate oxygen stratification.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varol, M.; Atimtay, A.T. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. Bioresour. Technol. 2015, 198, 325–331. [Google Scholar] [CrossRef]
- Shi, X.; Wu, Y.; Lan, X.; Liu, F.; Gao, J. Effects of the riser exit geometries on the hydrodynamics and solids back-mixing in CFB risers: 3D simulation using CPFD approach. Powder Technol. 2015, 284, 130–142. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, L.; Che, D. Development and technical progress in large-scale circulating fluidized bed boiler in China. Front. Energy 2020, 14, 699–714. [Google Scholar] [CrossRef]
- Tan, Y.; Jia, L.; Wu, Y. Some combustion characteristics of biomass and coal cofiring under oxy-fuel conditions in a pilot-scale circulating fluidized combustor. Energy Fuels 2013, 27, 7000–7007. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, S.D. Effects of particle properties on solids recycle in loop-seal of a circulating fluidized bed. Powder Technol. 2002, 124, 76–84. [Google Scholar] [CrossRef]
- Shi, H.X. Experimental research of flow structure in a gas-solid circulating fluidized bed riser by PIV. J. Hydrodyn. 2007, 19, 712–719. [Google Scholar] [CrossRef]
- Ersoy, L.E.; Golriz, M.R.; Koksal, M.; Hamdullahpur, F. Circulating fluidized bed hydrodynamics with air staging: An experimental study. Powder Technol. 2004, 145, 25–33. [Google Scholar] [CrossRef]
- Liu, D.; Song, J.L.; Ma, J.L.; Chen, X.P.; Wachem, V.B. Gas flow distribution and solid dynamics in a thin rectangular pressurized fluidized bed using CFD-DEM simulation. Powder Technol. 2020, 373, 369–383. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, B.N.; Wang, W.; Li, J.H. 3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler. Chem. Eng. J. 2010, 162, 821–828. [Google Scholar] [CrossRef]
- Amoo, L.M. Computational fluid dynamics simulation of Lafia-Obi bituminous coal in a fluidized-bed chamber for air- and oxy-fuel combustion technologies. Fuel 2015, 140, 178–191. [Google Scholar] [CrossRef]
- Liu, H.; Elkamel, A.; Lohi, A. Effect of char combustion product distribution coefficient on the CFD modeling biomass gasification in a circulating fluidized bed. Ind. Eng. Chem. Res. 2014, 53, 54–63. [Google Scholar] [CrossRef]
- Krzywanski, J.; Czakiert, T.; Muskala, W.; Sekret, R.; Nowak, W. Modeling of solid fuels combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler. Fuel Process. Technol. 2010, 91, 290–295. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, C.; Duan, L.; Chen, X.; Liu, D. A simulation study of coal combustion under O2/CO2 and O2/RFG atmospheres in circulating fluidized bed. Chem. Eng. J. 2013, 223, 816–823. [Google Scholar] [CrossRef]
- Muhammad, A.; Zhang, N.; Wang, W. CFD simulations of a full-loop CFB reactor using coarse-grained Eulerian–Lagrangian dense discrete phase model: Effects of modeling parameters. Powder Technol. 2019, 354, 615–629. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, L.; Wu, X.; Wang, J. Numerical and experimental study on oxy-fuel coal and biomass co-firing in the bubbling fluidized bed. Energy Fuels 2019, 33, 5829–5839. [Google Scholar] [CrossRef]
- O’Rourke, P.J.; Snider, D.M. Inclusion of collisional return-to-isotropy in the MP-PIC method. Chem. Eng. Sci. 2012, 80, 39–54. [Google Scholar] [CrossRef]
- O’Rourke, P.J.; Zhao, P.; Snider, D.M. A model for collisional exchange in gas/liquid/solid fluidized beds. Chem. Eng. Sci. 2009, 64, 1784–1797. [Google Scholar] [CrossRef]
- Snider, D.M.; Clark, S.M.; O’Rourke, P.J. Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers. Chem. Eng. Sci. 2011, 66, 1285–1295. [Google Scholar] [CrossRef]
- Farid, M.M.; Jeong, H.J.; Kim, K.H.; Lee, J.; Kim, D.; Hwang, J. Numerical investigation of particle transport hydrodynamics and coal combustion in an industrial-scale circulating fluidized bed combustor: Effects of coal feeder positions and coal feeding rates. Fuel 2017, 192, 187–200. [Google Scholar] [CrossRef]
- Huang, X.; Jin, X.; Dong, L.; Li, R.; Yang, K.; Li, Y.; Deng, L.; Che, D. CPFD numerical study on tri-combustion characteristics of coal, biomass and oil sludge in a circulating fluidized bed boiler. J. Energy Inst. 2024, 113, 101550. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Xiang, X.; Gong, S.; Jia, C.; Wang, Q.; Sun, B.Z. Simulation of biogas co-combustion in CFB boiler: Combustion analysis using the CPFD method. Case Stud. Therm. Eng. 2024, 59, 104610. [Google Scholar] [CrossRef]
- Chang, J.; Ma, X.R.; Wang, X.; Li, X.H. CPFD modeling of hydrodynamics, combustion and NOx emissions in an industrial CFB boiler. Particuology 2023, 81, 174–188. [Google Scholar] [CrossRef]
- Liu, H.P.; Sun, H.W.; Bi, Y.; Jia, C.X.; Zhang, L.; Li, Y.L.; Qin, H.; Wang, Q. Effect of secondary air on NO emission in a 440 t/h circulating fluidized bed boiler based on CPFD method. Particuology 2023, 83, 18–31. [Google Scholar] [CrossRef]
- Yan, J.; Lu, X.F.; Wang, Q.H.; Kang, Y.H.; Li, J.B.; Xu, Z.; Lei, X.J.; Zheng, X.; Fan, X.C.; Liu, Z. Study on the influence of secondary air on the distributions of flue gas composition at the lower part of a 600 MW supercritical CFB boiler. Fuel Process Technol. 2019, 196, 106035. [Google Scholar] [CrossRef]
- Dong, Z.H.; Lu, X.F.; Zhang, R.D.; Li, J.B.; Wu, Z.L.; Liu, Z.C.; Yang, Y.T.; Wang, Q.H.; Kang, Y.H. Methods and applications of full-scale field testing for large-scale circulating fluidized bed boilers. Energier 2024, 17, 889. [Google Scholar] [CrossRef]
- Qi, G.; Zhang, S.; Liu, X.; Guan, J.; Chang, Y.; Wang, Z. Combustion adjustment test of circulating fluidized bed boiler. Sch. Energ. 2017, 124, 1505–1511. [Google Scholar] [CrossRef]
- Yang, S.L.; Liu, X.H.; Wang, S.; Zhang, K.G.; Wang, H. Eulerian-Lagrangian simulation study of the gas-solid reacting flow in a bubbling fluidized coal gasifier. Chem. Eng. J. 2021, 426, 130825. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, D.; Duan, L.; Ma, J.; Xiong, J.; Chen, X. Three-dimensional CFD simulation of oxy-fuel combustion in a circulating fluidized bed with warm flue gas recycle. Fuel 2018, 216, 596–611. [Google Scholar] [CrossRef]
- Wen, C.Y.; Yu, Y.H. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 1966, 62, 100–111. [Google Scholar]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1949, 48, 89. [Google Scholar]
- Yang, W.C. Books Handbook of Fluidization and Fluid-Particle Systems, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Chang, J.; Ma, X.R.; Wang, X.; Li, X.H. Computational particle fluid dynamics modeling and design of in-situ catalytic deNOx in an industrial CFB boiler. Chem. Eng. Sci. 2023, 270, 118502. [Google Scholar] [CrossRef]
- Gu, J.R.; Liu, Q.W.; Zhong, W.Q.; Yu, A.B. Study on scale -up characteristics of oxy-fuel combustion in circulating fluidized bed boiler by 3D CFD simulation. Adv. Powder Technol. 2020, 31, 2136–2151. [Google Scholar] [CrossRef]
- Xiao, Y.; Song, G.L.; Yang, Z.; Yang, X.T.; Wang, C.; Ji, Z.C.; Lyu, Q.G.; Zhang, X.S. Application of post-combustion ultra-low NOx emissions technology on coal slime solid waste circulating fluidized bed boilers. Waste Manag. 2022, 137, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.M.; Li, R.B.; Wei, Q.J.; Liu, F.Q.; Zhao, H.L.; Zhang, Y.M.; Sohn, H.Y. Numerical simulation on gas-solid flow during circulating fluidized roasting of bauxite by a computational particle fluid dynamics method. Particuology 2024, 90, 179–188. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, S.J.; Jo, S.H.; Yoon, S.J.; Moon, J.H.; Ra, H.W.; Yoon, S.M.; Lee, J.G.; Choi, H.G.; Kim, J.K.; et al. Low-NOx emission and amorphous siliceous ash production from rice husk combustion in circulating fluidized bed system. Fuel 2024, 374, 132441. [Google Scholar] [CrossRef]
- Shi, X.; Lan, X.; Liu, F.; Zhang, Y.; Gao, J. Effect of particle size distribution on hydrodynamics and solids back-mixing in CFB risers using CPFD simulation. Powder Technol. 2014, 266, 135–143. [Google Scholar] [CrossRef]
- Yue, G.; Cai, R.; Lu, J.; Zhang, H. From a CFB reactor to a CFB boiler—The review of R&D progress of CFB coal combustion technology in China. Powder Technol. 2017, 316, 18–28. [Google Scholar]
- Ke, X.; Zhu, S.; Huang, Z.; Zhang, M.; Lyu, J.; Yang, H.; Zhou, T. Issues in deep peak regulation for circulating fluidized bed combustion: Variation of NOx emissions with boiler load. Environ. Pollut. 2023, 318, 120912. [Google Scholar] [CrossRef]
Reaction | Reaction Rate Coefficient | Reaction Rate |
---|---|---|
H2O(moisture) → H2O(g) | k1 = 5.13 × 1010e (−10,585/T) | R1 = k1[H2O] |
Volatile → a1CO + a2CO2 + a3CH4 + a4H2 + a5H2O(g) + a6Tar + a7NH3 + a8HCN + a9H2S | k2 = 0.5Te (−5500/T) | R2 = k2[Volatile] |
C + O2 → CO | k3 = 4.34 × 1010Te (−16,750/T) | R3 = k3[O2] |
CO + O2 → CO2 | k4 = 5.56 × 107e (−15,148/T) | R4 = k4[CO][O2]0.25[H2O]0.5[CO2]−0.32 |
CH4 + O2 → CO2 + H2O | k5 = 2.9 × 108e (−24,358/T) | R5 = k5[CH4]0.7[O2]0.8 |
H2 + O2 → H2O | k6 = 5.69 × 1011e (−17,620/T) | R6 = k6[H2][O2]0.5 |
Tar + O2 → CO + H2O | k7 = 3.8 × 107e (−6710/T) | R7 = k7[Tar][O2] |
C + CO2 → CO | k8a = 1.272mpTe (−22,645/T) k8b = 1.044 × 10−4e (−6314/T−20.92) | R8 = k8a[CO2]-k8b[CO] |
C + H2O → H2 + CO | k9a = 1.272mpTe (−22,645/T) k9b = 1.044 × 10−4e (−2363/T−17.92) | R9 = k9a[H2O]-k9b[H2][CO] |
H2S + O2 → SO2 + H2O | k10 = 5.2 × 108e (−19,300/T) | R10 = k10[H2S][O2] |
NO + C → 0.5N2 + CO | k11 = 5.82 × 107e(−12,000/T) | R11 = k11[NO] |
NO + CO → 0.5N2 + CO2 | k12 = 1.92 × 1010e (−19,000/T) | R12 = |
NH3 + 2.5O2 → 2NO + 3H2O | k13 = 2.73 × 1014e (−38,160/T) | R13 = k13[NH3][O2] |
HCN + O2 → CO + NO + H2O | k14 = 2.14 × 105e (−10,000/T) | R14 = k14[HCN][O2] |
Condition or Parameter | Flow Rate (kg/s) | Temperature (°C) |
---|---|---|
Primary Air | 11.715 | 250 °C |
Secondary Air | 10.4 | 250 °C |
Coal Feeding Air | 0.4686 | 20 °C |
Coal Feed Rate | 2 × 1.85 kg/s | / |
Water-Cooled Walls | / | 299 °C |
Elemental Analysis | Content (%) | Industrial Analysis | Content (%) |
---|---|---|---|
Car | 54.63 | FCar | 47.71 |
Har | 2.26 | Var | 13.32 |
Oar | 0.9 | Aar | 30.79 |
Nar | 0.79 | Mar | 8.18 |
Sar | 2.45 | Qar,net | 20,109 |
Items | Numerical | Industrial Data | Relative Error |
---|---|---|---|
Bed pressure | 108,011.6 Pa | 107,585 Pa (±100 Pa) | Within 1% |
Bed temperature | 892 °C | 845–901 °C | Within 5.6% |
Outlet gas temperature | 841 °C | 851 °C (±3 °C) | Within 2% |
O2 concentration | 3.44% | 3.7% | 8.6% |
Case | Loads | Total Air Volume | Coal Feed |
---|---|---|---|
0 | 50% BMCR | 55,900 Nm3/h | 2 × 1.68 kg/s |
1 | 60% BMCR | 65,000 Nm3/h | 2 × 1.85 kg/s |
2 | 70% BMCR | 85,626 Nm3/h | 2 × 1.99 kg/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhou, K.; Li, F.; Zhou, Z.; Wang, Y.; Huang, W. Thermal State Simulation and Parameter Optimization of Circulating Fluidized Bed Boiler. Processes 2025, 13, 2776. https://doi.org/10.3390/pr13092776
Xu J, Zhou K, Li F, Zhou Z, Wang Y, Huang W. Thermal State Simulation and Parameter Optimization of Circulating Fluidized Bed Boiler. Processes. 2025; 13(9):2776. https://doi.org/10.3390/pr13092776
Chicago/Turabian StyleXu, Jin, Kaixuan Zhou, Fengchao Li, Zongyan Zhou, Yuelei Wang, and Wenbin Huang. 2025. "Thermal State Simulation and Parameter Optimization of Circulating Fluidized Bed Boiler" Processes 13, no. 9: 2776. https://doi.org/10.3390/pr13092776
APA StyleXu, J., Zhou, K., Li, F., Zhou, Z., Wang, Y., & Huang, W. (2025). Thermal State Simulation and Parameter Optimization of Circulating Fluidized Bed Boiler. Processes, 13(9), 2776. https://doi.org/10.3390/pr13092776