Development of a Functional Granola Enriched with Cranberry (Vaccinium macrocarpon, cv. Ben Lear) Extract: Formulation and Sensory Assessment
Abstract
1. Introduction
2. Materials and Methods
- −
- GOST ISO 6658-2016—establishes the general methodology for conducting sensory analysis, including sampling and sample preparation, creating testing conditions, selecting and training assessors, and using standardised scales to evaluate product attributes (taste, smell, colour, texture, etc.).
- −
- GOST 8756.1-2017—regulates the procedure for sensory evaluation of fruit and vegetable products, including the determination of appearance, colour, odour, and taste according to established criteria, as well as recording the results using a point-based system in accordance with the standards for the specific product.
- −
- m is the mass of the dry residue (g);
- −
- m1 is the mass of raw materials (g);
- −
- W is the mass loss during drying of the raw materials (%).
- −
- m is the mass before drying (g);
- −
- m1 is the mass after drying (g).
- Preparation of ingredients: All components were cleaned, cut, and sorted by size so that all components were evenly baked.
- Mixing ingredients: Liquid components (syrup and oil) were added. This gives the mixture sweetness and improves the texture.
- Baking: Baking was carried out at a low temperature of 170–180 °C for 12–18 min to avoid burning the ingredients, to dry evenly, and to provide a crispy texture. The mixture was periodically stirred for uniform cooking.
- Cooling and packaging: After baking, the granola was cooled and packaged.
- −
- Protein content ≥ 10 g;
- −
- Dietary fibre ≥ 5 g;
- −
- Vitamin C ≥ 15 mg;
- −
- Iron ≥ 3 mg;
- −
- Potassium ≥ 400 mg.
3. Results
- 5—Excellent;
- 4—Good;
- 3—Satisfactory;
- 2—Poor;
- 1—Very poor (unsatisfactory).
- −
- No. 2 and No. 7, with increased protein content and energy value, are optimal for people leading an active lifestyle and playing sports;
- −
- No. 5 and No. 9 can be aimed at replenishing the mineral balance for populations on diets, with microelement deficiency, or during the recovery period after illness.
4. Discussion
- A line of functional breakfasts and snacks for various age and dietary groups (including the elderly and athletes);
- Production of specialised nutrition products aimed at preventing micronutrient deficiency (Fe, Mg, K, vitamin C, etc.);
- Export-oriented products labelled “functional food” and “clean label”, attractive to the international market due to their natural composition and the absence of synthetic additives;
- Development of contract manufacturing, including private label releases for retailers interested in domestically produced functional products.
- −
- no studies were conducted on the shelf life and stability of the product during long-term storage, which limits its immediate industrial use without additional testing;
- −
- there are no data on the bioavailability and metabolic assimilation of key nutrients in the body, which requires in-depth clinical and dietary studies;
- −
- the prototypes were manufactured in laboratory conditions, so a scaling calculation is needed that considers the change in properties when switching to industrial equipment (ovens, mixers, etc.);
- −
- the presence of allergenic components (e.g., apples, buckwheat, and cranberries) is possible, which requires a separate study of the composition for hypoallergenicity, with a subsequent clarification of target consumer groups;
- −
- the use of sorbitol requires dosage control, considering the possible laxative effect when exceeding the recommended consumption rates.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | t-Test for Dependent Samples (Granola) (p < 0.05000) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | Std. off | N | Different | Std. off diff | t | cc | p | To Entrust. −95.000% | To Entrust. +95.000% | |
Oatmeal flake | 34.0000 | 9.06765 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | 23.840 | 9.00123 | 8.3754 | 9 | 0.000015 | 17.401 | 30.279 |
Oatmeal flake | 34.0000 | 9.06765 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | 29.082 | 8.65118 | 10.6304 | 9 | 0.000002 | 22.893 | 35.271 |
Oatmeal flake | 34.0000 | 9.06765 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −22.101 | 10.43571 | −6.6972 | 9 | 0.000089 | −29.566 | −14.636 |
Oatmeal flake | 34.0000 | 9.06765 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | 23.818 | 8.38141 | 8.9865 | 9 | 0.000009 | 17.822 | 29.814 |
Oatmeal flake | 34.0000 | 9.06765 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 31.041 | 10.82712 | 9.0661 | 9 | 0.000008 | 23.296 | 38.786 |
Oatmeal flake | 34.0000 | 9.06765 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | 29.415 | 8.44640 | 11.0128 | 9 | 0.000002 | 23.373 | 35.457 |
Oatmeal flake | 34.0000 | 9.06765 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −391.019 | 72.58491 | −17.0354 | 9 | 0.000000 | −442.943 | −339.095 |
Corn flake | 6.0000 | 8.43274 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −4.160 | 8.01872 | −1.6405 | 9 | 0.135311 | −9.896 | 1.576 |
Corn flake | 6.0000 | 8.43274 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | 1.082 | 8.33070 | 0.4107 | 9 | 0.690884 | −4.877 | 7.041 |
Corn flake | 6.0000 | 8.43274 | ||||||||
carbohydrates (g) | 56.1010 | 1.73064 | 10 | −50.101 | 8.18044 | −19.3673 | 9 | 0.000000 | −55.953 | −44.249 |
Corn flake | 6.0000 | 8.43274 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −4.182 | 8.85320 | −1.4938 | 9 | 0.169441 | −10.515 | 2.151 |
Corn flake | 6.0000 | 8.43274 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 3.041 | 5.67644 | 1.6941 | 9 | 0.124489 | −1.020 | 7.102 |
Corn flake | 6.0000 | 8.43274 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | 1.415 | 9.07913 | 0.4928 | 9 | 0.633921 | −5.080 | 7.910 |
Corn flake | 6.0000 | 8.43274 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −419.019 | 67.20010 | −19.7180 | 9 | 0.000000 | −467.091 | −370.947 |
Rice flake | 6.0000 | 8.43274 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −4.160 | 9.17908 | −1.4332 | 9 | 0.185622 | −10.726 | 2.406 |
Rice flake | 6.0000 | 8.43274 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | 1.082 | 8.93063 | 0.3831 | 9 | 0.710517 | −5.307 | 7.471 |
Rice flake | 6.0000 | 8.43274 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −50.101 | 6.99743 | −22.6416 | 9 | 0.000000 | −55.107 | −45.095 |
Rice flake | 6.0000 | 8.43274 | ||||||||
dietary fiber (g) | 10.1820 | 1.00951 | 10 | −4.182 | 9.25810 | −1.4284 | 9 | 0.186936 | −10.805 | 2.441 |
Rice flake | 6.0000 | 8.43274 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 3.041 | 9.37608 | 1.0256 | 9 | 0.331837 | −3.666 | 9.748 |
Rice flake | 6.0000 | 8.43274 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | 1.415 | 9.12795 | 0.4902 | 9 | 0.635713 | −5.115 | 7.945 |
Rice flake | 6.0000 | 8.43274 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −419.019 | 80.20659 | -16.5205 | 9 | 0.000000 | −476.395 | −361.643 |
Buckwheat flake | 4.0000 | 6.14636 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −6.160 | 5.93857 | −3.2802 | 9 | 0.009526 | −10.408 | −1.912 |
Buckwheat flake | 4.0000 | 6.14636 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | −0.918 | 6.29096 | −0.4615 | 9 | 0.655425 | −5.418 | 3.582 |
Buckwheat flake | 4.0000 | 6.14636 | ||||||||
carbohydrates (g) | 56.1010 | 1.73064 | 10 | −52.101 | 7.02959 | −23.4378 | 9 | 0.000000 | −57.130 | −47072 |
Buckwheat flake | 4.0000 | 6.14636 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −6.182 | 5.65324 | −3.4581 | 9 | 0.007183 | −10.226 | −2.138 |
Buckwheat flake | 4.0000 | 6.14636 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 1.041 | 7.48508 | 0.4398 | 9 | 0.670454 | −4.314 | 6.396 |
Buckwheat flake | 4.0000 | 6.14636 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | −0.585 | 5.44951 | −0.3395 | 9 | 0.742045 | −4.483 | 3.313 |
Buckwheat flake | 4.0000 | 6.14636 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −421.019 | 74.19368 | −17.9446 | 9 | 0.000000 | −474.094 | −367.944 |
Apple, dried | 2.5000 | 2.63523 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −7.660 | 2.85578 | −8.4821 | 9 | 0.000014 | −9.703 | −5.617 |
Apple, dried | 2.5000 | 2.63523 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | −2.418 | 2.73954 | −2.7911 | 9 | 0.021015 | −4.378 | −0.458 |
Apple, dried | 2.5000 | 2.63523 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −53.601 | 3.38962 | −50.0059 | 9 | 0.000000 | −56.026 | −51.176 |
Apple, dried | 2.5000 | 2.63523 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −7.682 | 2.92256 | −8.3121 | 9 | 0.000016 | −9.773 | −5.591 |
Apple, dried | 2.5000 | 2.63523 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | −0.459 | 3.61429 | −0.4016 | 9 | 0.697350 | −3.045 | 2.127 |
Apple, dried | 2.5000 | 2.63523 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | −2.085 | 2.79334 | −2.3604 | 9 | 0.042575 | −4.083 | −0.087 |
Apple, dried | 2.5000 | 2.63523 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −422.519 | 73.53975 | −18.1687 | 9 | 0.000000 | −475.126 | −369.912 |
Pumpkin, dried | 2.0000 | 2.10819 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −8.160 | 2.15766 | −11.9593 | 9 | 0.000001 | −9.703 | −6.617 |
Pumpkin, dried | 2.0000 | 2.10819 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | −2.918 | 2.14594 | −4.3000 | 9 | 0.001991 | −4.453 | −1.383 |
Pumpkin, dried | 2.0000 | 2.10819 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −54.101 | 2.48989 | −68.7109 | 9 | 0.000000 | −55.882 | −52.320 |
Pumpkin, dried | 2.0000 | 2.10819 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −8.182 | 2.23637 | −11.5696 | 9 | 0.000001 | −9.782 | −6.582 |
Pumpkin, dried | 2.0000 | 2.10819 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | −0.959 | 3.68417 | −0.8231 | 9 | 0.431693 | −3.594 | 1.676 |
Pumpkin, dried | 2.0000 | 2.10819 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | −2.585 | 2.41097 | −3.3905 | 9 | 0.007992 | −4.310 | −0.860 |
Pumpkin, dried | 2.0000 | 2.10819 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −423.019 | 73.07889 | −18.3049 | 9 | 0.000000 | −475.296 | −370.742 |
Syrup | 12.0000 | 0.00000 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | 1.840 | 0.80962 | 7.1868 | 9 | 0.000052 | 1.261 | 2.419 |
Syrup | 12.0000 | 0.00000 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | 7.082 | 0.58172 | 38.4985 | 9 | 0.000000 | 6.666 | 7.498 |
Syrup | 12.0000 | 0.00000 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −44.101 | 1.73064 | −80.5829 | 9 | 0.000000 | −45.339 | −42.863 |
Syrup | 12.0000 | 0.00000 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | 1.818 | 1.00951 | 5.6949 | 9 | 0.000296 | 1.096 | 2.540 |
Syrup | 12.0000 | 0.00000 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 9.041 | 2.79122 | 10.2429 | 9 | 0.000003 | 7.044 | 11.038 |
Syrup | 12.0000 | 0.00000 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | 7.415 | 1.06848 | 21.9455 | 9 | 0.000000 | 6.651 | 8.179 |
Syrup | 12.0000 | 0.00000 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −413.019 | 73.24616 | −17.8314 | 9 | 0.000000 | −465.416 | −360.622 |
Walnut | 6.5000 | 1.58114 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −3.660 | 1.86784 | −6.1964 | 9 | 0.000160 | −4.996 | −2.324 |
Walnut | 6.5000 | 1.58114 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | 1.582 | 1.72387 | 2.9020 | 9 | 0.017537 | 0.349 | 2.815 |
Walnut | 6.5000 | 1.58114 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −49.601 | 2.53478 | −61.8800 | 9 | 0.000000 | −51.414 | −47.788 |
Walnut | 6.5000 | 1.58114 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −3.682 | 1.96616 | −5.9220 | 9 | 0.000223 | −5.089 | −2.275 |
Walnut | 6.5000 | 1.58114 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 3.541 | 3.04755 | 3.6743 | 9 | 0.005121 | 1.361 | 5.721 |
Walnut | 6.5000 | 1.58114 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | 1.915 | 1.86324 | 3.2501 | 9 | 0.009995 | 0.582 | 3.248 |
Walnut | 6.5000 | 1.58114 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −418.519 | 73.41110 | −18.0282 | 9 | 0.000000 | −471.034 | −366.004 |
Almond | 3.0000 | 0.00000 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −7.160 | 0.80962 | −27.9660 | 9 | 0.000000 | −7.739 | −6.581 |
Almond | 3.0000 | 0.00000 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | −1.918 | 0.58172 | −10.4264 | 9 | 0.000003 | −2.334 | −1.502 |
Almond | 3.0000 | 0.00000 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −53.101 | 1.73064 | −97.0280 | 9 | 0.000000 | −54.339 | −51.863 |
Almond | 3.0000 | 0.00000 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −7.182 | 1.00951 | −22.4976 | 9 | 0.000000 | −7.904 | −6.460 |
Almond | 3.0000 | 0.00000 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 0.041 | 2.79122 | 0.0465 | 9 | 0.963966 | −1.956 | 2.038 |
Almond | 3.0000 | 0.00000 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | −1.585 | 1.06848 | −4.6910 | 9 | 0.001135 | −2.349 | −0821 |
Almond | 3.0000 | 0.00000 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −422.019 | 73.24616 | −18.2199 | 9 | 0.000000 | −474.416 | −369.622 |
Pumpkin seeds | 5.0000 | 0.00000 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −5.160 | 0.80962 | −20.1543 | 9 | 0.000000 | −5.739 | −4.581 |
Pumpkin seeds | 5.0000 | 0.00000 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | 0.082 | 0.58172 | 0.4458 | 9 | 0.666300 | −0.334 | 0.498 |
Pumpkin seeds | 5.0000 | 0.00000 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −51.101 | 1.73064 | −93.3735 | 9 | 0.000000 | −52.339 | −49.863 |
Pumpkin seeds | 5.0000 | 0.00000 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −5.182 | 1.00951 | −16.2326 | 9 | 0.000000 | −5.904 | −4.460 |
Pumpkin seeds | 5.0000 | 0.00000 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 2.041 | 2.79122 | 2.3123 | 9 | 0.046061 | 0.044 | 4.038 |
Pumpkin seeds | 5.0000 | 0.00000 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | 0.415 | 1.06848 | 1.2282 | 9 | 0.250509 | −0.349 | 1.179 |
Pumpkin seeds | 5.0000 | 0.00000 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −420.019 | 73.24616 | −18.1336 | 9 | 0.000000 | −472.416 | −367.622 |
Cashews | 1.5000 | 1.58114 | ||||||||
Proteins (r) | 10.1600 | 0.80962 | 10 | −8.660 | 1.67993 | −16.3015 | 9 | 0.000000 | −9.862 | −7.458 |
Cashews | 1.5000 | 1.58114 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | −3.418 | 1.64471 | −6.5718 | 9 | 0.000103 | −4.595 | −2.241 |
Cashews | 1.5000 | 1.58114 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −54.601 | 2.13661 | −80.8119 | 9 | 0.000000 | −56.129 | −53.073 |
Cashews | 1.5000 | 1.58114 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −8.682 | 1.78113 | −15.4143 | 9 | 0.000000 | −9.956 | −7.408 |
Cashews | 1.5000 | 1.58114 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | −1.459 | 3.36069 | −1.3729 | 9 | 0.203030 | −3.863 | 0.945 |
Cashews | 1.5000 | 1.58114 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | −3.085 | 1.95234 | −4.9969 | 9 | 0.000742 | −4.482 | −1.688 |
Cashews | 1.5000 | 1.58114 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −423.519 | 73.11504 | −18.3175 | 9 | 0.000000 | −475.822 | −371.216 |
Raisin | 4.0000 | 4.21637 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −6.160 | 4.39570 | −4.4315 | 9 | 0.001644 | −9.304 | −3.016 |
Raisin | 4.0000 | 4.21637 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | −0.918 | 4.29787 | −0.6754 | 9 | 0.516371 | −3.993 | 2.157 |
Raisin | 4.0000 | 4.21637 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −52.101 | 4.82212 | −34.1671 | 9 | 0.000000 | −55.551 | −48.651 |
Raisin | 4.0000 | 4.21637 | ||||||||
dietary fiber (g) | 10.1820 | 1.00951 | 10 | −6.182 | 4.44087 | −4.4021 | 9 | 0.001715 | −9.359 | −3.005 |
Raisin | 4.0000 | 4.21637 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 1.041 | 4.78468 | 0.6880 | 9 | 0.508786 | −2.382 | 4.464 |
Raisin | 4.0000 | 4.21637 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | −0.585 | 4.29722 | −0.4305 | 9 | 0.676961 | −3.659 | 2.489 |
Raisin | 4.0000 | 4.21637 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −421.019 | 73.76054 | −18.0500 | 9 | 0.000000 | −473.784 | −368.254 |
Apricot, dried | 3.5000 | 3.68932 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −6.660 | 3.67271 | −5.7344 | 9 | 0.000282 | −9.287 | −4.033 |
Apricot, dried | 3.5000 | 3.68932 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | −1.418 | 3.69302 | −1.2142 | 9 | 0.255565 | −4.060 | 1.224 |
Apricot, dried | 3.5000 | 3.68932 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −52.601 | 3.79950 | −43.7792 | 9 | 0.000000 | −55.319 | −49.883 |
Apricot, dried | 3.5000 | 3.68932 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −6.682 | 3.71770 | −5.6837 | 9 | 0.000300 | −9.341 | −4.023 |
Apricot, dried | 3.5000 | 3.68932 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 0.541 | 4.87269 | 0.3511 | 9 | 0.733594 | −2.945 | 4.027 |
Apricot, dried | 3.5000 | 3.68932 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | −1.085 | 3.89223 | −0.8815 | 9 | 0.400966 | −3.869 | 1.699 |
Apricot, dried | 3.5000 | 3.68932 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −421.519 | 72.99316 | −18.2614 | 9 | 0.000000 | −473.735 | −369.303 |
Cranberry, dried | 5.0000 | 0.00000 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −5.160 | 0.80962 | −20.1543 | 9 | 0.000000 | −5.739 | −4.581 |
Cranberry, dried | 5.0000 | 0.00000 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | 0.082 | 0.58172 | 0.4458 | 9 | 0.666300 | −0.334 | 0.498 |
Cranberry, dried | 5.0000 | 0.00000 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −51.101 | 1.73064 | −93.3735 | 9 | 0.000000 | −52.339 | −49.863 |
Cranberry, dried | 5.0000 | 0.00000 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −5.182 | 1.00951 | −16.2326 | 9 | 0.000000 | −5.904 | −4.460 |
Cranberry, dried | 5.0000 | 0.00000 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | 2.041 | 2.79122 | 2.3123 | 9 | 0.046061 | 0.044 | 4.038 |
Cranberry, dried | 5.0000 | 0.00000 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | 0.415 | 1.06848 | 1.2282 | 9 | 0.250509 | −0.349 | 1.179 |
Cranberry, dried | 5.0000 | 0.00000 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −420.019 | 73.24616 | −18.1336 | 9 | 0.000000 | −472.416 | −367.622 |
Creame master | 2.5000 | 2.63523 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −7.660 | 2.65412 | −9.1266 | 9 | 0.000008 | −9.559 | −5.761 |
Creame master | 2.5000 | 2.63523 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | −2.418 | 2.65718 | −2.8776 | 9 | 0.018248 | −4.319 | −0.517 |
Creame master | 2.5000 | 2.63523 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −53.601 | 2.89647 | −58.5199 | 9 | 0.000000 | −55.673 | −51.529 |
Creame master | 2.5000 | 2.63523 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −7.682 | 2.71768 | −v8.9387 | 9 | 0.000009 | −9.626 | −5.738 |
Creame master | 2.5000 | 2.63523 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | −0.459 | 4.05063 | −0.3583 | 9 | 0.728353 | −3.357 | 2.439 |
Creame master | 2.5000 | 2.63523 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | −2.085 | 2.89300 | −2.2791 | 9 | 0.048636 | −4.155 | −0.015 |
Creame master | 2.5000 | 2.63523 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −422.519 | 73.04652 | −18.2914 | 9 | 0.000000 | −474.773 | −370.265 |
Olive oil | 2.0000 | 2.10819 | ||||||||
proteins (g) | 10.1600 | 0.80962 | 10 | −8.160 | 2.35465 | −10.9588 | 9 | 0.000002 | −9.844 | −6.476 |
Olive oil | 2.0000 | 2.10819 | ||||||||
fat (g) | 4.9180 | 0.58172 | 10 | −2.918 | 2.22724 | −4.1430 | 9 | 0.002510 | −4.511 | −1.325 |
Olive oil | 2.0000 | 2.10819 | ||||||||
carbohydrates (d) | 56.1010 | 1.73064 | 10 | −54.101 | 2.94611 | −58.0707 | 9 | 0.000000 | −56.209 | −51.993 |
Olive oil | 2.0000 | 2.10819 | ||||||||
dietary fibre (g) | 10.1820 | 1.00951 | 10 | −8.182 | 2.43429 | −10.6289 | 9 | 0.000002 | −9.923 | −6.441 |
Olive oil | 2.0000 | 2.10819 | ||||||||
vitamin C (mg) | 2.9590 | 2.79122 | 10 | −0.959 | 3.30115 | −0.9187 | 9 | 0.382235 | −3.320 | 1.402 |
Olive oil | 2.0000 | 2.10819 | ||||||||
iron (mg) | 4.5850 | 1.06848 | 10 | −2.585 | 2.31504 | −3.5310 | 9 | 0.006404 | −4.241 | −0.929 |
Olive oil | 2.0000 | 2.10819 | ||||||||
potash (mg) | 425.0190 | 73.24616 | 10 | −423.019 | 73.47356 | −18.2066 | 9 | 0.000000 | −475.579 | −370.459 |
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
References
- Besolova, B.V.; Konko, E.A. An analytical review of the use of food products for athletes under the general name “granola”. Young Sci. 2020, 21, 232–233. Available online: https://moluch.ru/archive/311/70557/ (accessed on 2 August 2024).
- Clark, M.; Macdiarmid, J.; Jones, A.D.; Ranganathan, J.; Herrero, M.; Fanzo, J. The Role of Healthy Diets in Environmentally Sustainable Food Systems. Food Nutr. Bull. 2020, 41 (Suppl. S2), 31S–58S. [Google Scholar] [CrossRef] [PubMed]
- Kasyanov, G.I.; Olkhovatov, E.A.; Sakibaev, K.S.H. Innovations in the technology of production of breakfast cereals. KubGAU Sci. J. 2017, 130, 1–12. Available online: https://ej.kubagro.ru/2017/06/pdf/67.pdf (accessed on 25 July 2024).
- Demchenko, E.A.; Savenkova, T.V. Cereal breakfasts as an integral part of a healthy diet. Food Ind. Sci. Technol. 2021, 14, 6–11. [Google Scholar] [CrossRef]
- Steinert, R.E.; Raederstorff, D.; Wolever, T.M. Effect of Consuming Oat Bran Mixed in Water before a Meal on Glycemic Responses in Healthy Humans-A Pilot Study. Nutrients 2016, 8, 524. [Google Scholar] [CrossRef]
- Yuldasheva, N.K.; Gusakova, S.D.; Nurullaeva, D.K.H.; Farmanova, N.T.; Zakirova, R.P.; Kurbanova, E.R. Neutral Lipids of Oats Fruit (Avena sativa L.). Drug Dev. Regist. 2020, 9, 40–43. [Google Scholar] [CrossRef]
- Ourbantchik, A.M.; Sharshunou, V.A.; Haldova, M.M.; Shustava, L.V. Dynamics of the Properties of Oat and Buckwheat Grains in the Growth Technology. J. Almaty Technol. Univ. 2022, 4, 106–114. [Google Scholar] [CrossRef]
- Zareiforoush, H.; Minaei, S.; Alizadeh, M.R.; Banakar, A. Potential Applications of Computer Vision in Quality Inspection of Rice: A Review. Food Eng. Rev. 2015, 7, 321–345. [Google Scholar] [CrossRef]
- Sadeghi, M.; Nasrnia, E.; Masoumi, A.; Hemmat, A. Head rice yield response to low and high drying and tempering conditions. Int. Agrophys. 2013, 27, 219–223. [Google Scholar] [CrossRef]
- Zelenskaya, O.V.; Zelensky, G.L.; Ostapenko, N.V.; Tumanyan, I.G. Genetic resources of rice (Oryza sativa L.) with colored pericarp. Vavilov J. Genet. Breed. 2018, 22, 296–303. [Google Scholar] [CrossRef]
- Skurikhin, I.M.; Tutelyan, V.A. Tables of Chemical Composition and Caloric Content of Russian Food Products: A Reference Book; Delhi Print: Moscow, Russia, 2008; Volume 276. [Google Scholar]
- Singh, A.; Karjagi, C.; Kaur, S.; Jeet, G.; Bhamare, D.; Gupta, S.; Kumar, S.; Das, A.; Gupta, M.; Chaudhary, D.P.; et al. Characterization of phi112, a Molecular Marker Tightly Linked to the o2 Gene of Maize, and Its Utilization in Multiplex PCR for Differentiating Normal Maize from QPM. Genes 2023, 14, 531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A Paramount Staple Crop in the Context of Global Nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef]
- Sots, S.M.; Bnyiak, O.V. Use of corn grain in production of food products. Grain Prod. Mix. Fodd. 2018, 18, 20–25. [Google Scholar] [CrossRef]
- Gélinas, P.; McKinnon, C.M.; Mena, M.C.; Méndez, E. Gluten contamination of cereal foods in Canada. Int. J. Food Sci. Technol. 2007, 43, 1245–1252. [Google Scholar] [CrossRef]
- Lisiecka, M.Z. Food allergies to grains: Epidemiology and mechanisms of reactions to wheat, rye, oats, corn, barley, buckwheat, rice, lupine, quinoa. Pol. Ann. Med. 2025, 1–8, in press. [Google Scholar] [CrossRef]
- Xie, F.; Lei, Y.; Han, X.; Zhao, Y.; Zhang, S. Antioxidant ability of polyphenols from black rice, buckwheat and oats: In vitro and in vivo. Czech J. Food Sci. 2020, 38, 242–247. [Google Scholar] [CrossRef]
- Lee, C.; Seo, J.; Kim, S.; Lee, J.; Choi, J.; Park, Y. Corn silk maysin ameliorates obesity in vitro and in vivo via suppression of lipogenesis, differentiation, and function of adipocytes. Biomed. Pharmacother. 2017, 93, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xiao, T.; Ruan, J.; Liu, W. Beneficial Effects of Corn Silk on Metabolic Syndrome. Curr. Pharm. Des. 2017, 23, 5097–5103. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, H.S.; Kim, S.Y.; Shin, K.S. Immunostimulatory and anti-metastatic activity of polysaccharides isolated from byproducts of the corn starch industry. Carbohydr. Polym. 2018, 181, 911–917. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Wang, X.; Wu, M.; Zhou, H.; Zhang, Y. Characterization of a polysaccharide with antioxidant and anti-cervical cancer potentials from the corn silk cultivated in Jilin province. Int. J. Biol. Macromol. 2020, 155, 1105–1113. [Google Scholar] [CrossRef]
- Sheng, L.; Chen, Q.; Di, L.; Li, N. Evaluation of Anti-Diabetic Potential of Corn Silk in High-Fat Diet/Streptozotocin-Induced Type 2 Diabetes Mice Model. Endocr. Metab. Immune Disorders. Drug Targets 2021, 21, 131–138. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, J. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomed. Pharmacother. 2019, 110, 510–517. [Google Scholar] [CrossRef]
- das Graças Costa, E.; de Souza, P.M. Introduction to Cereals. In Cereal-Based Food Products; BlueRose Publishers Pvt. Ltd.: New Delhi, India, 2023; pp. 1–24. [Google Scholar] [CrossRef]
- Bobkov, S.V.; Zotikov, V.I.; Naumkina, T.S.; Sidorenko, V.S.; Uvarova, O.V.; Mikhailova, I.M. Prospects for obtaining isolated buckwheat proteins. Agriculture 2017, 3, 27–30. Available online: https://cyberleninka.ru/article/n/perspektivy-polucheniya-izolirovannyh-belkov-grechihi (accessed on 22 April 2025).
- Thacker, P.A.; Anderson, D.M.; Bowland, J.P. Nutritive value of common buckwheat as a supplement to cereal grains when fed to laboratory rats. Can. J. Anim. Sci. 1983, 63, 213–219. [Google Scholar] [CrossRef]
- Kókai, Z.L.; Remijnse, W.; Takács, J.; Veresné Bálint, M. Considering a more sustainable gluten-free diet? Gluten-free cereals in European dietary practice. Discov. Sustain. 2024, 5, 232. [Google Scholar] [CrossRef]
- Bobkov, S. Biochemical and technological properties of buckwheat grains. In Molecular Breeding and Nutritional Aspects of Buckwheat; Academic Press: Oxford, UK, 2016; Chapter 34; pp. 423–440. [Google Scholar]
- Górnaś, P.; Radenkovs, V.; Pugajeva, I.; Soliven, A.; Needs, P.W.; Kroon, P.A. Varied Composition of Tocochromanols in Different Types of Bran: Rye, Wheat, Oat, Spelt, Buckwheat, Corn, and Rice. Int. J. Food Prop. 2016, 19, 1757–1764. [Google Scholar] [CrossRef]
- Bukharov, A.F.; Stepanuk, N.V.; Bukharova, A.R. Biodiversity of national squash cultivar accessions. Veg. Crops Russ. 2017, 2, 55–61. [Google Scholar] [CrossRef]
- Eliseeva, T. The benefits of pumpkin—Top 7 useful properties and interesting facts. J. Healthy Nutr. Diet. 2021, 17, 93–97. [Google Scholar] [CrossRef]
- Askarov, I.R.; Otakhonov, K.K.; Matamirova, S.A.; Mirzaev, U.V.; Khozhikulov, A.S. Chemical composition of pumpkin. J. Chem. Goods Tradit. Med. 2022, 1, 261–269. [Google Scholar] [CrossRef]
- Okakpu, C.; Okakpu, K.; Ebere, U.; Ukpai, F.; Onyenweaku, O.; Ndife, N. Production and Evaluation of Instant Breakfast Cereals Using Whole Corn, Millet, Sorghum and Rice. J. Bio-Geo Mater. Dan Energy 2024, 4, 72–83. [Google Scholar] [CrossRef]
- Chae, J.; Kim, S.; Yeon, J.; Shin, S.; Ju, S. Consumer Acceptability of Various Gluten-Free Scones with Rice, Buckwheat, Black Rice, Brown Rice, and Oat Flours. Foods 2025, 14, 2464. [Google Scholar] [CrossRef]
- Berketova, L.V. The content of dietary fiber in cereal-based complementary foods. Proc. Voronezh State Univ. Eng. Technol. 2021, 83, 154–159. [Google Scholar] [CrossRef]
- Dogan, I.S.; Yildiz, O.; Meral, R. Optimization of corn, rice and buckwheat formulations for gluten-free wafer production. Food Sci. Technol. Int. 2015, 22, 410–419. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, W.; Guo, X.; Song, G.; Pang, S.; Fang, W.; Peng, Z. Effects of Oats, Tartary Buckwheat, and Foxtail Millet Supplementation on Lipid Metabolism, Oxido-Inflammatory Responses, Gut Microbiota, and Colonic SCFA Composition in High-Fat Diet Fed Rats. Nutrients 2022, 14, 2760. [Google Scholar] [CrossRef] [PubMed]
- Mir, N.A.; Yousuf, B.; Gul, K.; Riar, C.S.; Singh, S. Cereals and Pseudocereals: Genera Introduction, Classification, and Nutritional Properties. In Food Bioactives; Apple Academic Press: Palm Bay, FL, USA, 2019; pp. 281–322. [Google Scholar] [CrossRef]
- Bhat, S.A.; Singla, M.; Goraya, R.K.; Kumar, Y.; Jan, K.; Bashir, K. Dose-Dependent Effects of Gamma Irradiation on Microbiological, Antioxidant, and Functional Properties of Buckwheat, Cowpea, Oat, and Brown Rice Flour. J. Food Process. Preserv. 2024, 2024, 1196594. [Google Scholar] [CrossRef]
- Raut, B.N.; Sakhale, B.K.; Vairagar, P.R.; Waghchaure, R.S.; Quadri, A.S. Young Cereal Grains: The Emerging Nutraceuticals. In Traditional Foods: The Reinvented Superfoods; Springer: Berlin/Heidelberg, Germany, 2024; pp. 207–223. [Google Scholar] [CrossRef]
- Owusu-Apenten, R.; Vieira, E. Cereal Grains; Food Science Text Series; In Elementary Food Science; Springer: Berlin/Heidelberg, Germany, 2022; pp. 481–497. [Google Scholar] [CrossRef]
- Forney, C.F.; Kalt, W.; Jordan, M.A.; Vinqvist-Tymchuk, M.R.; Fillmore, S.A.E. Blueberry and cranberry fruit composition during development. J. Berry Res. 2012, 2, 169–177. [Google Scholar] [CrossRef]
- Kierońska, E.; Skoczylas, J.; Dziadek, K.; Pomietło, U.; Piątkowska, E.; Kopeć, A. Basic Chemical Composition, Selected Polyphenolic Profile and Antioxidant Activity in Various Types of Currant (Ribes spp.) Fruits. Appl. Sci. 2024, 14, 8882. [Google Scholar] [CrossRef]
- Nguyen, S.N.; Drawbridge, P.; Beta, T. Distribution of cereal phytochemicals and micronutrients in whole grains: A review of nutraceutical, industrial, and agricultural implications. Cereal Chem. 2024, 101, 903–925. [Google Scholar] [CrossRef]
- Peter, O.A.; Kwanashie, M. Impact of Cereal Production on Food Inflation in Nigeria. Afr. J. Agric. Sci. Food Res. 2025, 18, 167–201. [Google Scholar] [CrossRef]
- Naumova, N.L.; Lukin, A.A.; Slepneva, T.N.; Velisevich, E.A. Biochemical composition of zoned apple varieties growing in different agrocenoses. Proc. Univ. Appl. Chem. Biotechnol. 2023, 13, 255–262. [Google Scholar] [CrossRef]
- Brar, N.S.; Hundal, J.S.; Kaur, S. Silage production potential of winter cereals and spring corn in rice-based crop rotations. Crop Forage Turfgrass Manag. 2023, 9, e20253. [Google Scholar] [CrossRef]
- GOST ISO 6658-2016; Sensory Analysis. Methodology. General Guidelines. StandardInform: Moscow, Russia, 2016; pp. 1–26. Available online: https://standartgost.ru/g/%D0%93%D0%9E%D0%A1%D0%A2_ISO_6658-2016 (accessed on 23 April 2025).
- GOST 8756.1-2017; Fruit, Vegetable and Mushroom Products. Methods for Determination of Organoleptic Characteristics, Components Fraction of Total Mass and Net Mass or Volume. StandardInform: Moscow, Russia, 2019; pp. 1–15. Available online: https://files.stroyinf.ru/Data/657/65719.pdf?ysclid=meo9jyjpde984354368 (accessed on 23 April 2025).
- GOST 10846-91; Grain and Products of Its Processing. Method for Determination of Protein. StandardInform: Moscow, Russia, 2009; pp. 1–8. Available online: https://files.stroyinf.ru/Data2/1/4294840/4294840031.pdf (accessed on 23 April 2025).
- GOST 29033-91; Grain and Derived Products. Determination of fat Content. Standard Publishing House: Moscow, Russia, 2015; pp. 1–6. Available online: https://files.stroyinf.ru/Data2/1/4294825/4294825650.pdf (accessed on 23 April 2025).
- GOST 31675-2012; Feeds. Methods for Determination of Crude Fibre Content with Intermediate Filtration. StandardInform: Moscow, Russia, 2020; pp. 1–10. Available online: https://internet-law.ru/gosts/gost/52702/ (accessed on 25 April 2025).
- GOST 25555.4-91; Fruit and Vegetable Products. Methods for Determination of Ash and Alkalinity of Total Ash and Water-soluble Ash. StandardInform: Moscow, Russia, 2011; pp. 1–6. Available online: https://files.stroyinf.ru/Data/105/10506.pdf (accessed on 28 April 2025).
- GOST R 54058-2010; Functional Food. Method for Determination of Carotinoids. StandardInform: Moscow, Russia, 2019; pp. 1–10. Available online: https://internet-law.ru/gosts/gost/50791/ (accessed on 29 April 2025).
- GOST 32771-2014; Juice Products. Determination of Organic Acids by Reverse-Phase High-Performance Liquid Chromatography. StandardInform: Moscow, Russia, 2014; pp. 1–22. Available online: https://files.stroyinf.ru/Data2/1/4293769/4293769474.pdf (accessed on 29 April 2025).
- GOST R 54635-2011; Functional Food Products. Method of Vitamin A Determination. StandardInform: Moscow, Russia, 2019; pp. 1–12. Available online: https://internet-law.ru/gosts/gost/52090/ (accessed on 29 April 2025).
- GOST 31483-2011; Premixes. Determination of Vitamins: B1 (Thiaminchloride), B2 (Riboflavin), B3 (Pantothenic Acid), B5 (Nicotinic Acid and Nicotinamide), B6 (Pyridoxine), Bc (Folic Acid), C (Ascorbic Acid) Content by Method of Capillary Electrophoresis. StandardInform: Moscow, Russia, 2020; pp. 1–23. Available online: https://internet-law.ru/gosts/gost/52306/ (accessed on 30 April 2025).
- GOST R 54634-2011; Functional Food Products. Method of Vitamin E Determination. StandardInform: Moscow, Russia, 2013; pp. 1–15. Available online: https://files.stroyinf.ru/Data2/1/4293792/4293792206.pdf (accessed on 29 April 2025).
- GOST 33462-2015; Juice Products. Determination of Sodium, Potassium, Calcium and Magnesium by Atomic Absorption Spectrometry Method. StandardInform: Moscow, Russia, 2016; pp. 1–16. Available online: https://files.stroyinf.ru/Data2/1/4293758/4293758091.pdf (accessed on 23 April 2025).
- GOST 26657-97; Fodders, Mixed Fodders, Mixed Fodder Raw Materials. Methods for Determination of Phosphorus Content. Interstate Council for Standardization, Metrology and Certification: Minsk, Belarus, 1999; pp. 1–12. Available online: https://internet-law.ru/gosts/gost/18643/ (accessed on 23 April 2025).
- GOST 32343-2013; Feed, Compound Feed. Determination of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc Content by Atomic Absorption Spectrometry. StandardInform: Moscow, Russia, 2020; pp. 1–18. Available online: https://internet-law.ru/gosts/gost/57261/ (accessed on 23 April 2025).
- Iskakova, G.K.; Абдреева, A.S.; Askarbekov, E.B.; Batyrbaeva, N.B.; Samadun, A.I. Substantiation of ultrasound-assisted extraction parameters for obtaining an extract from rose hips (Rosa canina L.). Bull. Shakarim Univ. Tech. Sci. 2024, 1, 92–98. [Google Scholar] [CrossRef]
- Zhakupova, G.N.; Makangali, K.K.; Sagandyk, A.T.; Tokysheva, G.M. The research and analysis of the physico-chemical composition of irga and chokeberry. J. Almaty Technol. Univ. 2023, 2, 167–176. [Google Scholar] [CrossRef]
- Chuchalin, V.S. Technology of Extraction Phyto Preparations: A Textbook; Publishing House of SibSMU: Tomsk, Russia, 2019; p. 198. [Google Scholar]
- Izembayeva, A.; Moldakulova, Z.; Abdreeva, A.; Iskakova, G.; Baiysbayeva, M.; Atyhanova, M. Substantiation of wild plants used as functional ingredients in the technology of crisp grain bread. Potravin. Slovak J. Food Sci. 2024, 18, 697–718. [Google Scholar] [CrossRef]
- Asare, E.O.; Bhujel, N.K.; Čížková, H.; Rajchl, A. Fortification of fruit products. A review. Czech J. Food Sci. 2022, 40, 259–272. [Google Scholar] [CrossRef]
- Surya, N.; Jesupriya Poornakala, S.; Kanzhana, S.; Hemalatha, G. Development of Amla (Emblica officinalis) ready to serve beverage fortified with dietary fiber. Emergent Life Sci. Res. 2020, 6, 6–15. [Google Scholar] [CrossRef]
- Qhasemi, Y.; Ghasemi, K.; Pirdashti, H.; Asgharzadeh, R. Effect of Selenium Enrichment on the Growth, Photosynthesis and Mineral Nutrition of Broccoli. Not. Sci. Biol. 2016, 8, 199–203. [Google Scholar] [CrossRef]
- Nemati, M.; Kamilah, H.; Huda, N.; Ariffin, F. In vitro calcium availability in bakery products fortified with tuna bone powder as a natural calcium source. Int. J. Food Sci. Nutr. 2015, 67, 535–540. [Google Scholar] [CrossRef]
- Panasenko, L.M.; Kartseva, T.V.; Nefedova, Z.V.; Zadorina-Khutornaya, E.V. Role of the main mineral substances in the child nutrition. Ros Vestn Perinatol I Pediatr 2018, 63, 122–127. Available online: https://cyberleninka.ru/article/n/rol-osnovnyh-mineralnyh-veschestv-v-pitanii-detey?ysclid=meo9n6et3z401934932 (accessed on 8 May 2025). [CrossRef]
- Filimonov, R.M.; Fesyun, A.D.; Filimonova, T.R.; Borisevich, O.O. Role of microelements in drinking mineral waters in metabolic processes of the gastrointestinal tract. Exp. Clin. Gastroenterol. 2022, 8, 179–189. [Google Scholar] [CrossRef]
- Shchetinina, Y. The importance of vitamins for healthy human life. Int. J. Humanit. Nat. Sci. 2024, 3, 26–30. [Google Scholar] [CrossRef]
- Novytskyi, Y.; Sabirov, O.; Luskan, O. The influence of rational nutrition on the health of students. Sci. J. Natl. Pedagog. Dragomanov. Univ. 2024, 1, 21–24. [Google Scholar] [CrossRef]
- Biebinger, R.; Hurrell, R.F.; Ottaway, P. Vitamin and mineral fortification of foods. In Food Fortification and Supplementation: Technological, Safety and Regulatory Aspects; CRC Press: Boca Raton, FL, USA, 2008; pp. 27–40. [Google Scholar] [CrossRef]
- Jain, S.K.; Khurdiya, D.S. Vitamin C Enrichment of Fruit Juice Based Ready-to-Serve Beverages Through Blending of Indian Gooseberry (Emblica officinalis Gaertn.) Juice. Plant Foods Hum. Nutr. 2004, 59, 63–66. [Google Scholar] [CrossRef]
- Patel, D.; Bhise, S. Betacyanin, Antioxidant Activity and Shelf-life Evaluation of Thermally, Microwave, and Chemically Processed Lime-flavored Dragon Fruit Ready to Serve Beverage. J. Sci. Res. Rep. 2024, 30, 1–13. [Google Scholar] [CrossRef]
- Flory, S.; Birringer, M.; Frank, J. Bioavailability and Metabolism of Vitamin E. In Vitamin E in Human Health. Nutrition and Health; Weber, P., Birringer, M., Blumberg, J., Eggersdorfer, M., Frank, J., Eds.; Humana Press: Cham, Germany, 2019. [Google Scholar] [CrossRef]
- Evdokimova, O.; Evdokimov, N.; Ivanova, T.; Pyanikova, E.; Kovaleva, A. A systematic approach to the production of functional food products using medicinal plant raw materials. E3S Web Conf. 2024, 548, 02011. [Google Scholar] [CrossRef]
- Kusova, R.D.; Gatzieva, E.S.; Trofimenko, O.Y. Determination of organic acids in plants; territories of the Republic of North Osettia-Alania. In Proceedings of the IX International Student Scientific Conference “Student Scientific Forum”, St. Petersburg, Russia, 16 May 2017; Available online: https://scienceforum.ru/2017/article/2017040359 (accessed on 29 May 2025).
- Khoiriyah, N.; Haifa, H.; Yulistianingsih, A. Formulation of granola bar based on soybean and moringa leaf flour as alternative snack for adolescent. BIS Health Environ. Sci. 2025, 2, V225014. [Google Scholar] [CrossRef]
- Smailova, Z.Z.; Aman, S.E.; Sarsenbayeva, Z.T.; Temirbekovna, A.; Serikov, A.K. Control of organoleptic and physico-chemical parameters of jerusalem artichoke vegetable fiber dumplings. J. Almaty Technol. Univ. 2024, 146, 5–12. [Google Scholar] [CrossRef]
- Tursunbayeva, S.A.; Iztayev, A.; Magomedov, M.; Yakiyayeva, M.A.; Muldabekova, B.Z. Study of the quality of low-classes wheat and bread obtained by the accelerated test method. Periódico Tchê Química 2019, 16, 809–823. Available online: https://www.researchgate.net/publication/340950500_Study_of_the_quality_of_low-class_wheat_and_bread_obtained_by_the_accelerated_test_method (accessed on 29 May 2025). [CrossRef]
- Azembaev, A.A.; Tegisbaev, N.E.; Kusnieva, A.E.; Baymurzina, M.A.; Adibaev, A.L. Medicinal Plants of Kazakhstan Used in Oriental and Academic Medicine; Publishing House “Nur-Print”: Almaty, Kazakhstan, 2015; p. 178. [Google Scholar]
- Gribova, N.A.; Eliseeva, L.G. Development of a scientifically-based formulation and technology of enriched cereal porridge. Vestn. VGUIT [Proc. VSUET] 2021, 83, 135–140. Available online: https://cyberleninka.ru/article/n/razrabotka-nauchno-obosnovannoy-retseptury-i-tehnologii-obogaschennyh-ekstrudirovannyh-produktov?ysclid=meo9qnc9y1927540630 (accessed on 30 May 2025).
- Wani, S.A.; Kumar, P. Fenugreek enriched extruded product: Optimization of ingredients using response surface methodology. Int. Food Res. J. 2016, 23, 18–25. Available online: https://www.researchgate.net/publication/290054147_Fenugreek_enriched_extruded_product_optimization_of_ingredients_using_response_surface_methodology (accessed on 26 April 2025).
- Gribova, N.A.; Eliseeva, L.G. Research of demand and consumer preferences of processed fruit and berry raw materials and products based on them. Proc. Voronezh State Univ. Eng. Technol. 2023, 84, 432–438. [Google Scholar] [CrossRef]
- Reznichenko, I.Y.; Miroshina, T.A. Substantiation of the composition and technological parameters of the preparation of muesli bars with increased nutritional value. Polzunovsky Bull. 2023, 4, 62–69. [Google Scholar] [CrossRef]
- Salam, I.; Hafize, F.; Sulaiman, A.; Stanko, S.; Galin, I. Application of Date (Phoenix dactylifera L.) Fruit in the Composition of a Novel Snack Bar. Foods 2021, 10, 918. [Google Scholar] [CrossRef]
- Gurovanov, S.A.; Snurnikova, Y.A.; Toshev, A.D. Development of tourist food products with specified properties from grain raw materials. Bull. KrasGAU 2022, 9, 199–204. [Google Scholar] [CrossRef]
- Iztayev, A.; Kulazhanov, T.; Yakiyayeva, M.; Kizatova, M.; Maemerov, M.; Stankevych, G.; Toxanbayeva, B.; Chakanova, Z. Controlling the implemented mathematical models of ion-ozone cavitation treatment for long-term storage of grain legume crops. J. Adv. Res. Dyn. Control Syst. 2018, 10, 672–680. [Google Scholar]
- Ek, P.; Gu, B.; Richter, J.K.; Dey, D.; Saunders, S.R.; Ganjyal, G.M. High methoxyl pectin can improve the extrusion characteristics and increase the dietary fiber content of starch-cellulose extrudates. J. Food Sci. 2023, 88, 4156–4168. [Google Scholar] [CrossRef]
- Petik, I.; Stankevych, S.; Panasenko, V.; Siedykh, K.; Ponomarova, M.; Filenko, O.; Balandina, I.; Ryabev, A.; Zolotarova, S.; Novikova, V. Modification of structural and mechanical properties of the extrudate by enrichment with food fibers and lipids. East.-Eur. J. Enterp. Technol. 2025, 3, 15–21. [Google Scholar] [CrossRef]
- Elapov, A.A.; Kuznetsov, N.N.; Marakhova, A.I. The Use of Ultrasound in the Extraction of Biologically Active Compounds from Plant Raw Materials, Used or promising for Use in Medicine (Review). Drug Dev. Regist. 2021, 10, 96–116. [Google Scholar] [CrossRef]
- Madhu, B.; Srinivas, M.S.; Srinivas, G.; Jain, S.K. Ultrasonic Technology and Its Applications in Quality Control, Processing and Preservation of Food: A Review. Curr. J. Appl. Sci. Technol. 2019, 32, 1–11. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Extraction of phenolic compound from lime peel waste using ultrasonic-assisted and microwave-as sisted extractions. Food Biosci. 2019, 28, 66–73. [Google Scholar] [CrossRef]
- Zoumpoulakis, P.; Sinanoglou, V.J.; Siapi, E.; Heropoulos, G.; Proestos, C. Evaluating Modern Techniques for the Extraction and Characterisation of Sunflower (Hellianthus annus L.) Seeds Phenolics. Antioxidants 2017, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Maran, J.P.; Manikandan, S.; Nivetha, C.V.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem. 2017, 10, 1145–1157. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Zahorulko, A.; Zagorulko, A.; Savytska, N.; Minenko, S.; Pugach, A.; Ponomarenko, N.; Zakharchenko, R.; Pikula, O. Design of a universal apparatus for heat treatment of meat and vegetable cooked and smoked products with the addition of dried semi-finished products of a high degree of readiness to the recipe. East.-Eur. J. Enterp. Technol. 2023, 4, 73–82. [Google Scholar] [CrossRef]
- Baranova, Y.V.; Novgorodska, N.V.; Ovsienko, S.M.; Novhorodskyi, O.V. Cheese with pine nuts. Sci. Messenger LNU Vet. Med. Biotechnol. 2025, 27, 99–104. [Google Scholar] [CrossRef]
- Umiyati, R.; Finda, E.M.; Rizky, M.D.U.; Fafa, N. Studi Karakteristik Sereal Breakfast Flakes Dari Variasi Konsentrasi Tepung Beras Merah Dan Tepung Edamame Dengan Perbedaan Perlakuan Pengukusan. J. Sains Boga 2025, 8, 29–41. [Google Scholar] [CrossRef]
- Skorodumov, A.S.; Nesterov, E.D.; Gorn, D.S.; Barkanov, A.S.; Shanenko, E.F. Prospects for the use of inulin and its modifications in the food, cosmetic and pharmaceutical industries. Vestn. MGTU 2025, 28, 312–324. [Google Scholar] [CrossRef]
- Sharikov, A.U.; Polivanovskaya, D.V.; Amelyakina, M.V.; Turshatov, M.V.; Soloviev, A.O.; Abramova, I.M. Development of technology for instant porridges based on extrudates of rice and distillery stillage of Jerusalem artichoke. Food Process. Ind. 2024, 10, 58–63. [Google Scholar] [CrossRef]
Raw Material | Content of Raw Materials (g) Formulae | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Oatmeal | 50 | 30 | 30 | 35 | 25 | 50 | 30 | 30 | 35 | 25 |
Cornflakes | - | 20 | 10 | - | 20 | 10 | ||||
Rice flakes | - | 20 | 10 | - | 20 | 10 | ||||
Buckwheat flakes | - | 15 | 5 | - | 15 | 5 | ||||
Apple, dried | 5 | 5 | 5 | 5 | 5 | |||||
Pumpkin, dried | - | - | - | - | - | 4 | 4 | 4 | 4 | 4 |
Syrup (cranberry fruit concentrate, molasses, and sorbitol) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Walnuts | 8 | 8 | 8 | 8 | 8 | 5 | 5 | 5 | 5 | 5 |
Almonds | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 |
Pumpkin seeds | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Cashews | - | - | - | - | - | 3 | 3 | 3 | 3 | 3 |
Raisin | 8 | 8 | 8 | 8 | 8 | |||||
Apricot, dried | - | - | - | - | - | 7 | 7 | 7 | 7 | 7 |
Cranberry, dried | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Butter | - | - | - | - | - | 5 | 5 | 5 | 5 | 5 |
Olive oil | 4 | 4 | 4 | 4 | 4 | |||||
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Component | Content per 100 g of Product | ||||||
---|---|---|---|---|---|---|---|
Syrgalym Oats | Tatti-2012 Corn | Barakat Rice | Shortandinskaya 3 Buckwheat | Karina Pumpkin | Ben Lear Cranberry | Zailiyskiy Apple | |
Physicochemical parameters | |||||||
Protein (g) | 11.07 ± 0.15 | 13.32 ± 0.08 | 7.21 ± 0.05 | 12.69 ± 0.17 | 0.91 ± 0.01 | 0.8 ± 0.002 | 0.6 ± 0.002 |
Fat (g) | 6.2 ± 0.08 | 5.28 ± 0.04 | 2.1 ± 0.05 | 3.08 ± 0.04 | 0.06 ± 0.002 | 0.40 ± 0.02 | 0.2 ± 0.005 |
Carbohydrates (g) | 58.24 ± 0.82 | 63.97 ± 0.57 | 69.48 ± 0.59 | 59.0 ± 0.88 | 6.88 ± 0.07 | 6.4 ± 0.05 | 10.68 ± 0.07 |
Dietary fibre (g) | 12.0 ± 0.12 | 8.35 ± 0.05 | 6.1 ± 0.05 | 13.0 ± 0.05 | 2.17 ± 0.03 | 3.3 ± 0.02 | 1.51 ± 0.05 |
Ash (g) | 3.65 ± 0.05 | 3.10 ± 0.02 | 1.01 ± 0.05 | 1.67 ± 0.03 | 0.49 ± 0.005 | 0.5 ± 0.02 | 0.48 ± 0.04 |
Vitamins (mg) | |||||||
A | ND | ND | ND | ND | 0.28 ± 0.01 | ND | ND |
β-carotene | 0.05 ± 0.001 | 0.32 ± 0.001 | ND | 0.057 ± 0.001 | 2.61 ± 0.01 | 0.41 ± 0.005 | 0.25 ± 0.002 |
B1 | 0.47 ± 0.078 | 0.77 ± 0.154 | 0.10 ± 0.02 | 0.159 ± 0.03 | 0.061 ± 0.012 | 0.03 ± 0.006 | 0.04 ± 0.008 |
B2 | 0.19 ± 0.085 | 0.228 ± 0.096 | 0.03 ± 0.013 | 0.311 ± 0.130 | 0.064 ± 0.027 | 0.04 ± 0.017 | 0.04 ± 0.017 |
B3 | 4.40 ± 0.88 | 6.43 ± 1.286 | 3.38 ± 0.67 | 2.550 ± 0.51 | 0.609 ± 0.121 | 0.06 ± 0.012 | 0.60 ± 0.12 |
B5 | 1 ± 0.155 | 1.9 ± 0.479 | 0.45 ± 0.081 | 0.801 ± 0.16 | 0.517 ± 0.103 | 0.295 ± 0.029 | 0.101 ± 0.018 |
B6 | 0.252 ± 0.05 | 0.19 ± 0.038 | 0.18 ± 0.036 | 0.233 ± 0.05 | 0.114 ± 0.022 | 0.08 ± 0.012 | 0.05 ± 0.010 |
B9 | 0.011 ± 0.001 | 0.161 ± 0.032 | 0.020 ± 0.004 | 0.045 ± 0.009 | 0.017 ± 0.003 | ND | ND |
C | ND | 18.3 ± 6.22 | 1.23 ± 0.418 | 0.493 ± 0.17 | 6.07 ± 2.06 | 17.15 ± 5.83 | 12.01 ± 4.08 |
E | 1.709 ± 0.02 | 1.5 ± 0.005 | 0.49 ± 0.02 | 0.847 ± 0.03 | 0.519 ± 0.01 | 1.10 ± 0.02 | 0.32 ± 0.002 |
Minerals (mg) | |||||||
K | 468.92 ± 7.04 | 708.75 ± 5.97 | 121.05 ± 1.35 | 350.91 ± 4.91 | 244.19 ± 3.42 | 121.19 ± 0.84 | 138.49 ± 2.62 |
Ca | 120.31 ± 1.80 | 11.21 ± 0.33 | 10.43 ± 0.05 | 64.77 ± 0.206 | 30.07 ± 0.40 | 14.0 ± 0.20 | 10.24 ± 0.08 |
Mg | 135.0 ± 1.36 | 109.5 ± 1.02 | 47.99 ± 0.62 | 279.30 ± 1.11 | 10.35 ± 0.15 | 17.51 ± 0.15 | 10.05 ± 0.14 |
Na | 50.18 ± 0.75 | 52.5 ± 0.50 | 10.57 ± 0.05 | 6.8 ± 4.04 | 6.02 ± 0.09 | ND | 18.27 ± 0.17 |
P | 361 ± 5.45 | 311.5 ± 1.25 | 163.78 ± 1.05 | 326.05 ± 4.46 | 27.83 ± 0.33 | 14.39 ± 0.05 | 13.57 ± 0.13 |
Fe | 5.74 ± 0.06 | 1.28 ± 0.05 | 1.01 ± 0.02 | 8.60 ± 0.03 | 0.38 ± 0.005 | 0.83 ± 0.002 | 2.38 ± 0.03 |
Si | 885.06 ± 13.64 | ND | 87.15 ± 0.55 | ND | 24.91 ± 0.37 | ND | 1.20 ± 0.02 |
Cu | 0.713 ± 0.009 | 0.198 ± 0.005 | 0.275 ± 0.003 | 0.081 ± 0.001 | 0.210 ± 0.003 | 0.051 ± 0.0002 | 0.110 ± 0.001 |
Zn | 3.70 ± 0.05 | 1.75 ± 0.02 | 1.24 ± 0.02 | 2.09 ± 0.02 | 0.274 ± 0.004 | 0.12 ± 0.002 | 0.147 ± 0.005 |
Se | 13.8 ± 0.0001 | 0.021 ± 0.0005 | 0.010 ± 0.0002 | ND | ND | 0.1 ± 0.002 | ND |
Extractant | Yield of Extractive Substances (%) |
---|---|
Ethanol 30% | 33.91 |
Ethanol 40% | 46.57 |
Ethanol 50% | 41.57 |
Ethanol 60% | 50.37 |
Ethanol 70% | 56.59 |
Ethanol 80% | 54.06 |
Ethanol 96% | 48.4 |
Duration of Extraction (Mins) | Yield of Extractive Substances (%) |
---|---|
15 | 20.97 |
30 | 23.48 |
45 | 27.49 |
60 | 24.79 |
75 | 25.01 |
Indicator | Sample | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 | No. 9 | No. 10 | |
Colour | 4.9 ± 0.1 a | 4.7 ± 0.2 ab | 3.9 ± 0.3 c | 4.6 ± 0.2 ab | 4.6 ± 0.2 ab | 4.8 ± 0.1 a | 4.6 ± 0.2 ab | 4.1 ± 0.3 bc | 4.5 ± 0.2 ab | 4.6 ± 0.2 ab |
Taste | 4.9 ± 0.1 a | 4.9 ± 0.1 a | 4.4 ± 0.2 b | 4.8 ± 0.1 a | 4.9 ± 0.1 a | 4.9 ± 0.1 a | 4.9 ± 0.1 a | 4.3 ± 0.3 b | 4.8 ± 0.1 a | 4.9 ± 0.1 a |
Smell | 4.9 ± 0.1 a | 4.9 ± 0.1 a | 4.5 ± 0.2 b | 4.6 ± 0.2 b | 4.9 ± 0.1 a | 4.8 ± 0.1 a | 4.8 ± 0.1 a | 4.4 ± 0.2 b | 4.7 ± 0.1 ab | 4.9 ± 0.1 a |
Consistency | 4.8 ± 0.1 a | 4.6 ± 0.2 ab | 4.1 ± 0.3 c | 4.5 ± 0.2 b | 4.6 ± 0.2 ab | 4.7 ± 0.1 a | 4.6 ± 0.2 ab | 4.0 ± 0.3 c | 4.6 ± 0.2 ab | 4.6 ± 0.2 ab |
Formula | Formula Content | Chemical Composition of the Formula | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oatmeal | Corn- Flakes | Rice Flakes | Buck- Wheat Flakes | Apple, Dried | Pumpkin, Dried | Syrup | Walnuts | Almonds | Pumpkin Seeds | Cashews | Raisins | Apricot, Dried | Cranberry, Dried | Butter | Olive Oil | Protein (g) | Fat (g) | Carbo- Hydrates (g) | Dietary Fibre (g) | Vitamin C (mg) | Iron (mg) | Potassium (mg) | |
1 | 50 | 0 | 0 | 0 | 5 | 0 | 12 | 8 | 3 | 5 | 0 | 8 | 0 | 5 | 0 | 4 | 10.12 | 5.65 | 53.92 | 11.05 | 1.09 | 5.43 | 438.88 |
2 | 30 | 20 | 0 | 0 | 5 | 0 | 12 | 8 | 3 | 5 | 0 | 8 | 0 | 5 | 0 | 4 | 10.94 | 5.32 | 56 | 9.72 | 7.75 | 3.81 | 526.09 |
3 | 30 | 0 | 20 | 0 | 5 | 0 | 12 | 8 | 3 | 5 | 0 | 8 | 0 | 5 | 0 | 4 | 8.71 | 4.16 | 58 | 8.9 | 1.54 | 3.71 | 312.38 |
4 | 35 | 0 | 0 | 15 | 5 | 0 | 12 | 8 | 3 | 5 | 0 | 8 | 0 | 5 | 0 | 4 | 10.56 | 4.8 | 54.12 | 11.32 | 1.23 | 6.21 | 406.7 |
5 | 25 | 10 | 10 | 5 | 5 | 0 | 12 | 8 | 3 | 5 | 0 | 8 | 0 | 5 | 0 | 4 | 9.97 | 4.46 | 57.07 | 9.4 | 4.69 | 4.02 | 408.51 |
6 | 50 | 0 | 0 | 0 | 0 | 4 | 12 | 5 | 4 | 5 | 3 | 0 | 7 | 5 | 5 | 0 | 10.32 | 5.75 | 54.44 | 11.27 | 0.45 | 5.34 | 452.27 |
7 | 30 | 20 | 0 | 0 | 0 | 4 | 12 | 5 | 4 | 5 | 3 | 0 | 7 | 5 | 5 | 0 | 11.15 | 5.4 | 56.56 | 9.92 | 7.23 | 3.69 | 541.1 |
8 | 30 | 0 | 20 | 0 | 0 | 4 | 12 | 5 | 4 | 5 | 3 | 0 | 7 | 5 | 5 | 0 | 8.89 | 4.23 | 58.6 | 9.09 | 0.91 | 3.59 | 323.43 |
9 | 35 | 0 | 0 | 15 | 0 | 4 | 12 | 5 | 4 | 5 | 3 | 0 | 7 | 5 | 5 | 0 | 10.77 | 4.88 | 54.65 | 11.55 | 0.59 | 6.14 | 419.49 |
10 | 25 | 10 | 10 | 5 | 0 | 4 | 12 | 5 | 4 | 5 | 3 | 0 | 7 | 5 | 5 | 0 | 10.17 | 4.53 | 57.65 | 9.6 | 4.11 | 3.91 | 421.34 |
Variable | Correlation Colour Map (Granola) n = 10 (Line-by-Line Deletion of PD) r ≥ −1 | ||||||
---|---|---|---|---|---|---|---|
Protein (g) | Fats (g) | Carbohydrates (g) | Dietary Fibre (g) | Vitamin C (mg) | Iron (mg) | Potash (mg) | |
Oatmeal flakes | 0.126377 | 0.731569 | −0.754699 | 0.709719 | −0.537605 | 0.620431 | 0.134494 |
Corn flakes | 0.546821 | 0.208837 | 0.246220 | −0.367024 | 0.991604 | −0.564791 | 0.744948 |
Rice flakes | −0.914624 | −0.846673 | 0.861389 | −0.797742 | −0.191372 | −0.614118 | −0.807060 |
Buckwheat flakes | 0.318179 | −0.204170 | −0.406230 | 0.551007 | −0.304788 | 0.702135 | −0.113200 |
Apple, dried | −0.130196 | −0.072481 | −0.169933 | −0.108593 | 0.113671 | 0.050313 | −0.093643 |
Pumpkin, dried | 0.130196 | 0.072481 | 0.169933 | 0.108593 | −0.113671 | −0.050313 | 0.093643 |
syrup | |||||||
Walnut | −0.130196 | −0.072481 | −0.169933 | −0.108593 | 0.113671 | 0.050313 | −0.093643 |
Almond | |||||||
Pumpkin seeds | |||||||
Cashews | 0.130196 | 0.072481 | 0.169933 | 0.108593 | −0.113671 | −0.050313 | 0.093643 |
Raisins | −0.130196 | −0.072481 | −0.169933 | −0.108593 | 0.113671 | 0.050313 | −0.093643 |
Apricot, dried | 0.130196 | 0.072481 | 0.169933 | 0.108593 | −0.113671 | −0.050313 | 0.093643 |
Cranberry, dried | |||||||
Butter | 0.130196 | 0.072481 | 0.169933 | 0.108593 | −0.113671 | −0.050313 | 0.093643 |
Olive oil | −0.130196 | −0.072481 | −0.169933 | −0.108593 | 0.113671 | 0.050313 | −0.093643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldakulova, Z.; Kerimbayeva, A.; Sabitova, D.; Baigaiypkyzy, M.; Akhlan, T.; Abdreeva, A.; Serikova, A.; Baiysbayeva, M.; Iskakova, G. Development of a Functional Granola Enriched with Cranberry (Vaccinium macrocarpon, cv. Ben Lear) Extract: Formulation and Sensory Assessment. Processes 2025, 13, 2715. https://doi.org/10.3390/pr13092715
Moldakulova Z, Kerimbayeva A, Sabitova D, Baigaiypkyzy M, Akhlan T, Abdreeva A, Serikova A, Baiysbayeva M, Iskakova G. Development of a Functional Granola Enriched with Cranberry (Vaccinium macrocarpon, cv. Ben Lear) Extract: Formulation and Sensory Assessment. Processes. 2025; 13(9):2715. https://doi.org/10.3390/pr13092715
Chicago/Turabian StyleMoldakulova, Zilikha, Azhar Kerimbayeva, Daniya Sabitova, Makpal Baigaiypkyzy, Togzhan Akhlan, Asemkul Abdreeva, Aizhan Serikova, Meruyet Baiysbayeva, and Galiya Iskakova. 2025. "Development of a Functional Granola Enriched with Cranberry (Vaccinium macrocarpon, cv. Ben Lear) Extract: Formulation and Sensory Assessment" Processes 13, no. 9: 2715. https://doi.org/10.3390/pr13092715
APA StyleMoldakulova, Z., Kerimbayeva, A., Sabitova, D., Baigaiypkyzy, M., Akhlan, T., Abdreeva, A., Serikova, A., Baiysbayeva, M., & Iskakova, G. (2025). Development of a Functional Granola Enriched with Cranberry (Vaccinium macrocarpon, cv. Ben Lear) Extract: Formulation and Sensory Assessment. Processes, 13(9), 2715. https://doi.org/10.3390/pr13092715