Application of Electrochemical Oxidation for Urea Removal: A Review
Abstract
1. Introduction
1.1. Global Demand for Water Reuse and Ultra-Pure Water
1.2. Managing Urea in Water Reuse for UPW Applications
2. Urea in Reuse Water and Its Removal Challenges
2.1. Membrane-Based Separation
2.2. Adsorption-Based Techniques
2.2.1. Carbon-Based Adsorbents
2.2.2. Inorganic Adsorbents
2.2.3. Polymeric Adsorbents
2.3. Advanced Oxidation Processes
3. Electrochemical Urea Oxidation
3.1. Electrochemical Oxidation for Urea Decomposition
3.2. Optimizing Electrodes and Processes for Urea Decomposition
3.3. Limitations of EO Application and Future Research Direction
4. Conclusions and Future Perspectives
4.1. Future Work
4.1.1. Optimization Under Low-Conductivity Conditions Is Critical
4.1.2. Hybrid Integration Strategies
4.1.3. Pilot-Scale Validation
4.1.4. Techno-Economic and Environmental Assessment
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R. Development of Hybrid Processes for High Purity Water Production. Emerging Membrane Technology for Sustainable Water Treatment; Elsevier: Amsterdam, The Netherlands, 2016; pp. 327–357. [Google Scholar]
- Choi, J.; Chung, J. Evaluation of Urea Removal by Persulfate with UV Irradiation in an Ultrapure Water Production System. Water Res. 2019, 158, 411–416. [Google Scholar] [CrossRef]
- Lee, H.; Jin, Y.; Hong, S. Recent Transitions in Ultrapure Water (UPW) Technology: Rising Role of Reverse Osmosis (RO). Desalination 2016, 399, 185–197. [Google Scholar] [CrossRef]
- Zhao, P.; Bai, Y.; Liu, B.; Chang, H.; Cao, Y.; Fang, J. Process Optimization for Producing Ultrapure Water with High Resistivity and Low Total Organic Carbon. Process Saf. Environ. Prot. 2019, 126, 232–241. [Google Scholar] [CrossRef]
- Vinnerås, B.; Jönsson, H. The Performance and Potential of Faecal Separation and Urine Diversion to Recycle Plant Nutrients in Household Wastewater. Bioresour. Technol. 2002, 84, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Englehardt, J.; Wu, T. Review of Cost versus Scale: Water and Wastewater Treatment and Reuse Processes. Water Sci. Technol. 2013, 69, 223–234. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, Y. Research on Reclaimed Water from the Past to the Future: A Review. Environ. Dev. Sustain. 2022, 24, 112–137. [Google Scholar] [CrossRef]
- Lefebvre, O. Beyond NEWater: An Insight into Singapore’s Water Reuse Prospects. Curr. Opin. Environ. Sci. Health 2018, 2, 26–31. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Gu, J.; Sun, H.; Zhang, M.; Liu, Y. Technology Feasibility and Economic Viability of an Innovative Integrated Ceramic Membrane Bioreactor and Reverse Osmosis Process for Producing Ultrapure Water from Municipal Wastewater. Chem. Eng. J. 2019, 375, 122078. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Ngo, H.H.; Guo, W.; Wen, H.; Wang, X.; Zhang, J.; Long, T. A Critical Review on Challenges and Trend of Ultrapure Water Production Process. Sci. Total Environ. 2021, 785, 147254. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, D.; Lee, H.-J.; Shim, S.; Kim, J.H.; Lee, C. Enhanced Oxidation of Urea by pH Swing during Chlorination: pH-Dependent Reaction Mechanism. Water Res. 2023, 242, 120183. [Google Scholar] [CrossRef]
- Sim, J.; Lee, J.; Rho, H.; Park, K.-D.; Choi, Y.; Kim, D.; Kim, H.; Woo, Y.C. A Review of Semiconductor Wastewater Treatment Processes: Current Status, Challenges, and Future Trends. J. Clean. Prod. 2023, 429, 139570. [Google Scholar] [CrossRef]
- Weerakoon, D.; Bansal, B.; Padhye, L.P.; Rachmani, A.; James Wright, L.; Silyn Roberts, G.; Baroutian, S. A Critical Review on Current Urea Removal Technologies from Water: An Approach for Pollution Prevention and Resource Recovery. Sep. Purif. Technol. 2023, 314, 123652. [Google Scholar] [CrossRef]
- El Gheriany, I.; Abdel-Aziz, M.H.; El-Ashtoukhy, E.-S.Z.; Sedahmed, G.H. Electrochemical Removal of Urea from Wastewater by Anodic Oxidation Using a New Cell Design: An Experimental and Modeling Study. Process Saf. Environ. Prot. 2022, 159, 133–145. [Google Scholar] [CrossRef]
- Liang, F.; Wang, Y.; Liu, Y.; Yang, S.; Yin, F.; Peng, L. Electrochemical Oxidation Treatment of Organic Matter in Wastewater from Wet Fermentation of Yunnan Arabica Coffee. Water 2024, 16, 343. [Google Scholar] [CrossRef]
- Zhan, G.; Hu, L.; Li, H.; Dai, J.; Zhao, L.; Zheng, Q.; Zou, X.; Shi, Y.; Wang, J.; Hou, W.; et al. Highly Selective Urea Electrooxidation Coupled with Efficient Hydrogen Evolution. Nat. Commun. 2024, 15, 5918. [Google Scholar] [CrossRef]
- Kim, J.; Choi, W.J.K.; Choi, J.; Hoffmann, M.R.; Park, H. Electrolysis of Urea and Urine for Solar Hydrogen. Catal. Today 2013, 199, 2–7. [Google Scholar] [CrossRef]
- Mei, X.; Ma, M.; Guo, Z.; Shen, W.; Wang, Y.; Xu, L.; Zhang, Z.; Ding, Y.; Xiao, Y.; Yang, X.; et al. A Novel Clean and Energy-Saving System for Urea-Formaldehyde Resin Wastewater Treatment: Combination of a Low-Aeration-Pressure Plate Membrane-Aerated Biofilm Reactor and a Biological Aerated Filter. J. Environ. Chem. Eng. 2021, 9, 105955. [Google Scholar] [CrossRef]
- Lee, P.O.; Cherry, J.A.; Edmonds, J.W. Organic Nitrogen Runoff in Coastal Marshes: Effects on Ecosystem Denitrification. Estuaries Coasts 2017, 40, 437–446. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H. Mitigation of Lake Eutrophication: Loosen Nitrogen Control and Focus on Phosphorus Abatement. Prog. Nat. Sci. 2009, 19, 1445–1451. [Google Scholar] [CrossRef]
- Urbańczyk, E.; Sowa, M.; Simka, W. Urea Removal from Aqueous Solutions—A Review. J. Appl. Electrochem. 2016, 46, 1011–1029. [Google Scholar] [CrossRef]
- Yang, Q.; Guo, Y.; Xu, J.; Wu, X.; He, B.; Blatchley, E.R.; Li, J. Photolysis of N-Chlorourea and Its Effect on Urea Removal in a Combined Pre-Chlorination and UV254 Process. J. Hazard. Mater. 2021, 411, 125111. [Google Scholar] [CrossRef] [PubMed]
- Cheah, W.-K.; Ishikawa, K.; Othman, R.; Yeoh, F.-Y. Nanoporous Biomaterials for Uremic Toxin Adsorption in Artificial Kidney Systems: A Review. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- van Gelder, M.K.; Jong, J.A.W.; Folkertsma, L.; Guo, Y.; Blüchel, C.; Verhaar, M.C.; Odijk, M.; Van Nostrum, C.F.; Hennink, W.E.; Gerritsen, K.G.F. Urea Removal Strategies for Dialysate Regeneration in a Wearable Artificial Kidney. Biomaterials 2020, 234, 119735. [Google Scholar] [CrossRef] [PubMed]
- Zaher, A.; Shehata, N. Recent Advances and Challenges in Management of Urea Wastewater: A Mini Review. In Proceedings of the 5th International Conference on Advanced Sciences ICAS5, Hurghada, Egypt, 10–12 November 2019; Volume 1046, p. 012021. [Google Scholar]
- Shaban, A.; Basiouny, M.E.; AboSiada, O.A. Evaluation of Using Sequential Electrocoagulation and Chemical Coagulation for Urea Removal from Synthetic and Domestic Wastewater. Water. Air. Soil. Pollut. 2023, 234, 723. [Google Scholar] [CrossRef]
- Kim, C.; Yoo, H.; Lee, G.; Hong, H.-J. Powdered Activated Carbon (PAC)-Assisted Peroxymonosulfate Activation for Efficient Urea Elimination in Ultrapure Water Production from Reclaimed Water. Sci. Rep. 2024, 14, 4597. [Google Scholar] [CrossRef]
- Hermida-Ramón, J.M.; Öhrn, A.; Karlström, G. Planar or Nonplanar: What Is the Structure of Urea in Aqueous Solution? J. Phys. Chem. B 2007, 111, 11511–11515. [Google Scholar] [CrossRef]
- Cristinziano, P.; Lelj, F.; Amodeo, P.; Barone, G.; Barone, V. Stability and Structure of Formamide and Urea Dimers in Aqueous Solution. A Theoretical Study J. Chem. Soc. Faraday Trans. 1. Phys. Chem. Condens. Phases 1989, 85, 621–632. [Google Scholar]
- Kallies, B. Coupling of solvent and solute dynamics—molecular dynamics simulations of aqueous urea solutions with different intramolecular potentials. Phys. Chem. Chem. Phys. 2002, 4, 86–95. [Google Scholar] [CrossRef]
- Carlesi Jara, C.; Di Giulio, S.; Fino, D.; Spinelli, P. Combined Direct and Indirect Electroxidation of Urea Containing Water. J. Appl. Electrochem. 2008, 38, 915–922. [Google Scholar] [CrossRef]
- Yoon, Y.; Lueptow, R.M. Removal of Organic Contaminants by RO and NF Membranes. J. Membr. Sci. 2005, 261, 76–86. [Google Scholar] [CrossRef]
- Choi, S.-J.; Crane, L.; Kang, S.; Boyer, T.H.; Perreault, F. Removal of Urea in Ultrapure Water System by Urease-Coated Reverse Osmosis Membrane. Water Res. X 2024, 22, 100211. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.; Jeon, J.; Kim, S. High Recovery Design of Reverse Osmosis Process with High Permeate Water Quality and Low Wastewater Discharge for Ultra-Pure Water Production. Desalination 2024, 592, 118149. [Google Scholar] [CrossRef]
- Lipnizki, J.; Adams, B.; Okazaki, M.; Sharpe, A. Water Treatment: Combining Reverse Osmosis and Ion Exchange. Filtr. Sep. 2012, 49, 30–33. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, L.; Huang, N.; Wang, W.; Rong, Y.; Wang, Z.; Yuan, Y.; Xu, A.; Xiong, J.; Wu, Q.; et al. Evolution of Low Molecular Weight Organic Compounds during Ultrapure Water Production Process: A Pilot-Scale Study. Sci. Total Environ. 2022, 830, 154713. [Google Scholar] [CrossRef] [PubMed]
- Abusultan, A.A.M.; Wood, J.A.; Sainio, T.; Kemperman, A.J.B.; van der Meer, W.G.J. A Hybrid Process Combining Ion Exchange Resin and Bipolar Membrane Electrodialysis for Reverse Osmosis Remineralization. Desalination 2024, 573, 117209. [Google Scholar] [CrossRef]
- Aung, S.L.; Choi, J.; Cha, H.; Woo, G.; Song, K.G. Ammonia-Selective Recovery from Anaerobic Digestate Using Electrochemical Ammonia Stripping Combined with Electrodialysis. Chem. Eng. J. 2024, 479, 147949. [Google Scholar] [CrossRef]
- Kameda, T.; Ito, S.; Yoshioka, T. Kinetic and Equilibrium Studies of Urea Adsorption onto Activated Carbon: Adsorption Mechanism. J. Dispers. Sci. Technol. 2017, 38, 1063–1066. [Google Scholar] [CrossRef]
- Bansal, R.C.; Goyal, M. Activated Carbon Adsorption; CRC press: Boca Raton, FL, USA, 2005; ISBN 0-429-11418-4. [Google Scholar]
- Asiain-Mira, R.; Zamora, P.; Monsalvo, V.; Torrente-Murciano, L. Effect of Functional Groups on the Adsorption of Urea on Activated Carbon. Carbon 2024, 228, 119361. [Google Scholar] [CrossRef]
- Le, T.; Esfahani, M.R. Superfast Adsorption of Small and Uncharged Urea from Water Using Post-Sonicated Iron-Based Metal-Organic Framework. Chemosphere 2024, 347, 140566. [Google Scholar] [CrossRef]
- Pillai, M.G.; Simha, P.; Gugalia, A. Recovering Urea from Human Urine by Bio-Sorption onto Microwave Activated Carbonized Coconut Shells: Equilibrium, Kinetics, Optimization and Field Studies. J. Environ. Chem. Eng. 2014, 2, 46–55. [Google Scholar] [CrossRef]
- Simha, P.; Zabaniotou, A.; Ganesapillai, M. Continuous Urea–Nitrogen Recycling from Human Urine: A Step towards Creating a Human Excreta Based Bio–Economy. J. Clean. Prod. 2018, 172, 4152–4161. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Ngo, H.H.; Guo, W.; Li, Z.; Wang, X.; Zhang, J.; Long, T. A New Spent Coffee Grounds Based Biochar-Persulfate Catalytic System for Enhancement of Urea Removal in Reclaimed Water for Ultrapure Water Production. Chemosphere 2022, 288, 132459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Ngo, H.H.; Guo, W.; Sun, F.; Wang, X.; Zhang, J.; Long, T. Urea Removal in Reclaimed Water Used for Ultrapure Water Production by Spent Coffee Biochar/Granular Activated Carbon Activating Peroxymonosulfate and Peroxydisulfate. Bioresour. Technol. 2022, 343, 126062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Ngo, H.H.; Guo, W.; Long, T.; Wang, X.; Zhang, J.; Sun, F. Enhancement of Urea Removal from Reclaimed Water Using Thermally Modified Spent Coffee Ground Biochar Activated by Adding Peroxymonosulfate for Ultrapure Water Production. Bioresour. Technol. 2022, 349, 126850. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.-C.; Chen, Z.-H.; Van Tran, T.T.; Liu, S.-H.; Juang, R.-S. Enhanced and Selective Adsorption of Urea and Creatinine on Amine-Functionalized Mesoporous Silica SBA-15 via Hydrogen Bonding. Microporous Mesoporous Mater. 2021, 311, 110733. [Google Scholar] [CrossRef]
- Juang, R.-S.; Chien, C.-C.; Yao, C.-L.; Yu, S.-H.; Sun, A.-C. Preparation of Magnetically Recoverable Mesoporous Silica Nanocomposites for Effective Adsorption of Urea in Simulated Serum. J. Taiwan. Inst. Chem. Eng. 2018, 91, 22–31. [Google Scholar] [CrossRef]
- Leite-Silva, V.R.; Silva, C.V.D.; Higuchi, C.T.; Silva, H.D.T.D.; Duque, M.D.; Andréo-Filho, N.; Lopes, P.S.; Martins, T.S. Urea Incorporated into Ordered Mesoporous Silica for Potential Cosmetic Application. Braz. J. Pharm. Sci. 2020, 56, e17560. [Google Scholar] [CrossRef]
- Cejka, J.; van Bekkum, H.; Corma, A.; Schueth, F. Introduction to Zeolite Molecular Sieves; Elsevier: Amsterdam, The Netherlands, 2007; Volume 168, ISBN 0-08-055041-X. [Google Scholar]
- Galarneau, A.; Di Renzo, F.; Fajula, F.; Vedrine, J. Zeolites and Mesoporous Materials at the Dawn of the 21st Century. In Proceedings of the 13th International Zeolite Conference, Montpellier, France, 8–13 July 2001; Volume 135, ISBN 0-08-054391-X. [Google Scholar]
- Koubaissy, B.; Toufaily, J.; Yaseen, Z.; Daou, T.J.; Jradi, S.; Hamieh, T. Adsorption of Uremic Toxins over Dealuminated Zeolites. Adsorpt. Sci. Technol. 2017, 35, 3–19. [Google Scholar] [CrossRef]
- Suresh, S.; Ragula, U.B.R. A Regenerative Adsorption Technique for Removal of Uremic Toxins: An Alternative to Conventional Haemodialysis. Mater. Today Proc. 2020, 24, 714–723. [Google Scholar] [CrossRef]
- Andrade-Guel, M.; Cabello-Alvarado, C.; Cruz-Delgado, V.J.; Bartolo-Perez, P.; De León-Martínez, P.A.; Sáenz-Galindo, A.; Cadenas-Pliego, G.; Ávila-Orta, C.A. Surface Modification of Graphene Nanoplatelets by Organic Acids and Ultrasonic Radiation for Enhance Uremic Toxins Adsorption. Materials 2019, 12, 715. [Google Scholar] [CrossRef]
- Baei, M.T. Adsorption of the Urea Molecule on the B_ {12} N_ {12} Nanocage. Turk. J. Chem. 2014, 38, 531–537. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A.; Al-Omair, M.A.; Touny, A.H.; Saleh, M.M. Enhanced Adsorption and Removal of Urea from Aqueous Solutions Using Eco-Friendly Iron Phosphate Nanoparticles. J. Environ. Chem. Eng. 2019, 7, 102939. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Shao, Z.; Zhou, P. Preparation and Characterization of Chitosan/Cu(II) Affinity Membrane for Urea Adsorption. J. Appl. Polym. Sci. 2003, 90, 1108–1112. [Google Scholar] [CrossRef]
- Xue, C.; Wilson, L.D. Kinetic Study on Urea Uptake with Chitosan Based Sorbent Materials. Carbohydr. Polym. 2016, 135, 180–186. [Google Scholar] [CrossRef]
- Liu, X.; Sun, S.; Tang, Y.; Li, S.; Chang, J.; Guo, L.; Zhao, Y. Preparation and Kinetic Modeling of Cross-Linked Chitosan Microspheres Immobilized Zn (II) for Urea Adsorption. Anal. Lett. 2012, 45, 1632–1644. [Google Scholar] [CrossRef]
- Wilson, L.D.; Xue, C. Macromolecular Sorbent Materials for Urea Capture. J. Appl. Polym. Sci. 2013, 128, 667–675. [Google Scholar] [CrossRef]
- Pathak, A.; Bajpai, S.K. Preparation of Cu (II)-Immobilized Chitosan (CIC) and Preliminary Urea Uptake Study. Polym.-Plast. Technol. Eng. 2008, 47, 925–930. [Google Scholar] [CrossRef]
- Abidin, M.N.Z.; Goh, P.S.; Ismail, A.F.; Said, N.; Othman, M.H.D.; Hasbullah, H.; Abdullah, M.S.; Ng, B.C.; Kadir, S.H.S.A.; Kamal, F. Highly Adsorptive Oxidized Starch Nanoparticles for Efficient Urea Removal. Carbohydr. Polym. 2018, 201, 257–263. [Google Scholar] [CrossRef]
- Liang, Z.P.; Feng, Y.Q.; Meng, S.X.; Liang, Z.Y. Equilibrium and Kinetic Modeling of Adsorption of Urea Nitrogen onto Chitosan Coated Dialdehyde Cellulose. Process Biochem. 2005, 40, 3218–3224. [Google Scholar] [CrossRef]
- El-Sayed, E.S.A.; Dacrory, S.; Essawy, H.A.; Ibrahim, H.S.; Ammar, N.S.; Kamel, S. Sustainable Grafted Chitosan-Dialdehyde Cellulose with High Adsorption Capacity of Heavy Metal. BMC Chem. 2023, 17, 117. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Lee, G.; Zoh, K.-D. Benzophenone-3 Degradation via UV/H2O2 and UV/Persulfate Reactions. J. Hazard. Mater. 2021, 403, 123591. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, M.; San Román, M.F.; Ortiz, I.; Irabien, A. Overview of the PCDD/Fs Degradation Potential and Formation Risk in the Application of Advanced Oxidation Processes (AOPs) to Wastewater Treatment. Chemosphere 2015, 118, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.; Li, J.; Blatchley III, E.R. Effects of UV254 Irradiation on Residual Chlorine and DBPs in Chlorination of Model Organic-N Precursors in Swimming Pools. Water Res. 2012, 46, 2674–2682. [Google Scholar] [CrossRef]
- Mul, G.; Kapteijn, F.; Doornkamp, C.; Moulijn, J.A. Transition Metal Oxide Catalyzed Carbon Black Oxidation: A Study with18O2. J. Catal. 1998, 179, 258–266. [Google Scholar] [CrossRef]
- Blatchley, E.R., III; Cheng, M. Reaction Mechanism for Chlorination of Urea. Environ. Sci. Technol. 2010, 44, 8529–8534. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, A. Advanced Oxidation Process: A Remediation Technique for Organic and Non-Biodegradable Pollutant. Results Surf. Interfaces 2023, 11, 100122. [Google Scholar] [CrossRef]
- Peyton, G.R. The Free-Radical Chemistry of Persulfate-Based Total Organic Carbon Analyzers. Mar. Chem. 1993, 41, 91–103. [Google Scholar] [CrossRef]
- Long, L.; Bu, Y.; Chen, B.; Sadiq, R. Removal of Urea from Swimming Pool Water by UV/VUV: The Roles of Additives, Mechanisms, Influencing Factors, and Reaction Products. Water Res. 2019, 161, 89–97. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, N.; Wang, W.; Wu, Y.; Xue, S.; Xu, H.; Chen, Z.; Wu, Y.; Wu, Q.; Hu, H. Urea Removal for Ultrapure Water Production by VUV/UV/Chlorine under Acidic Aqueous Conditions: Facile Elimination and Efficient Denitrification. J. Clean. Prod. 2023, 401, 136732. [Google Scholar] [CrossRef]
- Kolios, G.; Johann, J.; Bissen, M.; Müller, A. Treatment of Water with Hypobromite Solution. U.S. Patent US8496830B2, 29 July 2010. [Google Scholar]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment–A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Bahmani, M.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. BiFeO3–BiOI Impregnation to UiO-66 (Zr/Ti) as a Promising Candidate Visible-Light-Driven Photocatalyst for Boosting Urea Photodecomposition in a Continuous Flow-Loop Thin-Film Slurry Flat-Plate Photoreactor. J. Solid. State Chem. 2020, 286, 121304. [Google Scholar] [CrossRef]
- Kim, H.; Kim, K.; Park, S.; Kim, W.; Kim, S.; Kim, J. Titanium Dioxide Surface Modified with Both Palladium and Fluoride as an Efficient Photocatalyst for the Degradation of Urea. Sep. Purif. Technol. 2019, 209, 580–587. [Google Scholar] [CrossRef]
- Ke, K.; Wang, G.; Cao, D.; Wang, G. Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis. In Electrocatalysis; Shao, M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 41–78. ISBN 978-3-030-43294-2. [Google Scholar]
- Singla, J.; Verma, A.; Sangal, V.K. Applications of Doped Mixed Metal Oxide Anode for the Electro-Oxidation Treatment and Mineralization of Urine Metabolite, Uric Acid. J. Water Process Eng. 2019, 32, 100944. [Google Scholar] [CrossRef]
- Zhang, C.; He, D.; Ma, J.; Waite, T.D. Active Chlorine Mediated Ammonia Oxidation Revisited: Reaction Mechanism, Kinetic Modelling and Implications. Water Res. 2018, 145, 220–230. [Google Scholar] [CrossRef]
- Di Giulio, S.; Carlesi Jara, C.; Fino, D.; Saracco, G.; Specchia, V.; Spinelli, P. Fate of Organic Nitrogen during Electrooxidation over Conductive Metal Oxide Anodes. Ind. Eng. Chem. Res. 2007, 46, 6783–6787. [Google Scholar] [CrossRef]
- Akkari, S. Electrochemical Urea Conversion on Nickel-Based Anodes. Ph.D. Thesis, Sorbonne Université, Paris, France, 2023. [Google Scholar]
- Hernlem, B.J. Electrolytic Destruction of Urea in Dilute Chloride Solution Using DSA Electrodes in a Recycled Batch Cell. Water Res. 2005, 39, 2245–2252. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, X.; Fang, L.; Lu, S. Urea Electrooxidation in Alkaline Environment: Fundamentals and Applications. ChemElectroChem 2023, 10, e202300138. [Google Scholar] [CrossRef]
- Suzuki, N.; Okazaki, A.; Takagi, K.; Serizawa, I.; Okada, G.; Terashima, C.; Katsumata, K.; Kondo, T.; Yuasa, M.; Fujishima, A. Formation of Ammonium Ions by Electrochemical Oxidation of Urea with a Boron-Doped Diamond Electrode. New J. Chem. 2020, 44, 17637–17640. [Google Scholar] [CrossRef]
- Schranck, A.; Doudrick, K. Effect of Reactor Configuration on the Kinetics and Nitrogen Byproduct Selectivity of Urea Electrolysis Using a Boron Doped Diamond Electrode. Water Res. 2020, 168, 115130. [Google Scholar] [CrossRef]
- Jermakka, J.; Freguia, S.; Kokko, M.; Ledezma, P. Electrochemical System for Selective Oxidation of Organics over Ammonia in Urine. Environ. Sci. Water Res. Technol. 2021, 7, 942–955. [Google Scholar] [CrossRef]
- Yang, K.; Hao, L.; Hou, Y.; Zhang, J.; Yang, J.-H. Summary and Application of Ni-Based Catalysts for Electrocatalytic Urea Oxidation. Int. J. Hydrogen Energy 2024, 51, 966–981. [Google Scholar] [CrossRef]
- Abdel Hameed, R.M.; Medany, S.S. NiO Nanoparticles on Graphene Nanosheets at Different Calcination Temperatures as Effective Electrocatalysts for Urea Electro-Oxidation in Alkaline Medium. J. Colloid. Interface Sci. 2017, 508, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, K.; Stuve, E.M. Electrooxidation of Urea and Creatinine on Nickel Foam-Based Electrocatalysts. J. Appl. Electrochem. 2021, 51, 945–957. [Google Scholar] [CrossRef]
- Ding, R.; Li, X.; Shi, W.; Xu, Q.; Wang, L.; Jiang, H.; Yang, Z.; Liu, E. Mesoporous Ni-P Nanocatalysts for Alkaline Urea Electrooxidation. Electrochim. Acta 2016, 222, 455–462. [Google Scholar] [CrossRef]
- Schranck, A.; Marks, R.; Yates, E.; Doudrick, K. Effect of Urine Compounds on the Electrochemical Oxidation of Urea Using a Nickel Cobaltite Catalyst: An Electroanalytical and Spectroscopic Investigation. Environ. Sci. Technol. 2018, 52, 8638–8648. [Google Scholar] [CrossRef]
- Cataldo Hernández, M.; Russo, N.; Panizza, M.; Spinelli, P.; Fino, D. Electrochemical Oxidation of Urea in Aqueous Solutions Using a Boron-Doped Thin-Film Diamond Electrode. Diam. Relat. Mater. 2014, 44, 109–116. [Google Scholar] [CrossRef]
- Simka, W.; Piotrowski, J.; Robak, A.; Nawrat, G. Electrochemical Treatment of Aqueous Solutions Containing Urea. J. Appl. Electrochem. 2009, 39, 1137–1143. [Google Scholar] [CrossRef]
- Simka, W.; Piotrowski, J.; Nawrat, G. Influence of Anode Material on Electrochemical Decomposition of Urea. Electrochim. Acta 2007, 52, 5696–5703. [Google Scholar] [CrossRef]
- Perez-Rodriguez, P.; Maqueira Gonzalez, C.; Bennani, Y.; Rietveld, L.C.; Zeman, M.; Smets, A.H. Electrochemical Oxidation of Organic Pollutants Powered by a Silicon-Based Solar Cell. ACS Omega 2018, 3, 14392–14398. [Google Scholar] [CrossRef]
- Qing, G.; Anari, Z.; Foster, S.L.; Matlock, M.; Thoma, G.; Greenlee, L.F. Electrochemical Disinfection of Irrigation Water with a Graphite Electrode Flow Cell. Water Environ. Res. 2021, 93, 535–548. [Google Scholar] [CrossRef]
- Zhu, K.; Ren, X.; Sun, X.; Zhu, L.; Sun, Z. Effect of Supporting Electrolyte on the Surface Corrosion and Anodic Oxidation Performance of Graphite Electrode. Electrocatalysis 2019, 10, 549–559. [Google Scholar] [CrossRef]
- Safwat, S.M.; Mamdouh, M.; Rozaik, E.; Abd-Elhalim, H. Performance Evaluation of Electrocoagulation Process Using Aluminum and Titanium Electrodes for Removal of Urea. Desalination Water Treat. 2020, 191, 239–249. [Google Scholar] [CrossRef]
- Liu, W.; Guo, Y.; Xiang, H.; Ran, G.; Wang, S.; Su, L.; Tan, C. An evaluation of a pilot-scale EO process based on BDD anode for leachate treatment: Performance, DOM degradation behavior and DBPs formation. J. Water Process Eng. 2025, 76, 108243. [Google Scholar] [CrossRef]
- Mahmoud, M.H.; Abdel-Monem, N.M.; Abdel-Salam, O.E.; Nassar, A.F.; El-Halwany, M.A. Removal of urea from industrial wastewater using electrochemical decomposition. J. Am. Sci. 2013, 9, 96–103. [Google Scholar]
Study Topic and Application Area | Year | Description of Research Focus | Urea Removal Technologies Reviewed | Ref. |
---|---|---|---|---|
Urea decomposition using electrochemical approaches | 2016 | Analysis of oxidation mechanisms for urea degradation | Adsorption, thermal hydrolysis, enzymatic hydrolysis, biological treatment, and electrochemical oxidation | [21] |
Uremic toxin removal in artificial kidney systems | 2017 | Medical application—urea removal from patients’ blood | Adsorption | [23] |
Uremic toxin removal in artificial kidney systems | 2020 | Integration of enzymatic and electrochemical treatments | Adsorption, enzymatic hydrolysis, and electrochemical oxidation | [24] |
Urea removal from municipal and reclaimed wastewater | 2021 | Environmental engineering focus on municipal reuse systems | Adsorption, thermal hydrolysis, biological treatment, and electrochemical oxidation | [25] |
Removal of low-molecular-weight organics in UPW systems | 2021 | Industrial UPW purification and enhancement strategies | Adsorption, reverse osmosis, photocatalysis, photolysis, and electrochemical oxidation | [10] |
Sequential electrocoagulation and chemical coagulation | 2023 | Enhanced urea removal from synthetic and domestic wastewater | Electrocoagulation (EC), chemical coagulation (CC), combined process (CC–EC) | [26] |
Electrooxidation of urea for hydrogen and N2 recovery | 2024 | High N2 selectivity via asymmetric Ni–O–Ti active sites | Electrochemical oxidation | [21] |
PAC-assisted SR-AOP for urea elimination in reclaimed water | 2024 | PMS activation using powdered activated carbon | Sulfate radical-based advanced oxidation process (SR-AOP) | [27] |
Category | Property | Value and Description |
---|---|---|
Basic Molecular Info. | Chemical formula | CH4N2O (Carbamide) |
Molecular weight | 60.06 g/mol | |
Density | 1.32 g/cm3 (measured at 20 °C) | |
Molecular dimensions | Approximately 0.56 × 0.63 × 0.30 nm (x, y, z) | |
Aqueous Behavior | pH of 10% aqueous solution | Around 7.2 (near-neutral) |
Acid dissociation constant (pK ₐ at 298 K) | 0.1 (indicates weak acidity) | |
Water–octanol partition coefficient | −2.11 (reflecting strong hydrophilicity) | |
Thermodynamic Properties | Standard enthalpy of combustion | 631.4 kJ/mol |
Gibbs free energy of formation | −38.5 kJ/mol | |
Total energy (approximate) | −645.0 kJ/mol | |
Electronic Properties | Ionization energy (IE) | Ranges from 9.70 to 10.33 eV |
Adsorbent Type | BET Surface Area (m2/g) | qmax (mg/g) | Adsorption Mechanism |
---|---|---|---|
Commercial GAC | 950 | 47.2 | Physisorption |
Activated Carbon Fiber | 1300 | 63.5 | Mixed (physisorption + chemisorption) |
HNO3-treated AC | 1100 | 58.4 | Chemisorption (surface –OH/–COOH enriched) |
Coconut shell-derived AC | 920 | 42.1 | Physisorption |
Spherical AC (SAC) | 1050 | 49.8 | Mixed; reusable over 5 cycles |
Biochar (Bamboo) | 450 | 35.7 | Physisorption |
Polymeric Adsorbent | Water Matrix/Condition | Urea Removal Performance | Key Features and Significance | Ref. |
---|---|---|---|---|
Chitosan/Cu(II) Affinity Membrane | Simulated reclaimed water, 25 °C, pH 7 | 110 mg/g (30 min) | Selective urea binding via Cu2+ coordination; applicable as a pre-filtration membrane for UPW | [58] |
Glutaraldehyde-crosslinked Chitosan (Cu2+ complex) | Model reclaimed water, 298 K | 205 mg/g (kobs ↑ with crosslinking) | Cu2+ chelation and crosslinking improve both adsorption kinetics and capacity | [59] |
Chitosan-coated Dialdehyde Cellulose (CDAC) | Reuse water + Urease-assisted | 65 mg/g (20 min) | Imine bond formation via –CHO groups; hybrid enzymatic–adsorptive urea removal system | [64] |
Oxidized Starch Nanoparticles (oxy-SNPs) | 200 mg/L urea in reclaimed water, 25 °C | 95% removal (4 h) qmax = 185 mg/g | Optimized –CHO and –COOH content; follows Langmuir isotherm model | [63] |
Dialdehyde Cellulose–Chitosan Hybrid/Acrylic Acid Graft | Simulated semiconductor reuse water | 150 mg/g (60 min) | Schiff base interaction + –COOH/–NH2 binding; >92% capacity retention after 5 reuse cycles | [65] |
Applied AOP and Key Conditions | Water Source | Urea Removal Performance | Remarks | Ref. |
---|---|---|---|---|
UV/Persulfate (PS), continuous column (25 °C, 254 nm) | Semiconductor UPW system, 2nd RO feed | >95% (20 µg/L, 30 min) | Reaction rate k ≈ 0.15/min; minimal sulfate/peroxide side reactions link | [46] |
Persulfate + UV (UV/S2O82−), continuous column, >20 μmol/L persulfate, 254 nm | UPW production process, low TOC UV unit feed water | Urea removal efficiency increased from 9% to 90% with >20 μmol/L persulfate, 30 min | UV dose is a critical factor | [2] |
VUV/UV/Cl2 (185+254 nm, acidic pH 5) | RO permeates (TOC < 50 µg/L) | 100% (10 µg/L, 10 min) | Urea-N → N2 84%, NO3− < 1 µg/L, no BrO3− link | [74] |
PAC-assisted PMS (SR-AOP, 0.2 g/L PAC, 2.0 g/L PMS) | Reclaimed water (2nd MF effluent) | 100% (30 µg/L, 5 min) | Stable at pH 5–9, CO32−/PO43− suppressed, Cl− promoted link | [27] |
O3/NaBr rapid bromination AOP | US Intel UPW system | <1 µg/L (initial 20 µg/L) | First industrial-scale application, TOC spike suppression link | [75] |
Pathway | Governing Step | Representative Andes | Key Reaction(s) | Typical By-Products | Ref. |
---|---|---|---|---|---|
Indirect (RCS-mediated) | Cl− → Cl2 → HOCl/ClO− | RuO2/Ti DSA, MMO, graphite | NH2CONH2 + 3 HOCl → N2 + CO2 + 3 Cl− + H2O | ClO3−, ClO4−, chloramine | [21] |
Direct electron transfer | Direct electron exchange between pollutant and electrode surface | Active anode | H2NCONH2 + H2O → N2 + 3H2 + CO2 + 6e− | Minimal by-products (matrix dependent) | [21,83] |
Direct physisorbed OH− | Water discharge on high-OER anode | BDD, PbO2, SnO2–Sb | OH- + NH2CONH2 → N2 + CO2 + H2O | NO3−, NO2− | [86] |
Direct chemisorbed Mox + 1 | Surface redox cycle (Ni(OH)2/NiOOH) | Ni–Pt foam, Co-doped steel | NiOOH + NH2CONH2 → Ni(OH)2 + N2 + CO2 | NO3−, NH4+ (minor) | [16] |
Material | Characteristic | Reaction Mechanism | Optimal Conditions | Product | Refs. |
---|---|---|---|---|---|
Nickel/Nickel Oxide | High activity in alkaline media; robust; widely studied | Direct oxidation on anode via Ni(OH)2/NiOOH redox; catalyzes urea oxidation | Alkaline solution (e.g., 1 M KOH), 0.4–0.65 V vs. Hg/HgO | N2, CO2 | [90,91,92,93] |
Dimensional Stable Anode | Chemically stable, high Cl2 evolution efficiency | Indirect oxidation via active chlorine (Cl2, HOCl, ClO−) generated at anode | Dilute chloride (100–400 ppm), 0.6–2.5 A, 16–34.5 °C | N2, CO2, minor NO3− | [84] |
Boron-Doped Diamond | Chemically inert, high O2 overpotential, generates hydroxyl radicals | Direct oxidation via •OH; also mediates RCS if Cl− present | Acidic–neutral pH, 3–4 V vs. SCE, divided/undivided cell | N2 (with Cl−), NO3− | [86,93,94] |
Ti/Pt, Ti/Pt–Ir, IrO2, RuO2 | Noble metal/oxide coatings, good for RCS formation | Indirect oxidation via Cl2/HOCl/ClO−; also some direct oxidation | Neutral–alkaline, moderate current densities | N2, CO2 | [95,96] |
Graphite | Traditional, inexpensive, high O2 overpotential | Indirect oxidation via Cl2/HOCl/ClO− (chlorine-mediated) | 0.5–3% NaCl, pH 5–7.6, 1.77–5.31 mA/cm2 | N2, CO2 | [97,98,99] |
Doped Mixed Metal Oxide | High durability, low O2 evolution, can be photo-assisted | Direct and indirect oxidation (•OH, RCS); enhanced by photoelectrocatalysis | 7.46 mA/cm2, 1.11 g/L NaCl, pH 3.25, ~43 min | 9–12 V, 3–4.5 cm electrode gap, NaCl/CaCl2 | [80] |
Aluminum, Titanium | Used in electrocoagulation, cost-effective | Removal via metal hydroxide floc formation, limited direct oxidation | 9–12 V, 3–4.5 cm electrode gap, NaCl/CaCl2 | Flocs, minor N2, CO2 | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Park, J.; Shim, I.; Koo, J.-W.; Nam, S.-H.; Kim, E.; Park, S.-M.; Hwang, T.-M. Application of Electrochemical Oxidation for Urea Removal: A Review. Processes 2025, 13, 2660. https://doi.org/10.3390/pr13082660
Lee J, Park J, Shim I, Koo J-W, Nam S-H, Kim E, Park S-M, Hwang T-M. Application of Electrochemical Oxidation for Urea Removal: A Review. Processes. 2025; 13(8):2660. https://doi.org/10.3390/pr13082660
Chicago/Turabian StyleLee, Juwon, Jeongbeen Park, Intae Shim, Jae-Wuk Koo, Sook-Hyun Nam, Eunju Kim, Seung-Min Park, and Tae-Mun Hwang. 2025. "Application of Electrochemical Oxidation for Urea Removal: A Review" Processes 13, no. 8: 2660. https://doi.org/10.3390/pr13082660
APA StyleLee, J., Park, J., Shim, I., Koo, J.-W., Nam, S.-H., Kim, E., Park, S.-M., & Hwang, T.-M. (2025). Application of Electrochemical Oxidation for Urea Removal: A Review. Processes, 13(8), 2660. https://doi.org/10.3390/pr13082660