Nuclear Energy as a Strategic Resource: A Historical and Technological Review
Abstract
1. Introduction
2. Methodology
3. Advances in Nuclear Energy (2000–2025)
3.1. Small Modular Reactors (SMRs)
3.2. Generation IV Reactors
3.3. Advances in Nuclear Fusion
4. Nuclear Safety
5. Regulations and Their Impact on the Nuclear Industry
5.1. Nuclear Waste Management
5.2. Nuclear Fuel Recycling
6. Environmental Impact
6.1. Comparison with Other Energy Sources
6.2. Limitations and Critical Perspectives
7. Potential of Nuclear Energy for Carbon Emissions Reduction
8. Challenges and Opportunities
8.1. Technological and Economic Barriers
8.2. Social Acceptance
8.3. Research and Development
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP1000 | Advanced Passive 1000 Reactor |
CFR | China Fast Reactor |
CO2 | Carbon Dioxide |
EPR | European Pressurized Reactor |
FMEA | Failure Modes and Effects Analysis |
GFR | Gas-cooled Fast Reactor |
GIF | Generation IV International Forum |
HLW | High-Level Waste |
IAEA | International Atomic Energy Agency |
IEA | International Energy Agency |
ILW | Intermediate-Level Waste |
INEEL | Idaho National Engineering and Environmental Laboratory |
IPCC | Intergovernmental Panel on Climate Change |
IPSS | Integrated Passive Safety System |
ITER | International Thermonuclear Experimental Reactor |
KAERI | Korea Atomic Energy Research Institute |
LLW | Low-Level Waste |
LFR | Lead-cooled Fast Reactor |
LWR | Light Water Reactor |
MOX | Mixed Oxide Fuel |
MSR | Molten Salt Reactor |
NEA | Nuclear Energy Agency |
NRC | Nuclear Regulatory Commission |
NSSC | Nuclear Safety and Security Commission |
NSSS | Nuclear Steam Supply System |
PUREX | Plutonium and Uranium Recovery by Extraction |
RDE | Experimental Power Reactor (Reaktor Daya Eksperimental) |
SMR | Small Modular Reactor |
SCWR | Supercritical Water-cooled Reactor |
SFR | Sodium-cooled Fast Reactor |
TBP | Tributyl Phosphate |
VHTR | Very-High-Temperature Reactor |
VLLW | Very Low-Level Waste |
VSLW | Very Short-Lived Waste |
References
- DeAngelo, J.; Azevedo, I.; Bistline, J.; Clarke, L.; Luderer, G.; Byers, E.; Davis, S.J. Energy systems in scenarios at net-zero CO2 emissions. Nat. Commun. 2021, 12, 6096. [Google Scholar] [CrossRef]
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. [Google Scholar] [CrossRef]
- International Energy Agency. Key World Energy Statistics 2021; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Peng, K.; Feng, K.; Chen, B.; Shan, Y.; Zhang, N.; Wang, P.; Fang, K.; Bai, Y.; Zou, X.; Wei, W.; et al. The global power sector’s low-carbon transition may enhance sustainable development goal achievement. Nat. Commun. 2023, 14, 3144. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.; Wei, Y.-M.; De La Vega Navarro, A.; Garg, A.; Hahmann, A.N.; Khennas, S.; Lima de Azevedo, I.M.; Löschel, A.; Singh, A.K.; Steg, L.; et al. Energy Systems. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; pp. 613–746. [Google Scholar] [CrossRef]
- Ritchie, H.; Rosado, P.; Electricity Mix. Our World in Data. 2020. Available online: https://ourworldindata.org/electricity-mix (accessed on 15 June 2025).
- Hardisty, P.E.; Clark, T.S.; Hynes, R.G. Life cycle greenhouse gas emissions from electricity generation: A comparative analysis of Australian energy sources. Energies 2012, 5, 872–897. [Google Scholar] [CrossRef]
- Campbell-Lendrum, D.; Corvalán, C.; Neira, M. Global climate change: Implications for international public health policy. Bull. World Health Organ. 2007, 85, 235–237. Available online: https://www.scielosp.org/pdf/bwho/v85n3/v85n3a20.pdf (accessed on 2 June 2025). [CrossRef] [PubMed]
- United Nations. Net Zero Coalition|United Nations; United Nations: New York, NY, USA, 2025; Available online: https://www.un.org/es/climatechange/net-zero-coalition (accessed on 18 June 2025).
- D’Ambrosio, D.; Schoenfisch, M.; Fischer, D. Electricity—Energy System; IEA: Paris, France, 2023; Available online: https://www.iea.org/energy-system/electricity (accessed on 11 July 2025).
- Huismans, M.; Voswinkel, F. Electrification—Energy System; IEA: Paris, France, 2023; Available online: https://www.iea.org/energy-system/electricity/electrification (accessed on 11 July 2025).
- Hahn, O.; Strassmann, F. Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Naturwissenschaften 1939, 27, 11–15. [Google Scholar] [CrossRef]
- Murray, R.L.; Holbert, K.E. The History of Nuclear Energy. In Nuclear Energy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 127–141. [Google Scholar] [CrossRef]
- Beck, P.W. Nuclear energy in the twenty-first century: Examination of a contentious subject. Annu. Rev. Environ. Resour. 1999, 24, 113–137. [Google Scholar] [CrossRef]
- Robertson, L.K.; Lamont, L.A. An overview of nuclear power. In Proceedings of the 2015 5th International Youth Conference on Energy (IYCE), Pisa, Italy, 27–30 May 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Zohuri, B. Generation IV nuclear reactors. In Nuclear Reactor Technology Development and Utilization; Woodhead Publishing: Sawston, UK, 2020; pp. 213–246. [Google Scholar] [CrossRef]
- WNISR. World Nuclear Power Reactors 1951–2025—The WNISR Interactive DataViz. 2025. Available online: https://www.worldnuclearreport.org/World-Nuclear-Power-Reactors-1951-2023 (accessed on 18 May 2025).
- IAEA. Nuclear´s Next Generation; IAEA: Vienna, Austria, 2010; Available online: https://www.iaea.org/newscenter/news/nuclear%C2%B4s-next-generation (accessed on 9 March 2025).
- Wanner, B.; Taniguchi, R. Nuclear Energy; IEA: Paris, France, 2023; Available online: https://www.iea.org/topics/climate-change (accessed on 10 June 2025).
- Mathew, M.D. Nuclear energy: A pathway towards mitigation of global warming. Prog. Nucl. Energy 2022, 143, 104080. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Ansah, M.N.S.; Afornu, K.B. Nuclear energy for sustainable development: SWOT analysis on Ghana’s nuclear agenda. Energy Rep. 2020, 6, 107–115. [Google Scholar] [CrossRef]
- Asif, M.; Pandey, A.; Adulugba, C. Sustainable Energy Transition: Role of Nuclear Power. In Challenges and Recent Advancements in Nuclear Energy Systems; Shams, A., Al-Athel, K., Tiselj, I., Pautz, A., Kwiatkowski, T., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 10–19. [Google Scholar] [CrossRef]
- Zubair, M.; Akram, Y. Advancements and Challenges in Nuclear Power Systems for Future Sustainability. In Proceedings of the 2024 International Conference on Sustainable Energy: Energy Transition and Net-Zero Climate Future (ICUE), Pattaya City, Thailand, 21–23 October 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Adamantiades, A.; Kessides, I. Nuclear power for sustainable development: Current status and future prospects. Energy Policy 2009, 37, 5149–5166. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews. ResearchGate 2004, 1, 1–26. [Google Scholar]
- Ramirez Lopez, L.J.; Buitrago Pineda, P.A.; Perez Rincon, J.M.; Rojas Reales, W.M. A systematic review on blockchain in electronic prescriptions and electronic medical records using PRISMA methodology in databases. Inform. Med. Unlocked 2024, 50, 101525. [Google Scholar] [CrossRef]
- Hayibo, K.S.; Jamil, U.; Pearce, J.M. Additional value of non-electricity generating services (co-benefits) provided by non-conventional dual use solar photovoltaic systems: A PRISMA review. Renew. Sustain. Energy Rev. 2025, 222, 116021. [Google Scholar] [CrossRef]
- IAEA. What are Small Modular Reactors (SMRs)? IAEA 2024. Available online: https://www.iaea.org/es/newscenter/news/que-son-los-reactores-modulares-pequenos-smr (accessed on 1 August 2025).
- Cooper, M. Small modular reactors and the future of nuclear power in the United States. Energy Res. Soc. Sci. 2014, 3, 161–177. [Google Scholar] [CrossRef]
- Gerasimovski, V.; Chingoski, V. Small modular nuclear reactors—New perspectives in energy transition. Balkan J. Appl. Math. Inform. 2022, 5, 107–116. [Google Scholar] [CrossRef]
- Carless, T.S.; Griffin, W.M.; Fischbeck, P.S. The environmental competitiveness of small modular reactors: A life cycle study. Energy 2016, 114, 84–99. [Google Scholar] [CrossRef]
- Lim, S.G.; Nam, H.S.; Lee, D.H.; Lee, S.W. Design characteristics of nuclear steam supply system and passive safety system for Innovative Small Modular Reactor (i-SMR). Nucl. Eng. Technol. 2025, 57, 103697. [Google Scholar] [CrossRef]
- Butt, H.N.; Ilyas, M.; Ahmad, M.; Aydogan, F. Assessment of passive safety system of a Small Modular Reactor (SMR). Ann. Nucl. Energy 2016, 98, 191–199. [Google Scholar] [CrossRef]
- Mascari, F.; Vella, G.; Woods, B.G.; D′Auria, F. Analyses of the OSU-MASLWR Experimental Test Facility. Sci. Technol. Nucl. Install. 2012, 2012, 528241. [Google Scholar] [CrossRef]
- Innovative Small Modular Reactor Development Agency. Innovative SMR Technology Development Project 2025. Available online: https://www.ismr.or.kr/eng/sub/innovation (accessed on 1 August 2025).
- NuScale Power. The NuScale Power Module|NuScale Power. Available online: https://www.nuscalepower.com/products/nuscale-power-module (accessed on 21 May 2025).
- KAERI. Standard Design Approval Issued for SMART, 100 M We Integral Reactor Indigenously Developed by Korea. KAERI News 2012. Available online: https://kaeri.re.kr/eng/board/view?pageNum=1&rowCnt=10&menuId=MENU00718&schType=0&boardStyle=Text&linkId=4802 (accessed on 9 July 2025).
- Black, G.A.; Aydogan, F.; Koerner, C.L. Economic viability of light water small modular nuclear reactors: General methodology and vendor data. Renew. Sustain. Energy Rev. 2019, 103, 248–258. [Google Scholar] [CrossRef]
- Carelli, M.D.; Garrone, P.; Locatelli, G.; Mancini, M.; Mycoff, C.; Trucco, P.; Ricotti, M.E. Economic features of integral, modular, small-to-medium size reactors. Prog. Nucl. Energy 2010, 52, 403–414. [Google Scholar] [CrossRef]
- Van Hee, N.; Peremans, H.; Nimmegeers, P. Economic potential and barriers of small modular reactors in Europe. Renew. Sustain. Energy Rev. 2024, 203, 114743. [Google Scholar] [CrossRef]
- Berna-Escriche, C.; Blanco, D.; Rivera, Y.; Álvarez-Piñeiro, L.; Muñoz-Cobo, J.L. Performance of renewable systems hybridized with the most promising SMR designs for the full economy decarbonization using hydrogen and electricity for standalone systems, the Canary Islands in 2040. Sustain. Energy Technol. Assess. 2025, 74, 104199. [Google Scholar] [CrossRef]
- Chalkiadakis, N.; Stamatakis, E.; Varvayanni, M.; Stubos, A.; Tzamalis, G.; Tsoutsos, T. A new path towards sustainable energy transition: Techno-economic feasibility of a complete hybrid small modular reactor/hydrogen (SMR/H2) energy system. Energies 2023, 16, 6257. [Google Scholar] [CrossRef]
- Ikonen, J.-P.; Lindroos, T.J.; Hiltunen, P. Feasibility of small modular reactors for decarbonizing district heating systems: A case study of the Helsinki metropolitan area. Nucl. Eng. Des. 2025, 442, 114262. [Google Scholar] [CrossRef]
- Lloyd, C.A.; Roulstone, T.; Lyons, R.E. Transport, constructability, and economic advantages of SMR modularization. Prog. Nucl. Energy 2021, 134, 103672. [Google Scholar] [CrossRef]
- Steigerwald, B.; Weibezahn, J.; Slowik, M.; von Hirschhausen, C. Uncertainties in estimating production costs of future nuclear technologies: A model-based analysis of small modular reactors. Energy 2023, 281, 128204. [Google Scholar] [CrossRef]
- Ingersoll, D.T.; Houghton, Z.J.; Bromm, R.; Desportes, C. NuScale small modular reactor for co-generation of electricity and water. Desalination 2014, 340, 84–93. [Google Scholar] [CrossRef]
- Yoo, Y.; Arunachalam, M.; Elmakki, T.; Al-Ghamdi, A.S.; Bassi, H.M.; Mohammed, A.M.; Ryu, S.; Yong, S.; Shon, H.K.; Park, H.; et al. Evaluating the economic and environmental viability of small modular reactor (SMR)-powered desalination technologies against renewable energy systems. Desalination 2025, 602, 118624. [Google Scholar] [CrossRef]
- Sklenka, L.; Losa, E. Small and modular reactors and their potential use in the Czech Republic. In Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering (EPE), Brno-Bystrc, Czech Republic, 12–14 May 2014; Available online: https://ieeexplore.ieee.org/document/6839495 (accessed on 1 July 2025).
- Ishaq, M.; Dincer, I. A clean hydrogen and electricity co-production system based on an integrated plant with small modular nuclear reactor. Energy 2024, 308, 132834. [Google Scholar] [CrossRef]
- Ayadi, B.; Basem, A.; Mostafa, L.; Sharma, A.; Dhawan, A.; Sharma, P.; Eladeb, A.; Kolsi, L. Multi-production of freshwater, hydrogen, and cooling through waste heat recovery of a gas turbine-modular helium reactor: Exergy-economic assessment and optimization. Case Stud. Therm. Eng. 2025, 73, 106502. [Google Scholar] [CrossRef]
- Slavin, B.; Wang, R.; Roy, D.; Ling-Chin, J.; Roskilly, A.P. Techno-economic analysis of direct air carbon capture and hydrogen production integrated with a small modular reactor. Appl. Energy 2024, 356, 122407. [Google Scholar] [CrossRef]
- Ciftcioglu, M.; Genco, F.; Tokuhiro, A. Optimized clean hydrogen production using nuclear small modular reactors and renewable energy sources: A review. Atw. Int. Z. Fuer Kernenerg. 2022, 67, 16–30. [Google Scholar]
- Rath, M.; Morgan, M.G. Assessment of a hybrid system that uses small modular reactors (SMRs) to back up intermittent renewables and desalinate water. Prog. Nucl. Energy 2020, 122, 103269. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Ozcan, H.; Bhattacharyya, R.; Awerbuch, L. Nuclear desalination: A sustainable route to water security. Desalination 2022, 542, 116082. [Google Scholar] [CrossRef]
- GIF. Welcome to the Generation IV International Forum|GIF Portal. Gen-4.org 2025. Available online: https://www.gen-4.org/ (accessed on 1 March 2025).
- Malogulko, Y.; Sikorska, O.; Teptia, V.; Povstianko, K.; Ostra, N. Research and analysis of new generation nuclear reactors in the world. Mach. Energetics 2023, 4, 14. [Google Scholar] [CrossRef]
- Serp, J.; Allibert, M.; Beneš, O.; Delpech, S.; Feynberg, O.; Ghetta, V.; Heuer, D.; Holcomb, D.; Ignatiev, V.; Kloosterman, J.L.; et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energy 2014, 77, 308–319. [Google Scholar] [CrossRef]
- Aoto, K.; Dufour, P.; Hongyi, Y.; Glatz, J.P.; Kim, Y.; Ashurko, Y.; Hill, R.; Uto, N. A summary of sodium-cooled fast reactor development. Prog. Nucl. Energy 2014, 77, 247–265. [Google Scholar] [CrossRef]
- Alemberti, A.; Smirnov, V.; Smith, C.F.; Takahashi, M. Overview of lead-cooled fast reactor activities. Prog. Nucl. Energy 2014, 77, 300–307. [Google Scholar] [CrossRef]
- Sun, C.; Hui, R.; Qu, W.; Yick, S. Progress in corrosion resistant materials for supercritical water reactors. Corros. Sci. 2009, 51, 2508–2523. [Google Scholar] [CrossRef]
- Fütterer, M.A.; Fu, L.; Sink, C.; de Groot, S.; Pouchon, M.; Kim, Y.W.; Carré, F.; Tachibana, Y. Status of the very high temperature reactor system. Prog. Nucl. Energy 2014, 77, 266–281. [Google Scholar] [CrossRef]
- World Nuclear Association. Processing of Used Nuclear Fuel—World Nuclear Association; World Nuclear Association: London, UK, 2024; Available online: https://world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/processing-of-used-nuclear-fuel (accessed on 1 August 2025).
- Tassone, F.; Ricotti, M.E.; Lorenzi, S.; Locatelli, G. Economics and finance of lead fast reactors: A systematic literature review. Prog. Nucl. Energy 2024, 174, 105298. [Google Scholar] [CrossRef]
- Mignacca, B.; Locatelli, G. Economics and finance of Molten Salt Reactors. Prog. Nucl. Energy 2020, 129, 103503. [Google Scholar] [CrossRef]
- Abram, T.; Ion, S. Generation-IV nuclear power: A review of the state of the science. Energy Policy 2008, 36, 4323–4330. [Google Scholar] [CrossRef]
- IAEA. What Is Nuclear Fusion? IAEA: Vienna, Austria, 2023; Available online: https://www.iaea.org/newscenter/news/what-is-nuclear-fusion (accessed on 3 August 2025).
- IAEA. Fusion Energy; IAEA Bulletin: Vienna, Austria, 2021; Volume 62, Available online: https://www.iaea.org/bulletin/62-2 (accessed on 1 August 2025).
- Ongena, J.; Koch, R.; Wolf, R.; Zohm, H. Magnetic-confinement fusion. Nat. Phys. 2016, 12, 398–410. [Google Scholar] [CrossRef]
- Betti, R.; Hurricane, O.A. Inertial-confinement fusion with lasers. Nat. Phys. 2016, 12, 435–448. [Google Scholar] [CrossRef]
- ITER. The Way to New Energy. Available online: https://www.iter.org/node (accessed on 25 May 2025).
- World Nuclear Association. Nuclear Fusion Power; World Nuclear Association: London, UK, 2025; Available online: https://world-nuclear.org/information-library/current-and-future-generation/nuclear-fusion-power (accessed on 3 August 2025).
- Donné, A.J.H.; Federici, G.; Litaudon, X.; McDonald, D.C. Scientific and technical challenges on the road towards fusion electricity. J. Instrum. 2017, 12, C10008. [Google Scholar] [CrossRef]
- Katoch, G.; Sharma, G.; Alaghbari, M.; Ved, A.; Kaur, J.; Rajiv, A.; Singh, A.; Yadav, Y.; Khairandish, M.I. Fusion energy: A sustainable pathway to meeting future global energy demands. Discov. Sustain. 2025, 6, 221. [Google Scholar] [CrossRef]
- IAEA. Safety Culture in Nuclear Installations: Guidance for Use in the Enhancement of Safety Culture; IAEA: Vienna, Austria, 2002; pp. 1–98. Available online: https://www.iaea.org/publications/6721/safety-culture-in-nuclear-installations-guidance-for-use-in-the-enhancement-of-safety-culture (accessed on 15 July 2025).
- Gandhi, S.; Kang, J. Nuclear safety and nuclear security synergy. Ann. Nucl. Energy 2013, 60, 357–361. [Google Scholar] [CrossRef]
- World Nuclear Association. Safety of Nuclear Power Reactors; World Nuclear Association: London, UK, 2025; Available online: https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/safety-of-nuclear-power-reactors (accessed on 12 July 2025).
- Wahlström, B. Systemic thinking in support of safety management in nuclear power plants. Saf. Sci. 2018, 109, 201–218. [Google Scholar] [CrossRef]
- Chang, S.H.; Kim, S.H.; Choi, J.Y. Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants. Nucl. Eng. Des. 2013, 260, 104–120. [Google Scholar] [CrossRef]
- Lukacs, M.; Williams, L.G. Nuclear safety issues for fusion power plants. Fusion Eng. Des. 2020, 150, 111377. [Google Scholar] [CrossRef]
- Heffron, R.J.; McCauley, D. The concept of energy justice across the disciplines. Energy Policy 2017, 105, 658–667. [Google Scholar] [CrossRef]
- Handrlica, J. Nuclear law revisited as an academic discipline. J. World Energy Law Bus. 2018, 12, 52–61. Available online: https://academic.oup.com/jwelb/article-abstract/12/1/52/5248196 (accessed on 10 July 2025). [CrossRef]
- Budnitz, R.J.; Rogner, H.-H.; Shihab-Eldin, A. Expansion of nuclear power technology to new countries—SMRs, safety culture issues, and the need for an improved international safety regime. Energy Policy 2018, 119, 535–544. [Google Scholar] [CrossRef]
- Goldemberg, J. Nuclear energy in developing countries. Daedalus 2009, 138, 71–80. [Google Scholar] [CrossRef]
- Dalla Valle, A.; Furlan, C. Diffusion of nuclear energy in some developing countries. Technol. Forecast. Soc. Change 2014, 81, 143–153. [Google Scholar] [CrossRef]
- Grossi, R.M. Nuclear law: The global debate. In Nuclear Law: The Global Debate; T.M.C. Asser Press: The Hague, The Netherlands, 2022; pp. 1–27. [Google Scholar] [CrossRef]
- Gunawan, I.; Gorod, A.; Hallo, L.; Nguyen, T. Developing a system of systems management framework for the Fukushima Daiichi Nuclear disaster recovery. In Proceedings of the 2017 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, 21–23 July 2017; pp. 563–568. [Google Scholar] [CrossRef]
- IAEA. Processing; IAEA: Vienna, Austria, 2016; Available online: https://www.iaea.org/topics/processing (accessed on 8 June 2025).
- Fernández-Arias, P.; Vergara, D.; Antón-Sancho, Á. Global review of international nuclear waste management. Energies 2023, 16, 6215. [Google Scholar] [CrossRef]
- Asahara, A.; Kawasaki, D.; Yanagihara, S. Study on strategy construction for dismantling and radioactive waste management at Fukushima Daiichi Nuclear Power Station. Nucl. Eng. Des. 2021, 374, 111066. [Google Scholar] [CrossRef]
- Corkhill, C.; Hyatt, N. Nuclear Waste Management. In Nuclear Waste Management; IOP Publishing: Bristol, UK, 2018. [Google Scholar] [CrossRef]
- Rutqvist, J.; Tsang, C.-F. Modeling nuclear waste disposal in crystalline rocks at the Forsmark and Olkiluoto repository sites—Evaluation of potential thermal–mechanical damage to repository excavations. Tunn. Undergr. Space Technol. 2024, 152, 105924. [Google Scholar] [CrossRef]
- Unokiwedi, O.P.; Gao, J.; Bethune, T.; Awolayo, A.N. Deep geological repositories—A review of design concepts, near-field evolution, and their implications for nuclear waste containment. J. Environ. Radioact. 2025, 289, 107750. [Google Scholar] [CrossRef] [PubMed]
- Takada, M.; Murakami, M.; Ohnuma, S.; Shibata, Y.; Yasutaka, T. Public perception and underlying values regarding final disposal of radioactively contaminated soil from a large nuclear accident. Environ. Manag. 2025, 75, 822–834. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.-T. Site selection for low and intermediate level radioactive waste disposal facility in Korea. Prog. Nucl. Energy 2008, 50, 680–682. [Google Scholar] [CrossRef]
- Khelurkar, N.; Shah, S.; Jeswani, H. A review of radioactive waste management. In Proceedings of the 2015 International Conference on Technologies for Sustainable Development (ICTSD), Mumbai, India, 4–6 February 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Massey, J.V.; Schneider, A. The role of plutonium-238 in nuclear fuel cycles. Nucl. Technol. 1982, 56, 55–71. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y.; Jiao, C.; Zhang, M.; He, M.; Gao, Y. Study of irradiation decomposition products of PUREX solvents on zirconium metal retention behavior. J. Radioanal. Nucl. Chem. 2023, 332, 907–916. [Google Scholar] [CrossRef]
- Lindley, B.A.; Fiorina, C.; Gregg, R.; Franceschini, F.; Parks, G.T. The effectiveness of full actinide recycle as a nuclear waste management strategy when implemented over a limited timeframe—Part I: Uranium fuel cycle. Prog. Nucl. Energy 2015, 85, 498–510. [Google Scholar] [CrossRef]
- Salter, I.; Robinson, P.; Freeman, M.; Jagasia, J. Environmental impacts and assessment in nuclear power programmes. In Infrastructure and Methodologies for the Justification of Nuclear Power Programmes; Alonso, A., Ed.; Woodhead Publishing: Oxford, UK, 2012; pp. 567–596. [Google Scholar] [CrossRef]
- Batur, M.; Alkan, R.M. What can we learn from past nuclear accidents? A comparative assessment of emergency response to accidents at the Three Mile Island, Chernobyl, and Fukushima Nuclear Power Plants. Adv. Land Manag. 2023, 3, 76–89. [Google Scholar]
- Mohammad, R.E.A.; Veerasingam, S.; Suresh, G.; Rajendran, S.; Sadasivuni, K.K.; Ghani, S.; Al-Khayat, F. Tackling environmental radionuclides contamination: A systematic review of chemical, biological, and physical remediation strategies. Chem. Eng. J. Adv. 2025, 23, 100802. [Google Scholar] [CrossRef]
- von Wehrden, H.; Fischer, J.; Brandt, P.; Wagner, V.; Kümmerer, K.; Kuemmerle, T.; Nagel, A.; Olsson, O.; Hostert, P. Consequences of nuclear accidents for biodiversity and ecosystem services. Conserv. Lett. 2012, 5, 81–89. [Google Scholar] [CrossRef]
- Tamaoki, M.; Studies on radiation effects from the Fukushima nuclear accident on wild organisms and ecosystems. ResearchGate 2016. Available online: https://www.researchgate.net/publication/315765490_Studies_on_radiation_effects_from_the_Fukushima_nuclear_accident_on_wild_organisms_and_ecosystems (accessed on 1 July 2025).
- van Buuren, S.; Fraise, T.; Pelopidas, B. Existential silos: The compartmentalization of the futures of environmental change and the nuclear threat. Futures 2025, 173, 103671. [Google Scholar] [CrossRef]
- Ho, J.-C.; Lee, C.-T.P.; Kao, S.-F.; Chen, R.-Y.; Ieong, M.C.F.; Chang, H.-L.; Hsieh, W.-H.; Tzeng, C.-C.; Lu, C.-F.; Lin, S.-L.; et al. Perceived environmental and health risks of nuclear energy in Taiwan after Fukushima nuclear disaster. Environ. Int. 2014, 73, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Hammond, G.P. Nuclear power in the twenty-first century. In Handbook of Sustainable Energy; Edward Elgar Publishing: Cheltenham, UK, 2011; Volume 1, 624 p. [Google Scholar] [CrossRef]
- IEA. Net Zero by 2050: A Roadmap for the Global Energy Sector; IEA: Paris, France, 2025; Available online: https://www.iea.org/events/net-zero-by-2050-a-roadmap-for-the-global-energy-system (accessed on 3 July 2025).
- McCombie, C.; Jefferson, M. Renewable and nuclear electricity: Comparison of environmental impacts. Energy Policy 2016, 96, 758–769. [Google Scholar] [CrossRef]
- Hejazi, R. Nuclear energy: Sense or nonsense for environmental challenges. Int. J. Sustain. Built Environ. 2017, 6, 693–700. [Google Scholar] [CrossRef]
- Markandya, A.; Wilkinson, P. Electricity generation and health. Lancet 2007, 370, 979–990. [Google Scholar] [CrossRef]
- Brook, B.W.; Bradshaw, C.J.A. Key role for nuclear energy in global biodiversity conservation. Conserv. Biol. 2015, 29, 702–712. [Google Scholar] [CrossRef]
- United Nations. A Moment of Opportunity; United Nations: New York City, NY, USA, 2025; Available online: https://www.un.org/en/climatechange/moment-opportunity-2025 (accessed on 15 July 2025).
- IEA. Status of Power System Transformation 2018—Analysis; IEA: Paris, France, 2018; Available online: https://www.iea.org/reports/status-of-power-system-transformation-2018 (accessed on 14 July 2025).
- Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; Verma, R.; Dutta, S.; Jaiswal, K.S.; Sangmesh, B.; Karuppasamy, K.S.K. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 2022, 7, 100118. [Google Scholar] [CrossRef]
- Karakosta, C.; Pappas, C.; Marinakis, V.; Psarras, J. Renewable energy and nuclear power towards sustainable development: Characteristics and prospects. Renew. Sustain. Energy Rev. 2013, 22, 187–197. [Google Scholar] [CrossRef]
- Bally, F.; Sebi, C. Shifting public perception: A longitudinal analysis of national and local media narratives on nuclear and wind energy in France. Technol. Forecast. Soc. Change 2025, 215, 124111. [Google Scholar] [CrossRef]
- Whitfield, S.C.; Rosa, E.A.; Dan, A.; Dietz, T. The Future of Nuclear Power: Value Orientations and Risk Perception. Risk Anal. 2009, 29, 425–437. [Google Scholar] [CrossRef]
- Gilmore, N.; Burr, P.A.; Obbard, E.; Stockings, C.; Kruzic, J.J.; Seitenzahl, I.; Ata, S.; Maartensson, E.; Niven, R.K. Discussing possible futures to neutralise nuclear energy discourse. Renew. Sustain. Energy Rev. 2025, 210, 115105. [Google Scholar] [CrossRef]
- Rashad, S.M.; Hammad, F.H. Nuclear power and the environment: Comparative assessment of environmental and health impacts of electricity-generating systems. Appl. Energy 2000, 65, 211–229. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, J.; Zhai, K.; Jiang, W.; Zou, H.; Ren, H.; Wang, P.; Gao, X.; Zhang, M.; Yu, S.; et al. Long-term investigation of environmental radioactivity levels and public health around the Qinshan Nuclear Power Plant, China. Sci. Rep. 2022, 12, 4945. [Google Scholar] [CrossRef]
- Pearce, J.M. Limitations of Nuclear Power as a Sustainable Energy Source. Sustainability 2012, 4, 6. [Google Scholar] [CrossRef]
- IAEA. Climate Change and Nuclear Power 2022; IAEA: Vienna, Austria, 2022; Available online: https://www.iaea.org/resources/brochure/climate-change-and-nuclear-power-2022 (accessed on 2 July 2025).
- Majeed, M.T.; Ozturk, I.; Samreen, I.; Luni, T. Evaluating the asymmetric effects of nuclear energy on carbon emissions in Pakistan. Nucl. Eng. Technol. 2022, 54, 1664–1673. [Google Scholar] [CrossRef]
- Chen, R.; Su, G.H.; Zhang, K. Analysis on the high-quality development of nuclear energy under the goal of peaking carbon emissions and achieving carbon neutrality. Carbon Neutrality 2022, 1, 33. [Google Scholar] [CrossRef]
- Li, R.; Wang, Q.; Hu, S. Economic growth without carbon emission: Comparative perspectives on solar, wind, hydroelectric, nuclear, and geothermal energy. Energy Strategy Rev. 2025, 59, 101692. [Google Scholar] [CrossRef]
- Koo, B.; Noguchi, K.; Watanabe, F.; Kubo, K.; Shibutani, T. Advanced nuclear technologies in modern energy systems: A comparative risk assessment in Japan. Energy Strategy Rev. 2025, 57, 101632. [Google Scholar] [CrossRef]
- Friederich, S.; Boudry, M. Ethics of nuclear energy in times of climate change: Escaping the collective action problem. Philos. Technol. 2022, 35, 30. [Google Scholar] [CrossRef]
- Bistline, J.; James, R.; Sowder, A. Technology, policy, and market drivers of (and barriers to) advanced nuclear reactor deployment in the United States after 2030. Nucl. Technol. 2019, 205, 1075–1094. [Google Scholar] [CrossRef]
- Keppler, J.H.; Cometto, M. The Competitiveness of Nuclear Energy: From LCOE to System Costs. Ann. Des Mines Responsab. Environ. 2020, 97, 31–34. [Google Scholar] [CrossRef]
- Ram, M.; Child, M.; Aghahosseini, A.; Bogdanov, D.; Lohrmann, A.; Breyer, C. A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015–2030. J. Clean. Prod. 2018, 199, 687–704. [Google Scholar] [CrossRef]
- Lindvall, D.; Sörqvist, P.; Lindeberg, S.; Barthel, S. The polarization of energy preferences—A study on social acceptance of wind and nuclear power in Sweden. Energy Policy. 2025, 198, 114492. [Google Scholar] [CrossRef]
- Greenberg, M.; Lowrie, K.; Burger, J.; Powers, C.; Gochfeld, M.; Mayer, H. Nuclear Waste and Public Worries: Public Perceptions of the United States’ Major Nuclear Weapons Legacy Sites. Hum. Ecol. Rev. 2007, 14, 1–12. [Google Scholar]
- Perez, S.; Auwer, C.D.; Pourcher, T.; Russo, S.; Drouot, C.; Beccia, M.R.; Creff, G.; Fiorelli, F.; Leriche, A.; Castagnola, F.; et al. Comparative analysis of the perception of nuclear risk in two populations (expert/non-expert) in France. Energy Rep. 2020, 6, 2288–2298. [Google Scholar] [CrossRef]
- Fialho, F.M. Measuring public knowledge on nuclear weapons in the post-Cold War: Dimensionality and measurement invariance across eight European countries. Meas. Instrum. Soc. Sci. 2021, 3, 10. [Google Scholar] [CrossRef]
- Jahn, D.; Korolczuk, S. German exceptionalism: The end of nuclear energy in Germany! Environ. Politics 2012, 21, 159–164. [Google Scholar] [CrossRef]
- Bonfreschi, L. The Three Mile Island Nuclear Power Plant Accident. 28 March 1979. The Debate about Nuclear Energy. In Italy and the «Shock of the Global» During the 1970s; Formigoni, G., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 331–347. [Google Scholar] [CrossRef]
- Standish, D. Nuclear Power and Environmentalism in Italy. Energy Environ. 2009, 20, 949–960. [Google Scholar] [CrossRef]
- Selvam, D.C.; Yuvarajan, D.; Kumar, M.S.; Shukla, K.; Patel, C.; Juneja, B.; Acharya, S. Harnessing nuclear energy for India’s energy security: Current status, challenges, and future opportunities. Results Eng. 2025, 26, 105105. [Google Scholar] [CrossRef]
- Valentim, A.; Klüver, H.; Erfort, C. How nuclear power hurts the Greens: Evidence from German nuclear power plants. Electoral. Stud. 2025, 96, 102959. [Google Scholar] [CrossRef]
- Vechgama, W.; Sasawattakul, W.; Silva, K. 2009–2022 Thailand public perception analysis of nuclear energy on social media using deep transfer learning technique. Nucl. Eng. Technol. 2023, 55, 2026–2033. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, W.; Kim, M. An international comparative analysis of public acceptance of nuclear energy. Energy Policy. 2014, 66, 475–483. [Google Scholar] [CrossRef]
- He, Y.; Xia, D.; Yong, N.; Peng, H. A comparative study of the public’s risk perception of nuclear energy in different regions. In Proceedings of the International Conference on Urban Climate, Sustainability and Urban Design, Mianyang, China, 11–12 November 2023; He, B.-J., Prasad, D., Yan, L., Cheshmehzangi, A., Pignatta, G., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 914–923. [Google Scholar] [CrossRef]
- Wisnubroto, D.S.; Sunaryo, G.R.; Budi Susilo, Y.S. Indonesia’s RDE program: A multifaceted approach to nuclear energy development encompassing human resource building, public acceptance, and technological innovation. Nucl. Eng. Technol. 2025, 57, 103560. [Google Scholar] [CrossRef]
- Zeng, M.; Liu, Y.; Ouyang, S.; Shi, H.; Li, C. Nuclear energy in the Post-Fukushima Era: Research on the developments of the Chinese and worldwide nuclear power industries. Renew. Sustain. Energy Rev. 2016, 58, 147–156. [Google Scholar] [CrossRef]
- Denysov, V.; Kulyk, M.; Babak, V.; Zaporozhets, A.; Kostenko, G. Modeling Nuclear-Centric Scenarios for Ukraine’s Low-Carbon Energy Transition Using Diffusion and Regression Techniques. Energies 2024, 17, 5229. [Google Scholar] [CrossRef]
- Luan, D.; Yang, F.; Hafeez, M. Natural resources and nuclear energy development: Does political stability matter? Nucl. Eng. Technol. 2025, 57, 103328. [Google Scholar] [CrossRef]
- Borges Silverio, L.; Lamas, W.Q. An analysis of development and research on spent nuclear fuel reprocessing. Energy Policy 2011, 39, 281–289. [Google Scholar] [CrossRef]
- Zhan, L.; Bo, Y.; Lin, T.; Fan, Z. Development and outlook of advanced nuclear energy technology. Energy Strategy Rev. 2021, 34, 100630. [Google Scholar] [CrossRef]
- Dinov, I.D. Back to the future—from nuclear energy to AI. AI Perspect. Adv. 2025, 7, 2. [Google Scholar] [CrossRef]
Reactor Type | Coolant | Temperature | Thermal Efficiency | Technological and Functional Potential |
---|---|---|---|---|
GFR | Helium | 850 °C | 48% | High productivity; high-temperature operation without pressure; improved safety |
VHTR | Helium | 1000 °C | >50% | High-temperature electrolysis; emissions reduction; thermal efficiency; advanced safety |
SFR | Liquid sodium | 500–550 °C | 40–42% | Fuel recycling; waste management; reaction control; safe electricity production |
LFR | Liquid lead | 500–600 °C | 43% | High thermal resilience; military applications; no specific R&D focus mentioned |
MSR | Molten salts (fluorides or chlorides) | 600–700 °C | 44–50% | Fuel flexibility (including spent fuel); waste reduction; use of advanced materials |
SCWR | Supercritical water | 374 °C | >45% | Stable electricity production; efficiency; low accident risk; evolution of PWR/BWR designs |
Energy Source | CO2-eq. Emissions (g/kWh) (Direct + Indirect) [110] | Land Use (km2/TWh) [111] | Fatalities (Accidents Per TWh) [111] | Solid Waste (Tons Per TWh) [111] | Remarks [110] | Estimated Deployment Time [112] | Demand Flexibility [113] |
---|---|---|---|---|---|---|---|
Coal | 1290 | 2.1 | 161 | 58,600 | High impacts on health, emissions, and waste. | Up to 5 years or more | Moderate to Low (dispatchable, slow ramps, baseload) |
Gas | 689 | 1.1 | 4 | – | Lower than coal, but still with significant emissions. | Up to 5 years or more | Very High (fast start/stop, agile, balances renewables) |
Nuclear | 30 | 0.1 | 0.04 | – | Low mortality, radioactive waste, and high decarbonization potential. | 10–15 years | Low (baseload only, constant output, inflexible) |
Hydro | 37 | 50 | 1.4 | – | Low emissions, high local ecological impact (river fragmentation). | Up to 5 years or more | Very High (near-instant response, grid stability, reserves) |
Wind | 9 | 46 | 0.15 | – | Low mortality, intensive land and material use. | 1–3 years | Very Low (non-dispatchable, variable, weather-dependent) |
Solar | 116 | 5.7 | 0.44 | – | Very low emissions, but extensive land use. | 1–3 years | Very Low (non-dispatchable, variable, weather-dependent) |
Biomass | 460 | 95 | 12 | 9170 | Potentially high emissions and use of agricultural land. | 3–6 years | Moderate (dispatchable, slow ramps, baseload) |
Economic Parameter | Nuclear Energy (LWRs) | Renewable Energies (Wind and Solar pv) | Fossil Fuels (Coal and Gas) |
---|---|---|---|
Levelized costs (LCOE) (G20, 2015) | ~100 EUR/MWh | Wind: ~73 EUR/MWh Solar PV: ~111 EUR/MWh | Coal: ~67 EUR/MWh Gas: ~80 EUR/MWh |
External costs (health and environment) | Very Low (~4 EUR/MWh) | Very low (~2–4 EUR/MWh) | Extremely high (coal exceeds 100 EUR/MWh) |
System costs (from variability) | Nil (Firm power source, provides stability). | High and growing (adds up to +50 USD/MWh to cost at high penetration). | Nil (firm and dispatchable source). |
Investment profile and risk | Very high capital and long construction times; high market risk. | Decreasing capital; market risk from price cannibalization. | Low capital (especially gas); high regulatory risk from carbon pricing. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiroga-Barriga, H.; Nápoles-Rivera, F.; Ramírez-Márquez, C.; Ponce-Ortega, J.M. Nuclear Energy as a Strategic Resource: A Historical and Technological Review. Processes 2025, 13, 2654. https://doi.org/10.3390/pr13082654
Quiroga-Barriga H, Nápoles-Rivera F, Ramírez-Márquez C, Ponce-Ortega JM. Nuclear Energy as a Strategic Resource: A Historical and Technological Review. Processes. 2025; 13(8):2654. https://doi.org/10.3390/pr13082654
Chicago/Turabian StyleQuiroga-Barriga, Héctor, Fabricio Nápoles-Rivera, César Ramírez-Márquez, and José María Ponce-Ortega. 2025. "Nuclear Energy as a Strategic Resource: A Historical and Technological Review" Processes 13, no. 8: 2654. https://doi.org/10.3390/pr13082654
APA StyleQuiroga-Barriga, H., Nápoles-Rivera, F., Ramírez-Márquez, C., & Ponce-Ortega, J. M. (2025). Nuclear Energy as a Strategic Resource: A Historical and Technological Review. Processes, 13(8), 2654. https://doi.org/10.3390/pr13082654