Tensile and Fracture Properties Evaluation of Additively Manufactured Different Stainless Steels via Small Punch Testing
Abstract
1. Introduction
2. Small Punch Testing
2.1. Materials and Test Specimen
2.2. Test Apparatus and Procedure
3. Results and Discussion
3.1. Metallographic Analyses
3.2. SPT Aanalysis
3.2.1. Method for Determining the Elastic–Plastic Transition Force
3.2.2. SPT Results and Estimation of Strength Properties
3.3. SEM Analyses on the Ruptured Surfaces of Standard SPT Specimens
3.4. EBSD Analyses on the LPBF-Manufactured Four Stainless Steels
3.5. Estimations of Fracture Toughness, JIC
3.6. Summary
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kong, X.D.; Zhu, Q.X.; Yao, J.; Shang, Y.X.; Zhu, Y. Basic Theory and Key Technology of “New Method for Lightweight Design and Manufacturing of Hydraulic Components and Systems”. J. Mech. Eng. 2021, 57, 4–12. [Google Scholar] [CrossRef]
- Han, M.; Kaşıkcıoğlu, S.; Ergene, B.; Atlıhanet, G.; Bolat, C. An Experimental Investigation on the Mechanical and Wear Responses of Lightweight AlSi10Mg Components Produced by Selective Laser Melting: Effects of Building Direction and Test Force. Sci. Sinter. 2025, 27, 87–101. [Google Scholar] [CrossRef]
- Álvarez-Trejo, A.; Cuan-Urquizo, E.; Bhate, D.; Roman-Flores, A. Mechanical metamaterials with topologies based on curved elements: An overview of design, additive manufacturing and mechanical properties. Mater. Des. 2023, 233, 112190. [Google Scholar] [CrossRef]
- Lashgari, H.R.; Ferry, M.; Li, S. Additive manufacturing of bulk metallic glasses: Fundamental principle, current/future developments and applications. J. Mater. Sci. Technol. 2022, 119, 131–149. [Google Scholar] [CrossRef]
- Harun, W.S.W.; Kamariah, M.; Muhamad, N.; Ghani, S.A.C.; Ahmad, F.; Mohamed, Z. A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol. 2018, 327, 128–151. [Google Scholar] [CrossRef]
- Heo, S.; Lim, Y.; Kwak, N.; Jeon, C.; Choi, M.; Jo, I. Impact of Heat Treatment and Building Direction on Tensile Properties and Fracture Mechanism of Inconel 718 Produced by SLM Process. Metals 2024, 14, 440. [Google Scholar] [CrossRef]
- Zhang, S.M.; He, X.Q.; Shan, C.Y.; Xu, C.T.; Lu, Y.F.; Song, Z.K. Effect of Annealing on Microstructure and Tensile Properties of Selective Laser Melting MAR-M509 Superalloy. J. Mater. Eng. Perform. 2024, 34, 11779–11790. [Google Scholar] [CrossRef]
- Ponnusamy, P.; Sharma, B.; Masood, S.H.; Rashid, R.A.R.; Rashid, R.; Palanisamy, S.; Ruan, D. A study of tensile behavior of SLM processed 17-4 PH stainless steel. Materials 2021, 45, 4531–4534. [Google Scholar] [CrossRef]
- Bruchhausen, M.; Holmström, S.; Simonovski, I.; Austin, T.; Lapetite, J.M.; Ripplinger, S.; de Haan, F. Recent developments in small punch testing: Tensile properties and DBTT. Theor. Appl. Fract. Mech. 2016, 86, 2–10. [Google Scholar] [CrossRef]
- Haroush, S.; Priel, E.; Moreno, D.; Busiba, A.; Silverman, I.; Turgeman, A.; Shneck, R.; Gelbstein, Y. Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Mater. Des. 2015, 83, 75–84. [Google Scholar] [CrossRef]
- Li, R.; Wei, W.S.; Chen, R.M.; Wu, M.Y.; Lai, Y.H. Evaluating the tensile properties of high-strength stainless steels using small punch testing. Sci. Prog. 2024, 107, 1–19. [Google Scholar] [CrossRef]
- Foulds, J.; Viswanathan, R. Determination of the toughness of in-service steam turbine disks using small punch testing. J. Mater. Eng. Perform. 2001, 10, 614–619. [Google Scholar] [CrossRef]
- Lucon, E.; Benzing, J.T.; Derimow, N.; Harbe, N. Small punch testing to estimate the tensile and fracture properties of additively manufactured Ti–6Al–4V. J. Mater. Eng. Perform. 2021, 30, 5039–5049. [Google Scholar] [CrossRef]
- Hyde, T.H.; Hyde, C.J.; Sun, W. Theoretical basis and practical aspects of small specimen creep testing. J. Strain Anal. Eng. Des. 2012, 48, 112–125. [Google Scholar] [CrossRef]
- Zhuang, F.K.; Zhou, G.Y.; Tu, S.T. Numerical investigation of frictional effect on measuring accuracy of different small specimen creep tests. Int. J. Press. Vessel. Pip. 2013, 110, 42–49. [Google Scholar] [CrossRef]
- Prakash, R.V.; Arunkumar, S. Evaluation of damage in materials due to fatigue cycling through static and cyclic small punch testing. Small Specim. Test Tech. 2014, 6, 168–186. [Google Scholar] [CrossRef]
- Wang, X.; Xu, L.; Zhao, L.; Han, Y. Evaluation of defect-related fatigue performance of additive manufacturing GH4169 via small punch test. Theor. Appl. Fract. Mech. 2023, 128, 104162. [Google Scholar] [CrossRef]
- Hurst, R.C.; Lancaster, R.J.; Jeffs, S.P.; Bache, M.R. The contribution of small punch testing towards the development of materials for aero-engine applications. Theor. Appl. Fract. Mech. 2016, 86, 69–77. [Google Scholar] [CrossRef]
- Lulu-Bitton, N.; Navi, N.U.; Rosen, B.A.; Haroush, S.; Sabatani, E.; Eretz-Kdosha, Y.; Agronov, G.; Eliaz, N. The influence of gaseous hydrogen charging on the microstructural and mechanical behavior of electron beam melted and wrought Ti-6Al-4V alloys using the small punch test. Int. J. Hydrogen Energy 2023, 48, 34077–34093. [Google Scholar] [CrossRef]
- Wang, X.; Xu, L.; Zhao, L.; Han, Y.; Liu, Z. Defect-based additive manufactured creep performance evaluation via small punch test. Int. J. Mech. Sci. 2024, 279, 109565. [Google Scholar] [CrossRef]
- Lewis, D.T.S.; Lancaster, R.J.; Jeffs, S.P.; Illsley, H.W.; Davies, S.J.; Baxter, G.J. Characterising the fatigue performance of additive materials using the small punch test. Mater. Sci. Eng. 2019, 754, 719–727. [Google Scholar] [CrossRef]
- Mao, X.; Takahashi, H. Development of a further-miniaturized specimen of 3 mm diameter for TEM disk (ø 3 mm) small punch tests. J. Nucl. Mater. 1987, 150, 42–52. [Google Scholar] [CrossRef]
- Song, M.; Guan, K.; Qin, W.; Jerzy, A.; Szpunar. Comparison of mechanical properties in conventional and small punch tests of fractured anisotropic A350 alloy forging flange. Nucl. Eng. Des. 2012, 247, 58–65. [Google Scholar] [CrossRef]
- García, T.E.; Rodríguez, C.; Belzunce, F.J.; Suárez, C. Estimation of the mechanical properties of metallic materials by means of the small punch test. J. Alloys Compd. 2014, 582, 708–717. [Google Scholar] [CrossRef]
- Janca, A.; Siegl, J.; Haušild, P. Small punch test evaluation methods for material characterisation. J. Nucl. Mater. 2016, 481, 201–213. [Google Scholar] [CrossRef]
- EN 10371; Metallic Materials. Small Punch Test Method. The European Committee for Standardization: Brussels, Belgium, 2021.
- CWA 15627:2006 E; Small Punch Test Method for Metallic Materials. European Committee for Standardization: Brussels, Belgium, 2006.
- Bruchhausen, M.; Altstadt, E.; Austin, T.; Dymacek, P.; Holmström, S.; Jeffs, S.; Lacalle, R.; Lancaster, R.; Matocha, K.; Petzova, J. European standard on small punch testing of metallic materials. Ubiquity Proc. 2018, 1, 11. [Google Scholar] [CrossRef]
Materials | C | P | Si | Mo | Cr | Mn | Fe | Al | Ni | Nb | S | Cu | Ta |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30Cr13 | 0.32 | 0.02 | 0.83 | 13.58 | 0.89 | Bal | 0.42 | 0.013 | |||||
316L | 0.021 | 0.032 | 0.81 | 16.76 | 1.53 | Bal | 12.56 | 0.019 | |||||
15-5PH | 0.056 | 0.028 | 0.6 | 14.32 | 0.58 | Bal | 4.21 | 0.33 | 0.0028 | 3.15 | 0.0006 | ||
17-4PH | 0.061 | 0.023 | 0.74 | 16.31 | 0.67 | Bal | 4.36 | 0.32 | 0.003 | 3.86 | 0.0005 |
Materials | Yielding Stress (MPa) | Ultimate Strength (MPa) |
---|---|---|
30Cr13 | 753 | 1829 |
316L | 373 | 620 |
15-5PH | 806 | 1431 |
17-4PH | 745 | 1162 |
Materials | , N | , N |
---|---|---|
30Cr13 | 666.53 | 1137 |
621.06 | 976 | |
720 | 1122 | |
316L | 162.37 | 165.66 |
169.26 | 216.07 | |
621.06 | 994.63 | |
15-5PH | 479.06 | 775.2 |
399 | 694 | |
602.48 | 781 | |
17-4PH | 339.93 | 462.59 |
562.7 | 800.85 | |
601.06 | 788.23 |
0.0477 | 550.62 | 0.1196 | 365.77 | 0.142 | 727.71 | −0.098 | 1921.4 |
Materials | um for Different Specimens, mm | Average Value of um, mm |
---|---|---|
30Cr13 | 0.213 | 0.256 |
0.264 | ||
0.290 | ||
316L | 1.35 | 1.39 |
1.42 | ||
1.40 | ||
15-5PH | 0.769 | 0.760 |
0.729 | ||
0.781 | ||
17-4PH | 1.04 | 1.04 |
1.04 | ||
1.04 |
Materials | Determined by um, mm | |
---|---|---|
30Cr13 | 0.067 | 50 |
316L | 1.218 | 455 |
15-5PH | 0.291 | 234 |
17-4PH | 0.569 | 424 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wei, W.; Wu, M.; Liu, F.; Li, W.; Lai, Y.; Chen, R.; Liu, H.; Ye, J.; Li, J.; et al. Tensile and Fracture Properties Evaluation of Additively Manufactured Different Stainless Steels via Small Punch Testing. Processes 2025, 13, 2584. https://doi.org/10.3390/pr13082584
Li R, Wei W, Wu M, Liu F, Li W, Lai Y, Chen R, Liu H, Ye J, Li J, et al. Tensile and Fracture Properties Evaluation of Additively Manufactured Different Stainless Steels via Small Punch Testing. Processes. 2025; 13(8):2584. https://doi.org/10.3390/pr13082584
Chicago/Turabian StyleLi, Ran, Wenshu Wei, Mengyu Wu, Fengcai Liu, Wenbo Li, Yuehua Lai, Rongming Chen, Hao Liu, Jian Ye, Jianfeng Li, and et al. 2025. "Tensile and Fracture Properties Evaluation of Additively Manufactured Different Stainless Steels via Small Punch Testing" Processes 13, no. 8: 2584. https://doi.org/10.3390/pr13082584
APA StyleLi, R., Wei, W., Wu, M., Liu, F., Li, W., Lai, Y., Chen, R., Liu, H., Ye, J., Li, J., & Cao, T. (2025). Tensile and Fracture Properties Evaluation of Additively Manufactured Different Stainless Steels via Small Punch Testing. Processes, 13(8), 2584. https://doi.org/10.3390/pr13082584