Influence of Additional Devices and Polymeric Matrix on In Situ Welding in Material Extrusion: A Review
Abstract
:1. Introduction
2. Welding Methods
2.1. Mechanism for Welding Macromolecules and Depth of the Weld
2.2. Welding in ME
2.3. Cooling Profile for Welding Filaments
2.4. Polymeric Matrix
2.4.1. Glass Transition (Tg)
2.4.2. Formation of the Crystalline Structure During Manufacturing
2.4.3. Molar Mass (MM) and Polydispersion
2.4.4. Additives
3. Extreme Welding Conditions: Equipment Failure
4. Devices for In Situ Welding: Case Study
4.1. Light Devices: Laser, UV and IF
4.1.1. Laser
4.1.2. Ultraviolet Irradiation (UV)
4.1.3. Infrared
4.2. Electric Current
4.3. Radio Frequency Microwave
4.4. Devices for Induction Heating
5. In Situ Welding Improvement: Summary
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parmar, H.; Khan, T.; Tucci, F.; Umer, R.; Carlone, P. Advanced robotics and additive manufacturing of composites: Towards a new era in industry 4.0. Mater. Manuf. Process. 2022, 37, 483–517. [Google Scholar] [CrossRef]
- Eyer, P.; Enzler, S.; Trauth, A.; Weidenmann, A. Investigating the mechanical properties of polymer samples from different additive manufacturing processed using ultrasonic phase spectroscopy. 3D Print. Addit. Manuf. 2022, 11, e666–e674. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.H.M.; Teixeira, B.N.; Calado, V.M.A.; de Oliveira, M.G.; Mendonça, T.S.; Mendonça, R.H.; de Almeida, H.R.O.; Cunha, M.S.; Thiré, R.M.S.M. Mechanical and dimensional performance of poly (lactic acid) 3D-printed parts using thin spline interpolation. J. Appl. Polym. Sci. 2020, 137, 49171. [Google Scholar] [CrossRef]
- Espach, A.; Gupta, K. 3D Printing—An Important Industry 4.0 Tool for Online and Onsite Learning. In Artificial intelligence and online Engineering; Auer, M.E., El-Seoud, S.A., Karam, O.H., Eds.; REV 2022; Lecture Notes in Networks Systems; Springer: Cham, Switzerland, 2023; pp. 312–322. [Google Scholar] [CrossRef]
- Joseph, T.M.; Kallingal, A.; Suresh, A.M.; Mahapatra, D.K.; Hasanin, M.S.; Haponiuk, J.; Thomas, S. 3D printing of polylactic acid: Recent advances and opportunities. Int. J. Adv. Manuf. Technol. 2023, 125, 1015–1035. [Google Scholar] [CrossRef] [PubMed]
- Da Conceição, M.N.; Anaya-Mancipe, J.M.; Coelho, A.W.F.; Cardoso, P.H.M.; Thiré, R.M.S.M. Application of starch-rich mango by-product as filler for the development of an additive manufacturing filament compouond. Int. J. Biol. Macromol. 2024, 260, 129519. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, N.H.M.; Chong, C.H.; Wan, Y.K.; Cheah, K.H.; Wong, V.L. Optimization strategies and emerging application of functionalized 3D-printed materials in water treatment: A review. J. Water Process Eng. 2023, 51, 103410. [Google Scholar] [CrossRef]
- Guo, H.; Lv, R.; Bai, S. Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 2019, 1, 101–115. [Google Scholar] [CrossRef]
- Azlin, M.N.N.; Ilyas, R.A.; Zuhri, M.Y.M.; Sapuan, S.M.; Harussani, M.M.; Sharma, S.; Nordin, A.H.; Nurazzi, N.N.; Afiqah, A.N. 3D printing and shaping polymers, composites, and nanocoposites: A review. Polymers 2022, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.W.F.; Thiré, R.M.S.M.; Araujo, A.C. Manufacturing of gypsum-sisal fiber composites using binder jetting. Addit. Manuf. 2019, 29, 101789. [Google Scholar] [CrossRef]
- Mandala, R.; Bannoth, A.P.; Akella, S.; Rangari, V.K.; Kodali, D. A short review on fused deposition modeling 3D printing of bio-based polymer nanocomposites. J. Appl. Polym. Sci. 2022, 139, 51904. [Google Scholar] [CrossRef]
- Saadi, M.A.S.R.; Magulre, A.; Pottackal, N.T.; Thakur, M.S.H.; Ikram, M.M.; Hart, A.J.; Ajayan, P.M.; Rahman, M.M. Direct ink writing: A 3D printing technology for diverse materials. Adv. Mater. 2022, 34, 2108855. [Google Scholar] [CrossRef]
- Hernandez, J.J.; Dobson, A.L.; Carberry, B.J. Controlled degradation of cast and 3-D printed photocurable thioester networks via thiol–thiolester exchange. Macromol. 2022, 55, 1376–1385. [Google Scholar] [CrossRef]
- ASTM F2792-12a; Standard Terminology for Additive Manufacturing Technologies. RAPID Manufacturing Institute: New York, NY, USA; ASTM International: West Conshohocken, PA, USA, 2013; pp. 10–12.
- Giordano, C.M.; Zancul, E.; Rodrigues, V.P. Análise dos custos da produção por manufatura aditiva em comparação a métodos convencionais. Produção Online 2016, 16, 499–523. [Google Scholar] [CrossRef]
- Salmoria, G.V.; Cardenuto, M.R.; Ahrens, C.H.; Lafratta, F. Prototipagem rápida por impressão 3D com resinas fotocuráveis: Uma análise sobre as tecnologias disponíveis no mercado nacional. In Anais do 9° Congresso Brasileiro de Polímeros; ABPol: São Carlos, Brazil, 2007; pp. 360–367. Available online: https://www.ipen.br/biblioteca/cd/cbpol/2007/PDF/79.pdf (accessed on 20 August 2024).
- ISO/ASTM52900-15; Standard Terminology for Additive Manufacturing—General Principles—Terminology. ASTM International: West Conshohocken, PA, USA, 2015; 9p.
- Balderrama-Armendariz, C.O.; MacDonald, E.; Espalin, D.; Cortez-Saenz, D.; Wicker, R.; Maldonado-Macias, A. Torsion analysis of the anisotropic behavior of FDM technology. Int. J. Adv. Manuf. Technol. 2018, 96, 307–317. [Google Scholar] [CrossRef]
- Navarrete, J.I.M.; Hidalgo-Salazar, M.A.; Nunez, E.E.; Arciniegas, A.J.R. Thermal and mechanical behavior of biocomposites using additive manufacturing. Int. J. Interact. Des. Manuf. 2018, 12, 449–458. [Google Scholar] [CrossRef]
- Kollamaram, G.; Croker, D.M.; Walker, G.M.; Goyanes, A.; Basit, A.; Gaisford, S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int. J. Pharm. 2018, 545, 144–152. [Google Scholar] [CrossRef]
- Tan, D.K.; Maniruzzaman, M.; Nokhodchi, A. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Pharmaceutics 2018, 10, 203. [Google Scholar] [CrossRef]
- Crump, S. Apparatus and Method for Creating Three-Dimensional Objects. US5121329A, 9 June 1992. [Google Scholar]
- Milde, J.; Zaujec, R.; Hrušecký, R.; Zaujec, R.; Morovič, L.; Görög, A. Research of ABS and PLA materials in the process of fused deposition modeling method. In Proceedings of the 28th International Symposium on Intelligent Manufacturing and Automation, Zadar, Croatia, 8–11 November 2017; Volume 28, pp. 812–820. [Google Scholar] [CrossRef]
- Micó-Vicent, B.; Perales, E.; Huraibat, K.; Martínez-Verdú, M.; Viqueira, V. Maximization of FDM-3D-Objects gonio-appearance effects using PLA and ABS filaments and combining several printing parameters: “A case study”. Materials 2019, 12, 1423. [Google Scholar] [CrossRef] [PubMed]
- Claver, J.; Mar, A. The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis. Materials 2018, 11, 1333. [Google Scholar] [CrossRef]
- Panwar, A.; Tan, L.P. Current status of bioinks for micro-extrusion-based. Molecules 2016, 21, 685. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P. Polymer Materials Via Melt Based 3D Printing: Fabrication and Characterization. Master’s Thesis, Clemson University, Clemson, SC, USA, 2018. Available online: https://tigerprints.clemson.edu/all_theses (accessed on 12 December 2024).
- Nonato, R.C.; Mei, L.H.I.; Bonse, B.C.; Chinaglia, E.F.; Morales, A.R. Nanocomposites of PLA containing ZnO nanofibers made by solvent cast 3D printing: Production and characterization. Eur. Polym. J. 2019, 114, 271–278. [Google Scholar] [CrossRef]
- Espalin, D.; Ramírez, J.A.; Medina, F.; Wicker, R. Multi-material, multi-technology FDM: Exploring build process variations. Rapid Prototyp. J. 2014, 20, 236–244. [Google Scholar] [CrossRef]
- Chist, S.; Schanbel, M.; Vorndran, E.; Groll, J.; Gbureck, U. Fiber reinforcement during 3D printing. Mater. Lett. 2015, 139, 165–168. [Google Scholar] [CrossRef]
- Spoerk, M.; Arbeiter, F.; Cajner, H.; Sapkota, J.; Holzer, C. Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid). J. Appl. Polym. Sci. 2017, 134, 45401. [Google Scholar] [CrossRef]
- Kim, S.; Rahman, M.A.; Arifuzzaman, M.; Gilmer, D.B.; Li, B.; Wilt, J.K.; Lara-Curzio, E.; Saito, T. Closed-loop additive manufacturing of upcycled commodity plastic through dynamic cross-linking. Sci. Adv. 2022, 8, eabn6006. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Liu, T.; Yang, C.; Wang, Q.; Li, D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 198–205. [Google Scholar] [CrossRef]
- Zhang, B.; Seong, B.; Hguyen, V.; Byun, D. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J. Micromech. Microeng. 2016, 26, 025015. [Google Scholar] [CrossRef]
- Onwubolu, G.C.; Rayegani, F. Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process. Int. J. Manuf. Eng. 2014, 2014, 598531. [Google Scholar] [CrossRef]
- Volpato, N. Prototipagem Rápida: Tecnologia e Aplicações, 1st ed.Edgard Blucher LTDA: São Paulo, Brazil, 2006. [Google Scholar]
- Faes, M.; Ferraris, E.; Moens, D. Influence of inter-layer cooling time on the quasi-static properties of ABS components produced via fused deposition modelling. Procedia CIRP 2016, 42, 748–753. [Google Scholar] [CrossRef]
- Contanzo, A.; Poggi, A.; Looijmans, S.; Venkatraman, D.V.; Sawyer, D.; Puskar, L.; Mcllroy, C.; Cavallo, D. The role of molar mass in achieving isotropy and inter-layer strength in mat-ex printed polylactic acid. Polymers 2022, 14, 2792. [Google Scholar] [CrossRef]
- Tiwary, V.K.; Arunkumar, P.; Malik, V.R. An overview on joining/welding as post-processing technique to circumvent the build volume limitation of an FDM-3D printer. Rapid Prototyp. J. 2021, 27, 808–821. [Google Scholar] [CrossRef]
- Dodin, M.G. Welding Mechanisms of Plastics: A Review. J. Adhes. 1981, 12, 99–111. [Google Scholar] [CrossRef]
- Adhikari, S.; Durning, C.J.; Fish, J.; Simon, J.W.; Kumar, S.K. Modeling Thermal Welding of Semicrystalline Polymers. Macromolecules 2022, 55, 1719–1725. [Google Scholar] [CrossRef]
- da Costa, A.P.; Botelho, E.C.; Costa, M.L.; Narita, N.E.; Tarpani, J.R. A review of welding technologies for thermoplastic composites in aerospace applications. J. Aerosp. Technol. Manag. 2012, 4, 255–265. [Google Scholar] [CrossRef]
- Wool, R.P.; Yuan, B.L.; McGarel, O.J. Welding of polymer interfaces. Polym. Eng. Sci. 1989, 29, 1340–1367. [Google Scholar] [CrossRef]
- Ageorges, C.; Ye, L.; Hou, M. Advances in fusion bonding techniques for joining thermoplastic matrix composites: A review. Composites 2001, 32 Pt A, 839–857. [Google Scholar] [CrossRef]
- Grewell, D.; Benatar, A. Welding of plastics: Fundamentals and new developments. Int. Polym. Process. 2007, 22, 43–60. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, D.; Wei, J.; Zhao, P.; Ren, R.; Dong, J.; Cui, X. Resistance welding technology of fiber reinforced polymer composites: A review. J. Adhes. Sci. Technol. 2021, 35, 1593–1619. [Google Scholar] [CrossRef]
- Sercer, M.; Raos, P. Joining of Plastic and Composites. In Encyclopedia of Life Support Welding Engineering and Technology; Eolss Publishers (Under the Auspices of the UNECO): Oxford, UK, 2010. [Google Scholar]
- Stokes, V.K. Joining Methods for Plastics and Plastic Composites: An Overview. Polym. Eng. Sci. 1989, 29, 1310–1324. [Google Scholar] [CrossRef]
- de Pelsmaeker, J.; Graulus, G.J.; Van Vlierberghe, S.; Thienpont, H.; Van Hermelrijck, D.; Dubruel, P.; Ottevaere, H. Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterization. J. Mater. Process Technol. 2018, 255, 808–815. [Google Scholar] [CrossRef]
- Acherjee, B. Laser transmission welding of polymers—A review on process fundamentals, material attributes, weldability, and welding techniques. J. Manuf. Process. 2020, 60, 227–246. [Google Scholar] [CrossRef]
- de Baere, I.; Allaer, K.; Jacques, S.; Van Paepegem, V.; Degrieck, J. Interlaminar Behavior of Infrared Welded Joints of Carbon Fabric–Reinforced Polyphenylene Sulfide. Polym. Compos. 2012, 33, 1105–1113. [Google Scholar] [CrossRef]
- Khmelev, V.N.; Slivin, A.N.; Lehr, A.V.; Abramov, A.D. Theoretical investigations of continuous ultrasonic seam welding of thermoplastic polymers and fabrics. In Proceedings of the 2010 11th International Conference and Seminar on Micro/Nanotechnologies and Electron Devices 2010, EDM’2010—Proceedings, Novosibirsk, Russia, 30 June–4 July 2010; pp. 341–344. [Google Scholar] [CrossRef]
- Tofangchi, A.; Han, P.; Izquierdo, J.; Iyengar, A.; Hsu, K. Effect of ultrasonic on interlayer adhesion in fused filament fabrication 3D printed ABS. Polymers 2019, 11, 315. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Shi, Q.; Li, H.; Jabour, J.; Yang, H.; Dunn, M.L.; Wang, T.; Qi, H.J. Interfacial welding of dynamic covalent network polymers. J. Mech. Phys. Solids. 2016, 94, 1–17. [Google Scholar] [CrossRef]
- Cunha, M.A.G.; Robbins, M.O. Effect of Flow-Induced Molecular Alignment on Welding and Strength of Polymer Interfaces. Macromolecules 2020, 53, 8417–8427. [Google Scholar] [CrossRef]
- Avenet, J.; Cender, T.A.; Le Corre, S.; Bailleul, J.L.; Levy, A. Experimental correlation of rheological relaxation and interface healing times in welding thermoplastic PEKK composites. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106489. [Google Scholar] [CrossRef]
- Anderson, K.L.; Wescott, J.T.; Carver, T.J.; Windle, A.H. Mesoscale modelling of polymer welding. Mater. Sci. Eng. A 2004, 365, 14–24. [Google Scholar] [CrossRef]
- Coasey, K.; Hart, K.R.; Wetzel, E.; Edwards, D.; Mackay, M.E. Nonisothermal welding in fused filament fabrication. Addit. Manuf. 2020, 33, 101140. [Google Scholar] [CrossRef]
- Yokomizo, K.; Banno, Y.; Kotaki, M. Molecular dynamics study on the effect of molecular orientation on polymer welding. Polymer 2012, 53, 4280–4286. [Google Scholar] [CrossRef]
- McIlroy, C.; Olmsted, P.D. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer 2017, 123, 376–391. [Google Scholar] [CrossRef]
- Fitzharris, E.R.; Watt, I.; Rosen, D.W.; Shofner, M.L. Interlayer bonding improvement of material extrusion parts with polyphenylene sulfide using the Taguchi method. Addit. Manuf. 2018, 24, 287–297. [Google Scholar] [CrossRef]
- Canevarolo, S.V., Jr. Polymer Science: A Textbook for Engineers and Technologists, 1st ed.; Hanser Publications: Cincinnati, OH, USA, 2020; pp. 149–188. [Google Scholar]
- Srinivas, V.; Hooy-Corstjens, C.S.J.V.; Vaughan, G.B.M.; Leeuwen, B.V.; Rastogi, S.; Harings, J.A.W. Interfacial stereocomplexation to strengthen fused deposition modeled Poly(lactide) welds. ACS Appl. Polym. Mater. 2019, 1, 2131–2139. [Google Scholar] [CrossRef]
- Das, A.; Gilmer, E.L.; Biria, S.; Bortner, M.J. Importance of polymer rheology on material extrusion additive manufacturing: Correlating process physics to print properties. ACS Appl. Polym. Mater. 2021, 3, 1218–1249. [Google Scholar] [CrossRef]
- Seppala, J.E.; Migler, K.D. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf. 2016, 12, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.S.; Herrmann, D.; Tolar, O.; Elspass, W.J. Improving the filament weld-strength of fused filament fabrication products through improved interdiffusion. Addit. Manuf. 2019, 29, 100815. [Google Scholar] [CrossRef]
- Srinivas, V.; Hooy-Corstjens, C.S.J.V.; Rastogi, S.; Harings, J.A.W. Promotion of molecular diffusion and/or crystallization in fused deposition modeled poly(lactide) welds. Polymer 2020, 202, 122637. [Google Scholar] [CrossRef]
- Vaes, D.; Puyvelde, P.V. Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog. Polym. Sci. 2021, 118, 101411. [Google Scholar] [CrossRef]
- Go, J.; Schiffres, S.N.; Stevens, A.G.; Hart, A.J. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit. Manuf. 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.; Ahuja, I.P.S. Investigations of mechanical, thermal and morphological properties of FDM fabricated parts for friction welding applications. Measurement 2018, 120, 11–20. [Google Scholar] [CrossRef]
- Sun, Q.; Rizvi, G.M.; Bellehumeur, C.T.; Gu, P. Experimental study of the cooling characteristics of polymer filaments in FDM and impact on the mesostructures and properties of prototypes. Int. Solid. Free Fabr. Symp. 2003, 14, 312–323. [Google Scholar] [CrossRef]
- ASTM D1938-19; Standard Test Method for Tear-Propagation Resistance (Trouser Tear) of Plastic Film and Thin Sheeting by a Single-Tear Method. ASTM International: West Conshehoken, PA, USA, 2019.
- Davis, C.S.; Hillgartner, K.E.; Han, S.H.; Seppala, J.E. Mechanical strength of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf. 2017, 16, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, A.; Croce, U.; Spotorno, R.; Fenni, S.E.; Cavallo, D. Fused deposition modeling of polyamides: Crystallization and weld formation. Polymers 2020, 12, 2980. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.C.; Tandon, G.P.; Bradford, R.L.; Koerner, H.; Baur, J.W. Process-structure-property effects on ABS bond strength in fused filament fabrication. Addit. Manuf. 2018, 19, 29–38. [Google Scholar] [CrossRef]
- Javadi, M.S.; Ehteshamfar, M.V.; Adibi, H. A compressive analysis and prediction of the effect of groove shape and volume fraction of multi-walled carbon nanotubes on the polymer 3D-printed parts in the friction stir welding process. Polym. Test. 2023, 117, 107844. [Google Scholar] [CrossRef]
- Allum, J.; Moetazedian, A.; Gleadall, A.; Silberschmidt, V. Interlayer bonding has bulk-material strength in extrusion additive manufacturing: New understanding of anisotropy. Addit. Manuf. 2020, 34, 101297. [Google Scholar] [CrossRef]
- Seppala, J.E.; Han, S.H.; Hillgartner, K.E.; Davis, C.S.; Migler, K.B. Weld Formation During Material Extrusion Additive Manufacturing. Soft Matter. 2017, 13, 6761–6769. [Google Scholar] [CrossRef] [PubMed]
- Oskolkov, A.A.; Bezukladnikov, I.I.; Trushnikov, D.N. Mathematial Model of the Layer-by-Layer FFF/FGF Polymer Extrusion Process for Use in the Algorithm of Numerical Implementation of Real-Time Thermal Cycle Control. Polymers 2023, 15, 4518. [Google Scholar] [CrossRef]
- Baouch, Z.; Vezzoli, R.; Koster, J.; Costanzo, A.; Lanfranchi, A.; Cavallo, D.; Mcilroy, C. Polypropylene for material extrusion: Evidence that flow-enhanced crystallization restricts welding. Addit. Manuf. 2024, 83, 104063. [Google Scholar] [CrossRef]
- Srinivas, V.; Hooy-Corstjens, C.S.J.V.; Harings, J.A.W. Correlating molecular and Crystallization Dynamics to Macroscopic fusion and Thermodynamic Stability in Fused Deposition Modeling; A Model Study on Polylactides. Polymer 2018, 142, 348–355. [Google Scholar] [CrossRef]
- Sweeney, C.B.; Burnette, M.L.; Pospisil, M.J.; Shah, S.A.; Anas, M.; Teipel, B.R.; Zahner, B.S.; Staack, D.; Green, M.J. Dielectric Barrier Discharge Applicator for Heating Carbon Nanotube-Loaded Interfaces and Enhancing 3D-Printed Bond Strength. Nano Lett. 2020, 20, 2310–2315. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, A.; Spotorno, R.; Candal, M.V.; Fernández, M.M.; Muller, A.J.; Graham, R.S.; Cavallo, R.; McIlroy, C. Residual alignment and its effect on weld strength in material-extrusion 3D-printing of polylactic acid. Addit. Manuf. 2020, 36, 101415. [Google Scholar] [CrossRef]
- Moritzer, E.; Wächter, J. Development of a Procedure for the Assessment of Material Potentials Under Consideration of the Weld Seam Quality for Multi-material Applications in the FDM Process. Macromol. Symp. 2020, 404, 2100389. [Google Scholar] [CrossRef]
- Nogales, A.; Gutiérrez-Fernández, E.; García-Gutiérrez, M.C.; Ezquerra, T.A.; Rebollar, E.; Šics, I.; Malfois, M.; Gaidukovs, S.; Gecis, E.; Celms, K.; et al. Structure development in polymers during fused filament fabrication (FFF): An inSitu small- and wide-angle X-ray scattering study synchrotron. Macromolecules 2019, 52, 9715–9723. [Google Scholar] [CrossRef]
- Dave, H.K.; Prajapati, A.R.; Rajpurohit, S.R.; Patadiya, N.H.; Raval, H.K. Investigation on tensile strength and failure modes of FDM printed part using in-house fabrication PLA filament. Adv. Mater. Process Technol. 2022, 8, 576–597. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, J.E.; Park, J.; Lee, N.K.; Son, Y.; Park, S.H. High temperature 3D printing of polyetheretherketone products: Perspective on industrial manufacturing applications of super engineering plastics. Mater. Des. 2021, 211, 110163. [Google Scholar] [CrossRef]
- Levenhagen, N.P.; Dadmun, M.D. Interlayer diffusion of surface segregating additives to improve the isotropy of fused deposition modeling products. Polymer 2018, 152, 35–41. [Google Scholar] [CrossRef]
- Rodzeń, K.; Harkin-Jones, E.; Wegrzyn, M.; Sharma, P.K.; Zhigunov, A. Improvement of the layer-layer adhesion in FFF 3D printed PEEK/carbon fibre composites. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106532. [Google Scholar] [CrossRef]
- Kurapati, S.K.; Reddy, N.M.; Sujithra, R.; Kola, R.; Ramesh, G.V.; Saritha, D. Nanomaterials and Nanostructures in Additive Manufacturing: Properties, Applications, and Technological Changes. In Nanotechnology-Based Additive Manufacturing: Product Design, Properties and Application; Deshmukh, K., Khadheer, S.K., Sadasivuni, K., Eds.; Wiley-VCH GmbH: Weinheim, Germany, 2023; Volume 2, pp. 53–102. [Google Scholar] [CrossRef]
- Ravi, A.K.; Deshpande, A.; Hsu, K.H. An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J. Manuf. Process. 2016, 24, 179–185. [Google Scholar] [CrossRef]
- Luo, M.; Tian, X.; Zhu, W.; Li, D. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion. J. Mater. Res. 2018, 33, 1632–1641. [Google Scholar] [CrossRef]
- Menga, L.; Xiaoyong, T.; Junfan, S.; Weijun, Z.; Dichen, L.; Yingjie, Q. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites. Compos. Part A 2019, 121, 2019. [Google Scholar] [CrossRef]
- Chen, Y.; Shan, Z.; Yang, X.; Fan, C.; Song, Y. Influence of preheating temperature and printing speed on interlaminar shear performance of laser-assisted additive manufacturing for CCF/PEEK composites. Polym. Compos. 2022, 43, 3412. [Google Scholar] [CrossRef]
- Han, P.; Torabnia, S.; Riyad, M.F.; Bawareth, M.; Hsu, K. Effect of laser heating on mechanical strength of carbon fiber–reinforced nylon in fused filament fabrication. J. Adv. Manuf. Technol. 2024, 133, 6139–6146. [Google Scholar] [CrossRef]
- Han, P.; Tofangchi, A.; Deshpande, A.; Zhang, S.; Hsu, K. An approach to improve interface healing in FFF-3D printed ultem 1010 using laser pre-deposition heating. Procedia Manuf. 2019, 34, 672–677. [Google Scholar] [CrossRef]
- Han, P.; Tofagangchi, A.; Zhang, S.; Desphande, A.; Hsu, K. Effect of in-process laser interface heating on strength osotropy of extrusion-based additively manufactured PEEK. Procedia Manuf. 2020, 48, 737–742. [Google Scholar] [CrossRef]
- Mundada, P.S.; Yang, C.H.; Chen, R.K. Investigation of the effects of a pre-deposition heating system on the interfacial temperature and interlayer bonding strength for fused filament fabrication. Rapid Prototyp. J. 2023, 29, 9–18. [Google Scholar] [CrossRef]
- Han, P.; Tofangchi, A.; Zhang, S.; Izquierdo, J.J.; Hsu, K. Interface Healing Between Adjacent Tracks in Fused Filament Fabrication Using In-Process Laser Heating. 3D Print. Addit. Manuf. 2023, 10, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Zhang, S.; Yang, Z.; Riyad, M.F.; Popa, D.O.; Hsu, K. In-Process Orbiting Laser-Assisted Technique for the Surface Finish in Material Extrusion-Based 3D Printing. Polymers 2023, 15, 2221. [Google Scholar] [CrossRef]
- Levenhagen, N.P.; Dadmun, M.D. Reactive Processing in Extrusion-Based 3D Printing to Improve Isotropy and Mechanical Properties. Macromolecules 2019, 52, 6495–6501. [Google Scholar] [CrossRef]
- Du, J.; Zhengying, W.; Xin, W.; Jijie, W.; Zhen, C. An improved fused deposition modeling process for forming large-size thin-walled parts. J. Mater. Process Technol. 2016, 234, 332–341. [Google Scholar] [CrossRef]
- Lee, J.E.; Park, S.J.; Son, Y.; Park, K.; Park, S.H. Mechanical reinforcement of additive-manufactured constructs using in situ auxiliary heating process. Addit. Manuf. 2021, 43, 101995. [Google Scholar] [CrossRef]
- Porto, G.A.; de Paula, L.G.A.; Arias, J.J.R.; Chaves, E.G.; Marques, M.F.V. Comparative analysis of poly(ether-ether-ketone) properties aged in different conditions for application in pipelines. J. Therm. Anal. Calorim. 2023, 148, 79–95. [Google Scholar] [CrossRef]
- Levenhagen, N.P.; Dadmun, M.D. Bimodal molecular weight samples improve the isotropy of 3D printed polymeric samples. Polymer 2017, 122, 232–241. [Google Scholar] [CrossRef]
- Zhu, G.; Hou, Y.; Xu, J.; Zhao, N. Digital light processing 3D printing of enhanced polymers via interlayer welding. Macromol. Rapid Commun. 2022, 43, 2200053. [Google Scholar] [CrossRef]
- Yavitt, B.M.; Wiegart, L.; Salatto, D.; Huang, Z.; Endoh, M.K.; Poeller, S.; Petrash, S.; Koga, T. Structural Dynamics in UV Curable Resins Resolved by in Situ 3D Printing X-ray Photon Correlation Spectroscopy. ACS Appl. Polym. Mater. 2020, 2, 4096–4108. [Google Scholar] [CrossRef]
- Kishore, V.; Ajinjeru, C.; Nycz, A.; Post, B.; Lindahl, J.; Kunc, V.; Duty, C. Infrared preheating to pmprove interlayer strength of big area additive manufacturing (BAAM) components. Addit. Manuf. 2017, 14, 7–12. [Google Scholar] [CrossRef]
- Nycza, A.; Kishore, V.; Lindahl, J.; Duty, C.; Carnal, C.; Kunch, V. Controlling substrate temperature with infrared heating to improve mechanical properties of large-scale printed parts. Addit. Manuf. 2020, 33, 101068. [Google Scholar] [CrossRef]
- Luchinsky, D.G.; Hafiychuk, H.; Hafiychuk, V.; Chaki, K.; Nitta, H.; Ozawa, T.; Wheeler, K.R.; Prater, T.J.; McClintock, P.V.E. Welding dynamics in an atomistic model of an amorphous polymer blend with polymer-polymer interface. J. Polym. Sci. 2020, 58, 2051–2061. [Google Scholar] [CrossRef]
- Sweeney, C.B.; Lackey, B.A.; Pospisil, M.J.; Acheé, T.C.; Hicks, V.K.; Teipel, B.R.; Saed, M.A.; Green, M.J. Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating. Sci. Adv. 2017, 3, e1700262. [Google Scholar] [CrossRef]
- Pei, H.; Chen, Y.; Lv, Q.; Peng, Z.; Wang, X.; Chen, N.; Zhang, H. A novel microwave assisted multi-material 3D printing strategy to architect lamellar piezoelectric generators for intelligent sensing. Compos. Part B 2024, 280, 111529. [Google Scholar] [CrossRef]
- Palaniyappan, S.; Sivakumar, N.K.; Rajakumar, S.; Mohan, D.G.; Rahaman, M. Ultrasonic welding of Cork Wood/PLA composites: Effect of welding factors on lap shear strength performance. J. Adhes. Sci. Technol. 2024, 17, 1–20. [Google Scholar] [CrossRef]
- Rana, R.S.; Singh, I.; Sharma, A.K. Ultrasonic welding of printed/molded sustainable polymer specimens with energy directors. Ultrasonics 2023, 134, 107078. [Google Scholar] [CrossRef]
- Hu, B.; Duan, X.; Xing, Z.; Xu, Z.; Du, C.; Zhou, H.; Chen, R.; Shan, B. Improved design of fused deposition modeling equipment for 3D printing of high-performance PEEK parts. Mech. Mater. 2019, 137, 103139. [Google Scholar] [CrossRef]
- Ravoori, D.; Prajapati, H.; Talluru, V.; Adnan, A.; Jain, A. Nozzle-integrated pre-deposition and post-deposition heating of previously deposited layers in polymer extrusion based additive manufacturing. Addit. Manuf. 2019, 28, 719–726. [Google Scholar] [CrossRef]
- Partain, S.C. Fused Deposition Modeling with Localized Pre-Deposition Heating Using Forced Air. Master’s Thesis, Montana State University-Bozeman, College of Engineering, Bozeman, MT, USA, 2007. [Google Scholar]
- Layher, M.; Lukas, E.; Linke, D.; Hopf, A.; Bliedtner, J. Laser beam heat treatment in large-scale additive manufacturing. Prog. Addit. Manuf. 2023, 8, 1489–1499. [Google Scholar] [CrossRef]
Fusion Method | Welding Technique |
---|---|
Bulk heating | Hot melt adhesives |
Dual resin bonding | |
Consolidation | |
Friction heating | Spin weld |
Ultrasonic welding | |
Friction welding | |
Vibration welding | |
Electromagnetic heating | Resistance welding |
Dielectric welding | |
Microware welding | |
Induction welding | |
Thermal techniques | Laser welding |
Infrared welding | |
Hot plate welding | |
Hot gas welding |
Group | Description | Polymer | Tensile Strength Weld Strength [MPa] | Tg [°C] |
---|---|---|---|---|
I | They do not weld due to the presence of aromatic fractions along the polymeric chain. | PC | 0.01 | 142 |
II | Characterized by a degree of crystallinity that results in inefficient soldering. | HDPE | 3.38 | −115 |
PP | 2.63 | −5 | ||
PA6 | 0.01 | 49 | ||
ABS | 4.65 | 101 | ||
III | Amorphous polymers whose characteristic is strong soldering. As indicated, the aromatic rings in the main chain of polycarbonate (PC) make soldering difficult. | PLLA | 25.89 | 54 |
PMMA | 21.18 | 110 | ||
COC | 11.00 | 74 | ||
PS | 8.99 | 82 |
Device For Inter Layer Welding | Polymeric Matrix | Percentage Increase in Property | Improved Property | Ref. |
---|---|---|---|---|
Two laser | ABS | 195% | Tensile strength | [102] |
One laser | PEEK | 45% | Interlayer shear strength | [92] |
34.4% | Degree of crystallinity | |||
One laser | ABS | 50% | Bond strength between layers | [91] |
Laser | PLA | 106% | Flexural strength | [99] |
Laser | Polyether Imide (PEI) | 178% | Tensile strength | [96] |
Laser (CO2) | PEEK | 350% | Tensile strength | [97] |
Laser | ABS | 50% | Tensile testing | [98] |
Laser (CO₂) | polimetilmetacrilato (PMMA) estireno-acrilonitrila (SAN) | 66% for PMMA | Bending | [118] |
48% for SAN | ||||
Laser | carbon fiber–reinforced nylon filament | 100% | Tensile strength | [95] |
200% | Strain | |||
Laser | carbon fiber reinforced poly-ether–ether–ketone (CCF/PEEK) | 157.0% | Interlaminar shear strength (ILSS) | [94] |
Dielectric barrier discharge—DBD | PA6,66 with carbon nanotubes | 250% | Plastic deformation | [82] |
31% | Tensile strength (statistically equivalent to injection molded specimens) | |||
Ultraviolet (UV) | PLA and low-molecular-weight | 200% | Tensile strength | [101] |
IR radiation | polycarbonate (PC) | 51% | Elongation at break | [103] |
PLA | 151% | |||
IR Lamp | carbon fiber–reinforced ABS | ±100 | Tensile strength (fracture toughness by a factor of 7×) | [109] |
IR | PLA (with carbon nanotube in situ coating) | 275 % | Tensile strength | [111] |
Heat collector | PEEK | 21.0% | Tensile strength | [115] |
22.9% | Bending strength | |||
Metal block (pre- and postheater) | PLA | 60% | Tensile testing | [105] |
65% | Young’s modulus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Conceição, M.d.N.; Anaya-Mancipe, J.; Bastos, D.C.; Pereira, P.S.C.; Libano, E.V.D.G. Influence of Additional Devices and Polymeric Matrix on In Situ Welding in Material Extrusion: A Review. Processes 2025, 13, 171. https://doi.org/10.3390/pr13010171
da Conceição MdN, Anaya-Mancipe J, Bastos DC, Pereira PSC, Libano EVDG. Influence of Additional Devices and Polymeric Matrix on In Situ Welding in Material Extrusion: A Review. Processes. 2025; 13(1):171. https://doi.org/10.3390/pr13010171
Chicago/Turabian Styleda Conceição, Marceli do N., Javier Anaya-Mancipe, Daniele C. Bastos, Patrícia S. C. Pereira, and Elaine V. D. G. Libano. 2025. "Influence of Additional Devices and Polymeric Matrix on In Situ Welding in Material Extrusion: A Review" Processes 13, no. 1: 171. https://doi.org/10.3390/pr13010171
APA Styleda Conceição, M. d. N., Anaya-Mancipe, J., Bastos, D. C., Pereira, P. S. C., & Libano, E. V. D. G. (2025). Influence of Additional Devices and Polymeric Matrix on In Situ Welding in Material Extrusion: A Review. Processes, 13(1), 171. https://doi.org/10.3390/pr13010171