Valorization of Food Industry Waste for Biodegradable Biopolymer-Based Packaging Films
Abstract
1. Introduction
2. Search Strategy and Methodology
3. Biopolymer-Based Films
Biopolymers as Materials for Biopolymer-Based Film Production
4. Food Industry Waste as a Source of Biopolymers
Review of Biopolymers Isolated from Different Types of Food Industry Waste
5. Environmental and Economic Aspects and the Sustainability of Using Food Industry Waste for Biopolymer Isolation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, P.; Gaur, V.; Sirohi, R.; Varjani, S.; Kim, S.H.; Wong, J. Sustainable Processing of Food Waste for Production of Bio-Based Products for Circular Bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Chakraborty, S. A Comprehensive Review on Sustainable Approach for Microbial Degradation of Plastic and Its Challenges. Sustain. Chem. Environ. 2024, 7, 100153. [Google Scholar] [CrossRef]
- Rukikaire, K.; Loran, S. Tackling Food Loss and Waste: A Triple Win Opportunity; Food and Agriculture Organization: Rome, Italy, 2022; Available online: https://www.fao.org/newsroom/detail/FAO-UNEP-agriculture-environment-food-loss-waste-day-2022/en (accessed on 11 March 2025).
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; Available online: https://www.fao.org/4/mb060e/mb060e.pdf (accessed on 11 March 2025).
- Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Nayak, P.K.; Sridhar, K.; Inbaraj, B.S. Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals 2023, 13, 1366. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Abdullah, J.J.; Greetham, D.; Fu, D.; Yu, M.; Ren, L.; Li, S.; Lu, D. Valorization of Food Waste into Biofertiliser and Its Field Application. J. Clean. Prod. 2018, 187, 273–284. [Google Scholar] [CrossRef]
- Jarunglumlert, T.; Bampenrat, A.; Sukkathanyawat, H.; Prommuak, C. Enhanced Energy Recovery from Food Waste by Co-Production of Bioethanol and Biomethane Process. Fermentation 2021, 7, 265. [Google Scholar] [CrossRef]
- Tropea, A. Food Waste Valorization. Fermentation 2022, 8, 168. [Google Scholar] [CrossRef]
- Liu, Z.; de Souza, T.S.P.; Holland, B.; Dunshea, F.; Barrow, C.; Suleria, H.A.R. Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes 2023, 11, 840. [Google Scholar] [CrossRef]
- FAO. Platform on Food Loss and Waste. 2024. Available online: https://www.fao.org/platform-food-loss-waste/flw-data/en/ (accessed on 18 April 2025).
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials 2020, 13, 4994. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Pratibha; Anurag, R.K. Edible Packaging from Fruit Processing Waste: A Comprehensive Review. Food Rev. Int. 2021, 39, 2075–2106. [Google Scholar] [CrossRef]
- Marotta, A.; Borriello, A.; Khan, M.R.; Cavella, S.; Ambrogi, V.; Torrieri, E. Boosting Food Packaging Sustainability through the Valorization of Agri-Food Waste and By-Products. Polymers 2025, 17, 735. [Google Scholar] [CrossRef]
- Barzan, G.; Sacco, A.; Giovannozzi, A.M.; Portesi, C.; Schiavone, C.; Salafranca, J.; Wrona, M.; Nerín, C.; Rossi, A.M. Development of Innovative Antioxidant Food Packaging Systems Based on Natural Extracts from Food Industry Waste and Moringa oleifera Leaves. Food Chem. 2024, 432, 137088. [Google Scholar] [CrossRef]
- Matloob, A.; Ayub, H.; Mohsin, M.; Ambreen, S.; Khan, F.A.; Oranab, S.; Rahim, M.A.; Khalid, W.; Nayik, G.A.; Ramniwas, S.; et al. A Review on Edible Coatings and Films: Advances, Composition, Production Methods, and Safety Concerns. ACS Omega 2023, 8, 28932–28944. [Google Scholar] [CrossRef]
- Gaspar, M.C.; Braga, M. Edible Films and Coatings Based on Agrifood Residues: A New Trend in the Food Packaging Research. Curr. Opin. Food Sci. 2023, 50, 101006. [Google Scholar] [CrossRef]
- Gan, L.; Jiang, G.; Yang, Y.; Zheng, B.; Zhang, S.; Li, X.; Tian, Y.; Peng, B. Development and Characterization of Levan/Pullulan/Chitosan Edible Films Enriched with ε-Polylysine for Active Food Packaging. Food Chem. 2022, 388, 132989. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, H.M.C.; Morrugares-Carmona, R.; Wellner, N.; Cross, K.; Bajka, B.; Waldron, K.W. Development of Pectin Films with Pomegranate Juice and Citric Acid. Food Chem. 2016, 198, 101–106. [Google Scholar] [CrossRef]
- Jeya Jeevahan, J.; Chandrasekaran, M.; Venkatesan, S.P.; Sriram, V.; Britto, J.G.; Mageshwaran, G.; Durairaj, R.B. Scaling Up Difficulties and Commercial Aspects of Edible Films for Food Packaging: A Review. Trends Food Sci. Technol. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- Susmita Devi, L.; Jaiswal, A.K.; Jaiswal, S. Lipid incorporated biopolymer based edible films and coatings in food packaging: A review. Curr. Res. Food Sci. 2024, 8, 100720. [Google Scholar] [CrossRef]
- Zabihollahi, N.; Alizadeh, A.; Almasi, H.; Hanifian, S.; Hamishekar, H. Development and Characterization of Carboxymethyl Cellulose Based Probiotic Nanocomposite Film Containing Cellulose Nanofiber and Inulin for Chicken Fillet Shelf Life Extension. Int. J. Biol. Macromol. 2020, 160, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Parra, J.; Mejía, C.M.; Villa, C.C. Development of a Bioactive Synbiotic Edible Film Based on Cassava Starch, Inulin, and Lactobacillus casei. Food Hydrocoll. 2020, 104, 105754. [Google Scholar] [CrossRef]
- Bersaneti, G.T.; Prudencio, S.H.; Mali, S.; Pedrine Colabone Celligoi, M.A. Assessment of a New Edible Film Biodegradable Based on Starch-Nystose to Increase Quality and the Shelf Life of Blackberries. Food Biosci. 2021, 42, 101173. [Google Scholar] [CrossRef]
- Al-Hashimi, A.G.; Ammar, A.B.; G., L.; Cacciola, F.; Lakhssassi, N. Development of a Millet Starch Edible Film Containing Clove Essential Oil. Foods 2020, 9, 184. [Google Scholar] [CrossRef]
- Ghoshal, G.; Kaur, M. Optimization of Extraction of Starch from Sweet Potato and Its Application in Making Edible Film. Food Chem. Adv. 2023, 3, 100356. [Google Scholar] [CrossRef]
- Aayush, K.; McClements, D.J.; Sharma, S.; Sharma, R.; Singh, G.P.; Sharma, K.; Oberoi, K. Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Apple. Food Control 2022, 141, 109188. [Google Scholar] [CrossRef]
- Tim, A.O.; Sylvana, G.R. History of Sustainable Bio-Based Polymers. In A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications; Sanjay, K.S., Ackmez, M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2011; pp. 1–123. [Google Scholar]
- Jancikova, S.; Dordevic, D.; Sedlacek, P.; Nejezchlebova, M.; Treml, J.; Tremlova, B. Edible Films from Carrageenan/Orange Essential Oil/Trehalose—Structure, Optical Properties, and Antimicrobial Activity. Polymers 2021, 13, 332. [Google Scholar] [CrossRef]
- Prasetyaningrum, A.; Jos, B.; Ariyanti, D.; Handayani, N.; Rohmah, S.; Syawaldi, F.; Fauzi, H.H.; Hakiim, A.A.; Ashianti, A.D. Effect of Concentration of Kappa-Carrageenan on the Physico-Chemical Properties of Rice Starch Film. Food Res. 2024, 8, 54–58. [Google Scholar] [CrossRef]
- Giyatmi, S.; Melanie, S.; Fransiska, D.; Darmawan, M.; Irianto, H. Barrier and Physical Properties of Arrowroot Starch-Carrageenan Based Biofilms. J. Bio-Sci. 2018, 25, 45–56. [Google Scholar] [CrossRef]
- Dordevic, S.; Dordevic, D.; Danilović, B.; Tremlova, B.; Gablo, N. Development of Edible/Biodegradable Packaging Based on κ-Carrageenan with Spent Coffee Grounds as Active Additives. Adv. Technol. 2023, 12, 57–62. [Google Scholar] [CrossRef]
- Ekramian, S.; Abbaspour, H.; Roudi, B.; Amjad, L.; Nafchi, A.M. Influence of Nigella sativa L. Extract on Physico-Mechanical and Antimicrobial Properties of Sago Starch Film. J. Polym. Environ. 2021, 29, 201–208. [Google Scholar] [CrossRef]
- Zheng, K.; Xiao, S.; Li, W.; Wang, W.; Chen, H.; Yang, F.; Qin, C. Chitosan–Acorn Starch–Eugenol Edible Film: Physico-Chemical, Barrier, Antimicrobial, Antioxidant and Structural Properties. Int. J. Biol. Macromol. 2019, 135, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Rachtanapun, P.; Klunklin, W.; Jantrawut, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Seesuriyachan, P.; Leksawasdi, N.; Chaiyaso, T.; Ruksiriwanich, W.; Phongthai, S.; et al. Characterization of Chitosan Film Incorporated with Curcumin Extract. Polymers 2021, 13, 963. [Google Scholar] [CrossRef]
- Oberlintner, A.; Bajić, M.; Kalčíková, G.; Likozar, B.; Novak, U. Biodegradability Study of Active Chitosan Biopolymer Films Enriched with Quercus Polyphenol Extract in Different Soil Types. Environ. Technol. Innov. 2021, 21, 101318. [Google Scholar] [CrossRef]
- Filho, J.G.d.O.; de Deus, I.P.B.; Valadares, A.C.F.; Fernandes, C.C.; Estevam, E.B.B.; Egea, M.B. Chitosan Film with Citrus limonia Essential Oil: Physical and Morphological Properties and Antibacterial Activity. Colloids Interfaces 2020, 4, 18. [Google Scholar] [CrossRef]
- Mirzaei-Mohkam, A.; Garavand, F.; Dehnad, D.; Keramat, J.; Nasirpour, A. Physical, Mechanical, Thermal and Structural Characteristics of Nanoencapsulated Vitamin E Loaded Carboxymethyl Cellulose Films. Prog. Org. Coat. 2020, 138, 105383. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Preparation and Characterization of Pectin Fraction from Pineapple Peel as a Natural Plasticizer and Material for Biopolymer Film. Food Bioprod. Process. 2019, 118, 198–206. [Google Scholar] [CrossRef]
- Nisar, T.; Wang, Z.-C.; Yang, X.; Tian, Y.; Iqbal, M.; Guo, Y. Characterization of Citrus Pectin Films Integrated with Clove Bud Essential Oil: Physical, Thermal, Barrier, Antioxidant, and Antibacterial Properties. Int. J. Biol. Macromol. 2018, 106, 670–680. [Google Scholar] [CrossRef]
- Hua, X.; Yuan, L.; Han, L.; Li, S.; Song, L. Characterization of Antioxidant and Antibacterial Gelatin Films Incorporated with Ginkgo biloba Extract. RSC Adv. 2019, 9, 27449–27454. [Google Scholar] [CrossRef]
- Soo, P.Y.; Sarbon, N.M. Preparation and Characterization of Edible Chicken Skin Gelatin Film Incorporated with Rice Flour. Food Packag. Shelf Life 2018, 15, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, S.; Wang, H. Scale-Up Preparation and Characterization of Collagen/Sodium Alginate Blend Films. J. Food Qual. 2017, 2017, 4954259. [Google Scholar] [CrossRef]
- Wagh, Y.R.; Pushpadass, H.A.; Eljeeva, F.M.; Nath, B.S. Preparation and Characterization of Milk Protein Films and Their Application for Packaging of Cheddar Cheese. J. Food Sci. Technol. 2014, 51, 3767–3775. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.M.; Yoksan, R. Morphological Characteristics and Barrier Properties of Thermoplastic Starch/Chitosan Blown Film. Carbohydr. Polym. 2016, 150, 40–47. [Google Scholar] [CrossRef]
- Ben Slimane, E.; Sadok, S. Collagen from Cartilaginous Fish By-Products for a Potential Application in Bioactive Film Composite. Mar. Drugs 2018, 16, 211. [Google Scholar] [CrossRef]
- Maizura, M.; Fazilah, A.; Norziah, M.H.; Karim, A.A. Antibacterial Activity and Mechanical Properties of Partially Hydrolyzed Sago Starch–Alginate Edible Film Containing Lemongrass Oil. J. Food Sci. 2007, 72, C324–C330. [Google Scholar] [CrossRef]
- Warkoyo, W.; Rahardjo, B.; Marseno, D.W.; Karyadi, J.N.W. Sifat Fisik, Mekanik dan Barrier Edible Film Berbasis Pati Umbi Kimpul (Xanthosoma sagittifolium) yang Diinkorporasi dengan Kalium Sorbat. Agritech 2014, 34, 72–81. Available online: https://jurnal.ugm.ac.id/agritech/article/view/9525/7100 (accessed on 1 March 2025).
- Souza, A.C.; Goto, G.E.O.; Mainardi, J.A.; Coelho, A.C.V.; Tadini, C.C. Cassava Starch Composite Films Incorporated with Cinnamon Essential Oil: Antimicrobial Activity, Microstructure, Mechanical and Barrier Properties. LWT-Food Sci. Technol. 2013, 54, 346–352. [Google Scholar] [CrossRef]
- Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Ojagh, S.M.; Khaksar, R. Characterization of Antioxidant-Antimicrobial κ-Carrageenan Films Containing Satureja hortensis Essential Oil. Int. J. Biol. Macromol. 2013, 52, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Costa, B.; Andrade, C. Chitosan as a Valuable Biomolecule from Seafood Industry Waste in the Design of Green Food Packaging. Biomolecules 2021, 11, 1599. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Development and Evaluation of a Novel Biodegradable Film Made from Chitosan and Cinnamon Essential Oil with Low Affinity Toward Water. Food Chem. 2010, 122, 161–166. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Y.; Bai, R.; Zhang, X.; Yuan, L.; Liu, J. Preparation of pH-Sensitive and Antioxidant Packaging Films Based on κ-Carrageenan and Mulberry Polyphenolic Extract. Int. J. Biol. Macromol. 2019, 134, 993–1001. [Google Scholar] [CrossRef]
- de Souza, M.C.R.; Marques, C.T.; Dore, C.M.G.; da Silva, F.R.F.; Rocha, H.A.O.; Leite, E.L. Antioxidant Activities of Sulfated Polysaccharides from Brown and Red Seaweeds. J. Appl. Phycol. 2007, 19, 153–160. [Google Scholar] [CrossRef]
- Benavides, S.; Villalobos-Carvajal, R.; Reyes, J.E. Physical, Mechanical and Antibacterial Properties of Alginate Film: Effect of the Crosslinking Degree and Oregano Essential Oil Concentration. J. Food Eng. 2012, 110, 232–239. [Google Scholar] [CrossRef]
- Bitencourt, C.M.; Fávaro-Trindade, C.S.; Sobral, P.J.A.; Carvalho, R.A. Gelatin-Based Films Additivated with Curcuma Ethanol Extract: Antioxidant Activity and Physical Properties of Films. Food Hydrocoll. 2014, 40, 145–152. [Google Scholar] [CrossRef]
- Ganesh, K.S.; Sridhar, A.; Vishali, S. Utilization of Fruit and Vegetable Waste to Produce Value-Added Products: Conventional Utilization and Emerging Opportunities—A Review. Chemosphere 2021, 287, 132221. [Google Scholar] [CrossRef]
- Koutinas, A.A.; Vlysidis, A.; Pleissner, D.; Kopsahelis, N.; Lopez Garcia, I.; Kookos, I.K.; Lin, C.S.K. Valorization of Industrial Waste and By-Product Streams via Fermentation for the Production of Chemicals and Biopolymers. Chem. Soc. Rev. 2014, 43, 2587–2627. [Google Scholar] [CrossRef]
- Kavitha, S.; Yukesh, K.R.; Kumar, G.; Gunasekaran, M.; Rajesh, B.J. Introduction: Sources and Characterization of Food Waste and Food Industry Wastes. Food Waste Valuab. Resour. 2020, 1–13. [Google Scholar] [CrossRef]
- FoodDrinkEurope. Food Wastage Hierarchy. 2019. Available online: https://www.fooddrinkeurope.eu/our-actions/foodwaste-toolkit/food-wastage-hierarchy (accessed on 1 March 2025).
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, Production, Recent Developments and Applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Plant By-Products and Food Industry Waste: A Source of Nutraceuticals and Biopolymers. In Food Bioconversion; Academic Press: Cambridge, MA, USA, 2017; pp. 279–315. [Google Scholar] [CrossRef]
- Shogren, R.; Wood, D.; Orts, W.; Glenn, G. Plant-Based Materials and Transitioning to a Circular Economy. Sustain. Prod. Consum. 2019, 19, 194–215. [Google Scholar] [CrossRef]
- Sirohi, R.; Pandey, J.P.; Gaur, V.K.; Gnansounou, E.; Sindhu, R. Critical Overview of Biomass Feedstocks as Sustainable Substrates for the Production of Polyhydroxybutyrate (PHB). Bioresour. Technol. 2020, 311, 123536. [Google Scholar] [CrossRef] [PubMed]
- Khodaei, D.; Álvarez, C.; Mullen, A.M. Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: An Overview. Polymers 2021, 13, 2561. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Andrés, J.M.; Álvarez, C.; Cullen, P.; Tiwari, B.K. Effect of Cold Plasma on the Techno-Functional Properties of Animal Protein Food Ingredients. Innov. Food Sci. Emerg. Technol. 2019, 58, 102205. [Google Scholar] [CrossRef]
- Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.; Raghunath, M.; et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv. Mater. 2018, 31, e1801651. [Google Scholar] [CrossRef]
- Seggiani, M.; Gigante, V.; Cinelli, P.; Coltelli, M.-B.; Sandroni, M.; Anguillesi, I.; Lazzeri, A. Processing and Mechanical Performances of Poly (Butylene Succinate–co–Adipate) (PBSA) and Raw Hydrolyzed Collagen (HC) Thermoplastic Blends. Polym. Test. 2019, 77, 105900. [Google Scholar] [CrossRef]
- Scopel, B.S.; Lamers, D.L.; Matos, E.; Baldasso, C.; Dettmer, A. Collagen Hydrolysate Extraction from Chromed Leather Waste for Polymeric Film Production. J. Am. Leather Chem. Assoc. 2016, 111, 30–40. [Google Scholar]
- Do Vale, D.A.; Vieira, C.B.; Vidal, M.F.; Claudino, R.L.; Andrade, F.K.; Sousa, J.R.; de Souza, B.W.S. Chitosan-Based Edible Films Produced from Crab-Uçá Waste: Physicochemical, Mechanical and Antimicrobial Properties. J. Polym. Environ. 2020, 29, 694–706. [Google Scholar] [CrossRef]
- Rai, S.; Dutta, P.K.; Mehrotra, G.K. Lignin Incorporated Antimicrobial Chitosan Film for Food Packaging Application. J. Polym. Mater. 2017, 34, 171–183. [Google Scholar]
- Shahid-Ul-Islam; Butola, B.S. Recent Advances in Chitosan Polysaccharide and Its Derivatives in Antimicrobial Modification of Textile Materials. Int. J. Biol. Macromol. 2019, 121, 905–912. [Google Scholar] [CrossRef]
- Tikariha, A.; Sahu, O. Study of Characteristics and Treatments of Dairy Industry Waste Water. J. Appl. Environ. Microbiol. 2014, 2, 16–22. Available online: https://pubs.sciepub.com/jaem/2/1/4/index.html (accessed on 1 March 2025).
- Ostojić, S.; Pavlović, M.; Živić, M.; Filipović, Z.; Gorjanović, S.; Hranisavljević, S.; Dojčinović, M. Processing of Whey from Dairy Industry Waste. Environ. Chem. Lett. 2005, 3, 29–32. [Google Scholar] [CrossRef]
- Dubey, N.K.; Dubey, R. Chapter 27—Edible Films and Coatings: An Update on Recent Advances. In Biopolymer-Based Formulations: Biomedical and Food Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 675–695. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Kim, H.-W.; Ham, J.-S. Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. Coatings 2021, 11, 1056. [Google Scholar] [CrossRef]
- Makroo, H.A.; Naqash, S.; Saxena, J.; Savita Sharma, D.; Majid, D.; Dara, B.N. Recovery and Characteristics of Starches from Unconventional Sources and Their Potential Applications: A Review. Appl. Food Res. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Jali, S.; Mohan, T.P.; Mwangi, F.M.; Kanny, K. A Review on Barrier Properties of Cellulose/Clay Nanocomposite Polymers for Packaging Applications. Polymers 2024, 16, 51. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, V.; Kavitha, S.; Obulisamy, P.K.; Banu, J.R. Production of Fine Chemicals from Food Wastes. In Food Waste to Valuable Resources; Academic Press: Cambridge, MA, USA, 2020; pp. 163–188. [Google Scholar] [CrossRef]
- Hasanin, M.S. Simple, Economic, Ecofriendly Method to Extract Starch Nanoparticles from Potato Peel Waste for Biological Applications. Starch-Stärke 2021, 73, 2100005. [Google Scholar] [CrossRef]
- Kringel, D.H.; Dias, A.R.G.; Zavareze, E.d.R.; Gandra, E.A. Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch-Stärke 2020, 72, 1900200. [Google Scholar] [CrossRef]
- Hernández-Carmona, F.; Morales-Matos, Y.; Lambis-Miranda, H.; Pasqualino, J. Starch Extraction Potential from Plantain Peel Wastes. J. Environ. Chem. Eng. 2017, 5, 4980–4985. [Google Scholar] [CrossRef]
- Dorantes-Fuertes, M.-G.; López-Méndez, M.C.; Martínez-Castellanos, G.; Meléndez-Armenta, R.Á.; Jiménez-Martínez, H.-E. Starch Extraction Methods in Tubers and Roots: A Systematic Review. Agronomy 2024, 14, 865. [Google Scholar] [CrossRef]
- Tafaa, K.D.; Satheesh, N.; Abera, W. Mechanical Properties of Tef Starch-Based Edible Films: Development and Process Optimization. Heliyon 2023, 9, e13160. [Google Scholar] [CrossRef]
- Marcon, M.V.; Vriesman, L.C.; Wosiacki, G.; Beleski-Carneiro, E.; Petkowicz, C.L.O. Pectins from Apple Pomace. Polímeros 2005, 15, 127–129. [Google Scholar] [CrossRef]
- Jafari, F.; Khodaiyan, F.; Kiani, H.; Hosseini, S.S. Pectin from Carrot Pomace: Optimization of Extraction and Physicochemical Properties. Carbohydr. Polym. 2017, 157, 1315–1322. [Google Scholar] [CrossRef]
- Jayesree, N.; Hang, P.K.; Priyangaa, A.; Krishnamurthy, N.P.; Ramanan, R.N.; Turki, M.S.A.; Galanakis, C.M.; Ooi, C.W. Valorisation of Carrot Peel Waste by Water-Induced Hydrocolloidal Complexation for Extraction of Carotene and Pectin. Chemosphere 2021, 272, 129919. [Google Scholar] [CrossRef]
- Petkowicz, C.L.O.; Vriesmann, L.C.; Williams, P.A. Pectins from Food Waste: Extraction, Characterization and Properties of Watermelon Rind Pectin. Food Hydrocoll. 2017, 65, 57–67. [Google Scholar] [CrossRef]
- Ahmed, H.; Noyon, M.A.R.; Uddin, M.E.; Rafid, M.M.; Hosen, M.S.; Layek, R.K. Development and Characterization of Chitosan-Based Antimicrobial Films: A Sustainable Alternative to Plastic Packaging. Clean. Chem. Eng. 2025, 11, 100157. [Google Scholar] [CrossRef]
- Baron, R.D.; Pérez, L.L.; Salcedo, J.M.; Córdoba, L.P.; Sobral, P.J.d.A. Production and Characterization of Films Based on Blends of Chitosan from Blue Crab (Callinectes Sapidus) Waste and Pectin from Orange (Citrus Sinensis Osbeck) Peel. Int. J. Biologi. Macromol. 2017, 98, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Dash, K.K.; Ali, N.A.; Das, D.; Mohanta, D. Thorough Evaluation of Sweet Potato Starch and Lemon-Waste Pectin Based-Edible Films with Nano-Titania Inclusions for Food Packaging Applications. Int. J. Biologi. Macromol. 2019, 139, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Reichembach, L.H.; Guerrero, P.; Petkowicz, C.L.d.O.; de la Caba, K. Valorization of Pectins from Coffee Wastes for the Development of Pectin-Chitosan Films. Carbohydr. Polym. 2024, 334, 122057. [Google Scholar] [CrossRef]
- Rentería-Ortega, M.; Colín-Alvarez, M.d.L.; Gaona-Sánchez, V.A.; Chalapud, M.C.; García-Hernández, A.B.; León-Espinosa, E.B.; Valdespino-León, M.; Serrano-Villa, F.S.; Calderón-Domínguez, G. Characterization and Applications of the Pectin Extracted from the Peel of Passiflora tripartita var. mollissima. Membranes 2023, 13, 797. [Google Scholar] [CrossRef]
- Vallejos-Jiménez, A.; Cadena-Chamorro, E.M.; Santa, J.F.; Buitrago-Sierra, R.; Dugmore, T.I.J.; Bose, S.; Matharu, A.S. Development of Novel Pectin-Based Films from Coffee Waste: Mucilage and Pulp. Waste Biomass Valorization 2025. [Google Scholar] [CrossRef]
- Sood, A.; Saini, C.S. Red Pomelo Peel Pectin-Based Edible Composite Films: Effect of Pectin Incorporation on Mechanical, Structural, Morphological, and Thermal Properties of Composite Films. Food Hydrocoll. 2022, 123, 107135. [Google Scholar] [CrossRef]
- Charles, A.L.; Motsa, N.; Abdillah, A.A. A Comprehensive Characterization of Biodegradable Edible Films Based on Potato Peel Starch Plasticized with Glycerol. Polymers 2022, 14, 3462. [Google Scholar] [CrossRef]
- Dasumiati, S.N.; Malik, M. Food Packaging Development of Bioplastic from Basic Waste of Cassava Peel and Shrimp Shell. In Proceedings of the Conference on Innovation in Technology and Engineering Science (CITES 2018), Padang, Indonesia, 8–9 November 2018; IOP Publishing Ltd.: Bristol, UK, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Gonçalves, I.; Lopes, J.; Barra, A.; Hernández, D.; Nunes, C.; Kapusniak, K.; Kapusniak, J.; Evtyugin, D.V.; Lopes da Silva, J.A.; Ferreira, P.; et al. Tailoring the Surface Properties and Flexibility of Starch-Based Films Using Oil and Waxes Recovered from Potato Chips Byproducts. Int. J. Biol. Macromol. 2020, 163, 251–259. [Google Scholar] [CrossRef]
- Karki, D.B.; Yadav, K.C.; Khanal, H.; Bhattarai, P.; Koirala, B.; Khatri, S.B. Analysis of Biodegradable Films of Starch from Potato Waste. Asian Food Sci. J. 2020, 14, 28–40. [Google Scholar] [CrossRef]
- Bigi, F.; Maurizzi, E.; Haghighi, H.; Siesler, H.W.; Licciardello, F.; Pulvirenti, A. Waste Orange Peels as a Source of Cellulose Nanocrystals and Their Use for the Development of Nanocomposite Films. Foods 2023, 12, 960. [Google Scholar] [CrossRef]
- Li, H.; Shi, H.; He, Y.; Fei, X.; Peng, L. Preparation and Characterization of Carboxymethyl Cellulose-Based Composite Films Reinforced by Cellulose Nanocrystals Derived from Pea Hull Waste for Food Packaging Applications. Int. J. Biol. Macromol. 2020, 164, 4104–4112. [Google Scholar] [CrossRef]
- Wichaphian, A.; Yasan, P.; Pathom-aree, W.; Lumyong, S.; Suwannarach, N.; Kumla, J.; Chaipoot, S.; Hoijang, S.; Krasian, T.; Worajittiphon, P.; et al. From Agricultural Waste to Active Films: Enhanced Crystallinity of Spent Mushroom Substrate-Derived Cellulose via Deep Eutectic Solvent-Based Microwave-Assisted Pretreatment and Its Application in Reinforcing CMC-Based Composite Films. J. Agric. Food Res. 2025, 20, 101759. [Google Scholar] [CrossRef]
- Dey, A.; Dhumal, C.V.; Sengupta, P.; Kumar, A.; Pramanik, N.K.; Alam, T. Challenges and Possible Solutions to Mitigate the Problems of Single-Use Plastics Used for Packaging Food Items: A Review. J. Food Sci. Technol. 2020, 58, 3251–3269. [Google Scholar] [CrossRef]
- Ocak, B. Film-Forming Ability of Collagen Hydrolysate Extracted from Leather Solid Wastes with Chitosan. Environ. Sci. Pollut. Res. 2017, 25, 4643–4655. [Google Scholar] [CrossRef]
- Said, M.I.; Erwanto, Y.; Abustam, E. Properties of Edible Film Produced Using Combination of Collagen Extracts of Bligon Goatskin with Glycerol. Am. J. Anim. Vet. Sci. 2016, 11, 151–159. [Google Scholar] [CrossRef]
- Bhuimbar, M.V.; Bhagwat, P.K.; Dandge, P.B. Extraction and Characterization of Acid Soluble Collagen from Fish Waste: Development of Collagen-Chitosan Blend as Food Packaging Film. J. Environ. Chem. Eng. 2019, 7, 102983. [Google Scholar] [CrossRef]
- Da Silva, C.G.; Rodrigues, A.S.; Lima, A.C.; Mello, R.O.; Morisso, F.D.P.; Dornelles, R.C.P.; Kubota, E.H. Gelatin Extracted from Jundiá Skin (Rhamdia quelen): An Alternative to the Discarded By-Product. Food Res. Int. 2022, 161, 111829. [Google Scholar] [CrossRef]
- Loo, C.P.Y.; Sarbon, N.M. Chicken Skin Gelatin Films with Tapioca Starch. Food Biosci. 2020, 35, 100589. [Google Scholar] [CrossRef]
- Nazmi, N.N.; Isa, M.I.N.; Sarbon, N.M. Preparation and Characterization of Chicken Skin Gelatin/CMC Composite Film as Compared to Bovine Gelatin Film. Food Biosci. 2017, 19, 149–155. [Google Scholar] [CrossRef]
- Ratna; Ulfariati, C.; Yusmanizar; Aprilia, S.; Rahmiati; Munawar, A.A. Development of Biocomposite Edible Film Food Packaging Based on Gelatin from Chicken Claw Waste. Case Stud. Chem. Environ. Eng. 2023, 8, 100371. [Google Scholar] [CrossRef]
- Jusoha, N.A.M.; Isa, M.I.N.; Sarbon, N.M. Physical, Mechanical and Antioxidant Properties of Chicken Skin Gelatin Films Incorporated with Virgin Coconut Oil. Biocatal. Agric. Biotechnol. 2022, 45, 102525. [Google Scholar] [CrossRef]
- Tong, Q.; Xiao, Q.; Lim, L.-T. Preparation and Properties of Pullulan–Alginate–Carboxymethylcellulose Blend Films. Food Res. Int. 2008, 41, 1007–1014. [Google Scholar] [CrossRef]
- Tongdeesoontorn, W.; Mauer, L.J.; Wongruong, S.; Sriburi, P.; Rachtanapun, P. Mechanical and Physical Properties of Cassava Starch–Gelatin Composite Films. J. Appl. Polym. Sci. 2012, 128, 778–792. [Google Scholar] [CrossRef]
- Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Antioxidative Activity and Properties of Fish Skin Gelatin Films Incorporated with BHT and α-Tocopherol. Food Hydrocoll. 2008, 22, 449–458. [Google Scholar] [CrossRef]
- Ranganathan, S.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Utilization of Food Waste Streams for the Production of Biopolymers. Heliyon 2020, 6, e04891. [Google Scholar] [CrossRef] [PubMed]
- Visco, A.; Scolaro, C.; Facchin, M.; Brahimi, S.; Belhamdi, H.; Gatto, V.; Beghetto, V. Agri-food wastes for bioplastics: European prospective on possible applications in their second life for a circular economy. Polymers 2022, 14, 2752. [Google Scholar] [CrossRef] [PubMed]
- Mak, T.M.W.; Xiong, X.; Tsang, D.C.W.; Yu, I.K.M.; Poon, C.S. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresour. Technol. 2020, 297, 122497. [Google Scholar] [CrossRef]
- Dziuba, R.; Kucharska, M.; Madej-Kiełbik, L.; Sulak, K.; Wisniewska-Wrona, M. Biopolymers and Biomaterials for Special Applications within the Context of the Circular Economy. Materials 2021, 14, 7704. [Google Scholar] [CrossRef]
Biopolymer | Source of Biopolymer | Additive | Key Finding | Reference |
---|---|---|---|---|
Carrageenan | Commercial carrageenan | Lapacho tea extract | Improvement of tensile strength, moisture content, and antioxidant activity with the addition of the extract | [28] |
Commercial carrageenan | Rice starch | Best mechanical properties in a starch–carrageenan ratio of 1:1 Solubility and elongation depend on the ratio of starch to carrageenan | [29] | |
Dried seaweed | Starch | Good barrier properties and solubility, improvement of mechanical and barrier properties with the addition of starch | [30] | |
Commercial carrageenan | Coffee ground | High moisture content and tensile strength, improvement of elasticity and reduction of moisture content with the addition of coffee grounds | [31] | |
Starch | Sweet potato | Gelatin | Low moisture content, swelling degree and water vapour permeability; improvement of moisture content, water vapour permeability and low opacity with the addition of gelatin | [25] |
Millet | Clove oil | Good mechanical and barrier properties; the addition of clove oil reduces solubility, tensile strength, and elongation, while increasing water vapour permeability and improving antioxidative and antimicrobial activity | [24] | |
Cassava | Inulin and Lactobacillus casei | High moisture content, increased inulin content, improved mechanical and barrier properties and water solubility | [22] | |
Sago | Black seed oil | Increase in film thickness, solubility and moisture content and decreased barrier properties with the addition black seed oil | [32] | |
Chitosan | Shells | Acorn starch, eugenol | Improvement in mechanical and barrier properties with the addition of starch and eugenol; good effect of eugenol on the antimicrobial and antioxidative activity of films | [33] |
Shrimps | Curcumin extract | Improvement of mechanical and barrier properties and antioxidative and antimicrobial activity with the addition of curcumin extract | [34] | |
Commercial chitosan | Oak extract | Improved antioxidative properties of films with the addition of oak extract | [35] | |
Commercial chitosan | Lime essential oil | The addition of lime essential oil improved the barrier and antimicrobial properties of films | [36] | |
Cellulose | Commercial cellulose | Vitamin E nanoencapsulated | Improved barrier properties and reduced mechanical properties with the addition of nanoencapsulated vitamin E | [37] |
Carboxymethyl Cellulose | Inulin, cellulose nanofibrils, Lactobacillus plantarum | The addition of cellulose nanofibrils and inulin led to deterioration in barrier properties | [38] | |
Pectin | Apple | Pomegranate juice, citric acid | Deterioration of barrier properties with the addition of pomegranate juice | [18] |
Pectin fraction from pineapple peel | Pectin from pineapple peel | Improved antioxidative activity and mechanical properties with the addition of pineapple peel extract | [38] | |
Citrus | Clove oil | Increased film thickness, improved barrier and mechanical properties, and reduced moisture content and solubility with the addition of clove oil | [39] | |
Gelatin | Commercial gelatin | Ginkgo biloba extract | The addition of Ginkgo biloba extract improved barrier properties and the antimicrobial activity of films | [40] |
Chicken skin | Rice flour | High solubility, good barrier properties, but poor mechanical properties of films; the addition of rice flour improved the mechanical properties of films | [41] | |
Collagen | Fish skin | Sodium alginate, glutaraldehyde | Incorporation of sodium alginate led to improvement in barrier properties | [42] |
Whey protein | Whey | Casein | Improvement in tensile strength and a reduction in elongation and barrier properties of films | [43] |
Biopolymer | Waste | Yield | Pretreatment | Biopolymer Isolation Technique | Additive | Key Finding | Reference |
---|---|---|---|---|---|---|---|
Chitosan | crab waste | 10.1% | physical and chemical pretreatment | sequential extraction | / | good antimicrobial activity and mechanical properties | [69] |
shrimp shell waste | n.d. | physical and chemical pretreatment | sequential extraction | polyvinyl alcohol (PVA), gelatin, chitosan, zinc oxide nanoparticles | high thermal stability and biodegradability | [88] | |
zinc oxide nanoparticles enhanced antimicrobial activity | |||||||
polyvinyl alcohol and gelatin improved the mechanical properties | |||||||
blue crab waste | 13.7% | physical and chemical pretreatment | sequential extraction | pectin | an increase in chitosan content led to a reduction in moisture content, solubility and swelling degree | [89] | |
Pectin | orange peel | 5.1% | physical and chemical pretreatment | acid extraction | chitosan | good mechanical properties | [89] |
lemon peel | n.d | chemical pretreatment | microwave extraction | starch, nano-titania inclusions | improved barrier properties of films with the addition of nano-titania inclusions | [90] | |
residual coffee water and coffee pulp from Coffea arabica | 16.1% | physical pretreatment | thermal extraction | chitosan, acetic acid | chelant-soluble pectin positively influenced the mechanical and barrier properties | [91] | |
Coffea arabica pectin led to an increase in the hydrophobicity of the films | |||||||
residual coffee water and pectin exhibited the least favorable properties | |||||||
peel of Passiflora tripartita var. mollissima | 23.02% | physical pretreatment | acid extraction | / | good mechanical stability and low water vapor permeability | [92] | |
Arabica coffee mucilage and pulp | n.d. | physical pretreatment | acid extraction | spent coffee ground extract, bacterial cellulose | improved mechanical performance, better biodegradability, and moderate solubility with the addition of cellulose and spent coffee ground extract | [93] | |
pomelo peel | n.d. | physical pretreatment | acid extraction | casein and egg albumin | high tensile strength, low elongation to break, good barrier properties and solubility | [94] | |
low tensile strength and high elongation to break with the addition of casein and egg albumin | |||||||
Starch | potato peel | 11.52% | / | water extraction | carboxymethyl cellulose | an increase in starch content led to a reduction in moisture content and solubility, and improved barrier, but not mechanical properties of films | [95] |
cassava peel | n.d. | physical pretreatment | sequential extraction | chitosan | good mechanical and thermal properties | [96] | |
potato chips by-products | 33.4% | physical pretreatment | physical extraction | oils and waxes | great elasticity and flexibility compared to films made from commercial starch; positive effect on the mechanical properties with the addition oils | [97] | |
potato waste | 20.5% | physical and chemical pretreatment | sequential extraction | / | good flexibility and biodegradability | [98] | |
Cellulose nanocrystals | orange peel | 27% | physical pretreatment | sequential extraction | chitosan, laurylamine oxide | sponge-like structure of films | [99] |
pea peel waste | 42.5% | physical and chemical pretreatment | sequential extraction with ultrasound | carboxymethyl cellulose | increased water vapour permeability with the addition of carboxymethyl cellulose | [100] | |
spent mushroom substrate | n.d. | physical and chemical pretreatment | sequential extraction | carboxymethyl cellulose, ZnO nanoparticles, mushroom powder, pretreated cellulose | ZnO nanoparticles decrease transparency | [101] | |
combination with mushroom powder, pretreated cellulose, and carboxymethyl cellulose improves the mechanical properties | |||||||
mushroom powder and zinc oxide nanoparticles enhance antioxidant and antimicrobial activities | |||||||
mango waste | n.d. | / | sequential extraction with ultrasound | chitosan nanoparticle | good mechanical and barrier properties of films | [102] | |
Collagen | skin | n.d. | chemical pretreatment | enzymatic extraction | chitosan | low solubility and good barrier properties | [103] |
Bligon skin | n.d. | chemical and physical pretreatment | acid and thermal extraction | / | low tensile strength, elongation to break and solubility, good barrier properties | [104] | |
fish skeleton | n.d. | chemical pretreatment | acid and enzymatic extraction | chitosan | chitosan improved mechanical properties | [45] | |
fish skin | 25–45% | physical pretreatment | sequential extraction | chitosan, orange peel extract | smooth and transparent films without antimicrobial activity; the addition of orange peel extract reduced solubility of films | [105] | |
Gelatin | fish skin | 7.3% | physical pretreatment | acid extraction | palm oil, gum Arabic, clove and oregano essential oils | the addition of oils increased mechanical, antimicrobial and antioxidant activity | [106] |
chicken skin | n.d. | physical and chemical pretreatment | sequential extraction | starch | good mechanical properties and poor barrier properties; the addition of 10% starch films showed the best mechanical properties | [107] | |
chicken skin and bovine bones | n.d. | physical and acid–alkaline pretreatment | hydrothermal extraction | carboxymethyl cellulose | good mechanical properties of bovine gelatin-based films | [108] | |
poor mechanical properties of chicken skin gelatin-based films | |||||||
the addition of carboxymethyl cellulose deteriorated the barrier properties of films | |||||||
chicken claw waste | n.d. | physical and chemical pretreatment | microwave extraction | carboxymethyl cellulose | good mechanical and poor barrier and physical properties with the addition of CMC | [109] | |
chicken skin | n.d. | physical and chemical pretreatment | thermal extraction | coconut oil | the addition of coconut oil improved barrier and mechanical properties of films | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cvetković, K.; Karabegović, I.; Dordevic, S.; Dordevic, D.; Danilović, B. Valorization of Food Industry Waste for Biodegradable Biopolymer-Based Packaging Films. Processes 2025, 13, 2567. https://doi.org/10.3390/pr13082567
Cvetković K, Karabegović I, Dordevic S, Dordevic D, Danilović B. Valorization of Food Industry Waste for Biodegradable Biopolymer-Based Packaging Films. Processes. 2025; 13(8):2567. https://doi.org/10.3390/pr13082567
Chicago/Turabian StyleCvetković, Kristina, Ivana Karabegović, Simona Dordevic, Dani Dordevic, and Bojana Danilović. 2025. "Valorization of Food Industry Waste for Biodegradable Biopolymer-Based Packaging Films" Processes 13, no. 8: 2567. https://doi.org/10.3390/pr13082567
APA StyleCvetković, K., Karabegović, I., Dordevic, S., Dordevic, D., & Danilović, B. (2025). Valorization of Food Industry Waste for Biodegradable Biopolymer-Based Packaging Films. Processes, 13(8), 2567. https://doi.org/10.3390/pr13082567