Improving Biodiesel Atomization Performance in CI Engines: A Review of Spray Behavior, Droplet Impingement, and Advanced Techniques
Abstract
1. Introduction
2. Biodiesel Production and Fuel Properties
2.1. Biodiesel Production Technologies
Generation | Feedstock | Production Method | Advantages | Challenges |
---|---|---|---|---|
1st [56,57] | Soybean, Rapeseed, Palm oil | Alkali transesterification (FAME) | Mature technology | Food competition, Deforestation |
2nd [58] | Waste cooking oil, Animal fat | Acid/enzymatic transesterification, HVO | Waste utilization, Drop-in fuel | Collection logistics, HVO cost |
3rd [59] | Microalgae, Yeast oils | Extraction and Transesterification/hydrogenation | High yield, CO2 absorption | High production costs |
4th [60] | CO2, Water, Sunlight | Artificial photosynthesis/electrosynthesis | Carbon-negative potential | Lab-scale, Low efficiency |
2.2. Fuel Properties
Feedstock | Density kg/m3 | Kinematic Viscosity at 40 °C mm2/s | Surface Tension mN/m | Lower Heating Value MJ/kg | Cetane Number | Reference |
---|---|---|---|---|---|---|
Diesel | 820~850 | 2~3.5 | 25~30 | 42.7~43.5 | 40~55 | |
Waste cooking oil | 878 | 4.4 | 32 | 38.85 | 51.34 | [69] |
Soybean biodiesel | 887 | 4.0 | 34.4 | 37.53 | 51 | [70] |
Palm oil | 874.4 | 5.53 | 26.2 | 40.03 | 64.2 | [71] |
Fatty acid methyl ester | 858.4 | 4.71 | 31.2 | - | - | [72] |
Oxidized jatropha biodiesel | 873.7 | 4.37 | 29.7 | 20.49 | - | [73] |
Hydrogenated catalytic biodiesel | 785.9 | 6.08 | 27.2 | 44 | - | [74] |
Cottonseed biodiesel | 864 | 4.14 | 32.4 | 36.8 | 52 | [75] |
3. Spray and Atomization Characteristics of Biodiesel
3.1. Macroscopic Spray Characteristics
3.2. Droplet Size and Velocity
3.3. Factors Influencing Spray Evolution and Atomization
Base Fuel | Additive Type | Performance | Reference |
---|---|---|---|
Soybean biodiesel | Di-n-butyl ether (DBE): DBE15 (15% DBE + 75% biodiesel, by vol.) DBE30 | Spray tip penetration: ↓ Spray core angle: ↑ SMD: 9.1% ↓, 13.1% ↓ | [91] |
Waste cooking oil | Acetone-butanol-ethanol (ABE): ABE10 (10% ABE + 90% biodiesel, by vol.) ABE20 ABE30 | Spray tip penetration: ↓ Spray core angle: ↑ | [92] |
Hydrogenated catalytic biodiesel | Ethanol: E15 (15% ethanol + 85% biodiesel, by vol.) E30 | Spray tip penetration: ↓ Spray core angle: ↑ | [74] |
Soybean biodiesel | Ethanol: BDE20 (20% ethanol + 80% biodiesel, by vol.) | SMD: 9%~17% ↓ | [93] |
Soybean biodiesel | Dimethyl ether (DME): B75 (25% DME + 75% biodiesel, by wt.) B50 B25 | Spray tip penetration: ↓ Spray core angle: ↑ | [94] |
20% Castor biodiesel + 80% diesel, by vol. | Butanol and 1-Butox BDT5 (20% biodiesel + 75% Diesel + 5% butanol, by vol.) BDB5 (20% biodiesel + 75% diesel + 5% 1-Butox, by vol.) | Spray tip penetration: 2%~3% ↓ Spray core angle: 2.8% ↑, 5.3% ↑ | [95] |
4. Spray and Droplet Impingement
5. Advanced Techniques for Improving Biodiesel Atomization
5.1. Air-Assisted Atomization
5.2. Dual-Fuel Impingement
5.3. Nano-Biodiesel
5.4. Water-Emulsified Biodiesel
5.5. Comparative Discussion of Each Atomization Enhancement Method
6. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shao, S.; Sun, T.; Li, X.; Wang, Y.; Ma, L.; Liu, Z.; Wu, S. Preparation of heavy bio-oil-based porous carbon by pyrolysis gas activation and its performance in the aldol condensation for aviation fuel as catalyst carrier. Ind. Crops Prod. 2024, 218, 118963. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, N.; Xie, H.; Li, J.; Li, G.; Xue, L.; Fu, H.; Feng, Y.; Poinern, G.E.J.; Chen, D. Livestock manure-derived hydrochar is more inclined to mitigate soil Global Warming Potential than raw materials based on soil stoichiometry analysis. Biol. Fertil. Soils 2023, 59, 459–472. [Google Scholar] [CrossRef]
- Ahmad, A.; Naqvi, S.A.; Jaskani, M.J.; Waseem, M.; Ali, E.; Khan, I.A.; Manzoor, M.F.; Siddeeg, A.; Aadil, R.M. Efficient utilization of date palm waste for the bioethanol production through Saccharomyces cerevisiae strain. Food Sci. Nutr. 2021, 9, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Manning, D.A.C.; Werner, D. The limited potential of soil and vegetation in urban greenspace for nature-based offsetting of institutional carbon emissions. Soil Use Manag. 2023, 40, e13081. [Google Scholar] [CrossRef]
- Ren, G.; Cui, M.; Yu, H.; Fan, X.; Zhu, Z.; Zhang, H.; Dai, Z.; Sun, J.; Yang, B.; Du, D. Global Environmental Change Shifts Ecological Stoichiometry Coupling Between Plant and Soil in Early-Stage Invasions. J. Soil Sci. Plant Nutr. 2024, 24, 2402–2412. [Google Scholar] [CrossRef]
- Yan, H.; Joe Acquah, S.; Zhang, J.; Wang, G.; Zhang, C.; Opoku Darko, R. Overview of modelling techniques for greenhouse microclimate environment and evapotranspiration. Int. J. Agric. Biol. Eng. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Nazir, M.J.; Li, G.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.M.; Iqbal, B.; Du, D. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Res. 2024, 237, 105959. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Ragab, R.; Rakibuzzaman, M.; Khan, A.I.; Zhao, J.; Akbar, N. Climate Change Impacts on Future Wheat (Triticum aestivum) Yield, Growth Periods and Irrigation Requirements: A SALTMED Model Simulations Analysis. Agronomy 2024, 14, 1484. [Google Scholar] [CrossRef]
- Tang, Q.; Zhu, X.; Uddeen, K.; Turner, J.; Yao, M. Optical study on ammonia-diesel dual fuel combustion at low engine loads. J. Energy Inst. 2025, 122, 102189. [Google Scholar] [CrossRef]
- Chu, W.; Li, H.; Liu, Y.; Zhou, B.; Luo, H.; Kim, W. Three-dimensional simulation analysis of in-cylinder combustion in space in-orbit hydrogen-oxygen internal combustion engine. Appl. Therm. Eng. 2025, 263, 125391. [Google Scholar] [CrossRef]
- Ren, M.; Kong, F.; Zhou, C.; Fakayode, O.A.; Liang, J.; Li, H.; Zhou, M.; Fan, X. Green, one-pot biomass hierarchical utilization strategy for lignin-containing cellulose nanofibrils and fractionated lignin preparation. Ind. Crops Prod. 2023, 203, 117193. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Fang, Z.; Shi, G.; Lou, L.; Ren, K.; Cai, Q. Italian ryegrass-rice rotation system for biomass production and cadmium removal from contaminated paddy fields. J. Soils Sediments 2020, 20, 874–882. [Google Scholar] [CrossRef]
- Hassan, G.; Shabbir, M.A.; Ahmad, F.; Pasha, I.; Aslam, N.; Ahmad, T.; Rehman, A.; Manzoor, M.F.; Inam-Ur-Raheem, M.; Aadil, R.M. Cereal processing waste, an environmental impact and value addition perspectives: A comprehensive treatise. Food Chem. 2021, 363, 130352. [Google Scholar] [CrossRef]
- Chen, X.; Kitts, D.D.; Ji, D.; Ding, J. Free radical scavenging activities of phytochemical mixtures and aqueous methanolic extracts recovered from processed coffee leaves. Int. J. Food Sci. Technol. 2019, 54, 2872–2879. [Google Scholar] [CrossRef]
- Pan, S.; Zabed, H.M.; Wei, Y.; Qi, X. Technoeconomic and environmental perspectives of biofuel production from sugarcane bagasse: Current status, challenges and future outlook. Ind. Crops Prod. 2022, 188, 115684. [Google Scholar] [CrossRef]
- Ao, X.; Gan, H.; Xin, M.; Cong, Y.; Lu, D.; Guo, A.; Wang, H. Numerical investigation on the effects of pilot fuel and natural gas injection pressures on methane slip in a large marine dual-fuel engine. Energy 2024, 312, 133675. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Lu, X.C.; Ma, J.J.; Ji, L.B.; Huang, Z. Simultaneous reduction of NOx emission and smoke opacity of biodiesel-fueled engines by port injection of ethanol. Fuel 2008, 87, 1289–1296. [Google Scholar] [CrossRef]
- Suh, H.K.; Roh, H.G.; Lee, C.S. Spray and combustion characteristics of biodiesel/diesel blended fuel in a direct injection common-rail diesel engine. J. Eng. Gas Turb. Power 2008, 130, 032807. [Google Scholar] [CrossRef]
- Yoon, S.H.; Suh, H.K.; Lee, C.S. Effect of Spray and EGR Rate on the Combustion and Emission Characteristics of Biodiesel Fuel in a Compression Ignition Engine. Energ Fuel 2009, 23, 1486–1493. [Google Scholar] [CrossRef]
- Riyadi, T.W.B.; Spraggon, M.; Herawan, S.G.; Idris, M.; Paristiawan, P.A.; Putra, N.R.; Faizullizam, R.M.; Silambarasan, R.; Veza, I. Biodiesel for HCCI engine: Prospects and challenges of sustainability biodiesel for energy transition. Results Eng. 2023, 17, 100916. [Google Scholar] [CrossRef]
- Allami, H.A.; Tabasizadeh, M.; Rohani, A.; Nayebzadeh, H.; Farzad, A.; Hoseinpour, M. Modeling and optimization of performance and emission parameters of a diesel engine: A comparative evaluation between date seed oil biodiesel produced via three different heating systems. Energ Convers. Manag. 2023, 283, 116909. [Google Scholar] [CrossRef]
- Uyumaz, A.; Aydogan, B.; Yilmaz, E.; Solmaz, H.; Aksoy, F.; Mutlu, I.; Ipci, D.; Calam, A. Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine. Fuel 2020, 280, 118588. [Google Scholar] [CrossRef]
- Jiang, Y.; Issaka, Z.; Li, H.; Tang, P.; Chen, C. Range formula based on angle of dispersion and nozzle configuration from an impact sprinkler. Int. J. Agric. Biol. Eng. 2019, 12, 97–105. [Google Scholar] [CrossRef]
- Lin, H.; Li, H.; Jiang, Y. Axis-switching behavior of liquid jets issued from non-circular nozzles under low-intermediate pressure. Appl. Eng. Agric. 2021, 37, 367–378. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Chen, C.; Xiang, Q. Calculation and verification of formula for the range of sprinklers based on jet breakup length. Int. J. Agric. Biol. Eng. 2018, 11, 49–57. [Google Scholar] [CrossRef]
- Pan, X.; Jiang, Y.; Li, H.; Hui, X.; Xing, S.; Chauhdary, J.N. Numerical simulation and experimental study of jet breakup using a water dispersal needle in irrigation sprinklers. Biosyst. Eng. 2024, 239, 49–67. [Google Scholar] [CrossRef]
- Tate, R.E.; Watts, K.C.; Allen, C.A.W.; Wilkie, K.I. The densities of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006, 85, 1004–1009. [Google Scholar] [CrossRef]
- Tate, R.E.; Watts, K.C.; Allen, C.A.W.; Wilkie, K.I. The viscosities of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006, 85, 1010–1015. [Google Scholar] [CrossRef]
- Lee, C.S.; Park, S.W.; Kwon, S.I. An experimental study on the atomization and combustion characteristics of biodiesel-blended fuels. Energ Fuel 2005, 19, 2201–2208. [Google Scholar] [CrossRef]
- Mehra, K.S.; Pal, J.; Goel, V. A comprehensive review on the atomization and spray characteristics of renewable biofuels. Sustain Energy Technol. 2023, 56, 103106. [Google Scholar] [CrossRef]
- Zhong, W.J.; Tamilselvan, P.; Wang, Q.; He, Z.X.; Feng, H.; Yu, X. Experimental study of spray characteristics of diesel/hydrogenated catalytic biodiesel blended fuels under inert and reacting conditions. Energy 2018, 153, 349–358. [Google Scholar] [CrossRef]
- Pan, X.; Jiang, Y.; Li, H. Effects of the depth of the needle-shaped water dispersion device inserted into the jet on the jet breakup of sprinklers. Irrig. Drain. 2023, 72, 887–909. [Google Scholar] [CrossRef]
- Appah, S.; Jia, W.; Ou, M.; Wang, P.; Gong, C. Investigation of optimum applied voltage, liquid flow pressure, and spraying height for pesticide application by induction charging. Appl. Eng. Agric. 2019, 35, 795–804. [Google Scholar] [CrossRef]
- Appah, S.; Wang, P.; Ou, M.; Gong, C.; Jia, W. Review of electrostatic system parameters, charged droplets characteristics and substrate impact behavior from pesticides spraying. Int. J. Agric. Biol. Eng. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Xiang, Q.; Chen, C. Comparison of PIV Experiment and Numerical Simulation on the Velocity Distribution of Intermediate Pressure Jets with Different Nozzle Parameters. Irrig. Drain. 2017, 66, 510–519. [Google Scholar] [CrossRef]
- Chen, R.; Li, H.; Wang, J.; Guo, X. Analysis of Droplet Characteristics and Kinetic Energy Distribution for Fixed Spray Plate Sprinkler at Low Working Pressure. Trans. ASABE 2021, 64, 447–460. [Google Scholar] [CrossRef]
- Hong, H.; Jiang, Y.; Tang, P.; Chao, C.; Fordjour, A. Comparative Evaluation on Performance Characteristics of an Impact Sprinkler with Nozzle-Dispersion Devicesand Rotary Plate Sprinkler. Appl. Eng. Agric. 2020, 36, 321–329. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, S.; Darko, R.O. Characteristics of water and droplet size distribution from fluidic sprinklers. Irrig. Drain. 2016, 65, 522–529. [Google Scholar] [CrossRef]
- Li, F.Y.; Fu, W.; Yi, B.L.; Song, L.B.; Liu, T.; Wang, X.H.; Wang, C.X.; Lei, Y.Y.; Lin, Q.Z. Comparison of macroscopic spray characteristics between biodiesel-pentanol blends and diesel. Exp. Therm. Fluid Sci. 2018, 98, 523–533. [Google Scholar] [CrossRef]
- Zhang, G.; Si, Z.; Zhai, C.; Luo, H.; Ogata, Y.; Nishida, K. Characteristics of wall-jet vortex development during fuel spray impinging on flat-wall under cross-flow conditions. Fuel 2022, 317, 123507. [Google Scholar] [CrossRef]
- Xuan, T.M.; Wang, Y.T.; Liu, L.; Yang, C.L.; He, Z.X.; Wang, Q.; Yao, M.F. Experimental study on flame structure and soot formation of jet/wall impinging combustion under diesel-like conditions. Therm. Sci. Eng. Prog. 2023, 43, 102016. [Google Scholar] [CrossRef]
- Tripathi, S.; Subramanian, K.A. Control of fuel spray wall impingement on piston bowl in palm acid oil biodiesel fueled direct injection automotive engine using retarded injection timing, EGR and increased compression ratio. Appl. Therm. Eng. 2018, 142, 241–254. [Google Scholar] [CrossRef]
- Bian, Q.F.; Xie, Y.W.; Zhang, W.Q.; Fan, X.J.; Li, W. Investigation on droplet spreading and energy conversion process on solid surface with low impinging velocity. Int. J. Heat Fluid Flow 2024, 110, 109607. [Google Scholar] [CrossRef]
- Guggilla, G.; Sielaff, A.; Stephan, P. Boiling regimes of a single droplet impinging on a superheated surface: Effect of the surrounding medium. Int. J. Heat Mass Transf. 2024, 220, 124982. [Google Scholar] [CrossRef]
- Khan, D.; Hansen, S.; Bjernemose, J.H.; Bebe, J.E.; Lund, I. Experimentation and numerical modeling of SCR spray droplets pre and post impingement on a mixer plate. Fuel 2023, 336, 126788. [Google Scholar] [CrossRef]
- Wang, X.; Xu, B.; Guo, S.; Zhao, Y.; Chen, Z.Q. Droplet impacting dynamics: Recent progress and future aspects. Adv. Colloid Interface 2023, 317, 102919. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jing, Z.F.; Zhang, T.; Chen, Q.Y.; Qiu, F.X.; Peng, Y.X.; Tang, S. Fabrication of functional biomass carbon aerogels derived from sisal fibers for application in selenium extraction. Food Bioprod. Process. 2018, 111, 93–103. [Google Scholar] [CrossRef]
- Riaz, T.; Iqbal, M.W.; Mahmood, S.; Yasmin, I.; Leghari, A.A.; Rehman, A.; Mushtaq, A.; Ali, K.; Azam, M.; Bilal, M. Cottonseed oil: A review of extraction techniques, physicochemical, functional, and nutritional properties. Crit. Rev. Food Sci. Nutr. 2023, 63, 1219–1237. [Google Scholar] [CrossRef] [PubMed]
- Ambat, I.; Srivastava, V.; Sillanpää, M. Recent advancement in biodiesel production methodologies using various feedstock: A review. Renew. Sustain. Energy Rev. 2018, 90, 356–369. [Google Scholar] [CrossRef]
- Shao, S.; Ma, L.; Li, X.; Zhang, H.; Xiao, R. Preparation of activated carbon with heavy fraction of bio-oil from rape straw pyrolysis as carbon source and its performance in the aldol condensation for aviation fuel as carrier. Ind. Crops Prod. 2023, 192, 115912. [Google Scholar] [CrossRef]
- Bhuiya, M.M.K.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Azad, A.K.; Hazrat, M.A. Second Generation Biodiesel: Potential Alternative to Edible Oil-Derived Biodiesel. Enrgy Procedia 2014, 61, 1969–1972. [Google Scholar] [CrossRef]
- Ong, H.C.; Tiong, Y.W.; Goh, B.H.H.; Gan, Y.Y.; Mofijur, M.; Fattah, I.M.R.; Chong, C.T.; Alam, M.A.; Lee, H.V.; Silitonga, A.S.; et al. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energ Convers. Manag. 2021, 228, 113647. [Google Scholar] [CrossRef]
- Abdullah, B.; Muhammad, S.A.F.S.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Shu, C.M.; Sarangi, P.K.; Shadangi, K.P.; Rakshit, S.; Kennedy, J.F.; Gupta, V.K.; Sharma, M. Catalytic hydrodeoxygenation of bio-oil and model compounds—Choice of catalysts, and mechanisms. Renew. Sustain. Energy Rev. 2023, 187, 113700. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdullah, A.; Patle, D.S.; Shahadat, M.; Ahmad, Z.; Athar, M.; Aslam, M.; Vo, D.V.N. Feedstocks, catalysts, process variables and techniques for biodiesel production by one-pot extraction-transesterification: A review. Environ. Chem. Lett. 2022, 20, 335–378. [Google Scholar] [CrossRef]
- Smeets, E.; Tabeau, A.; van Berkum, S.; Moorad, J.; van Meijl, H.; Woltjer, G. The impact of the rebound effect of the use of first generation biofuels in the EU on greenhouse gas emissions: A critical review. Renew. Sustain. Energy Rev. 2014, 38, 393–403. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Kim, S.H.; Yoon, J.J.; Yang, Y.H. Current status and strategies for second generation biofuel production using microbial systems. Energ Convers. Manag. 2017, 148, 1142–1156. [Google Scholar] [CrossRef]
- Alaswad, A.; Dassisti, M.; Prescott, T.; Olabi, A.G. Technologies and developments of third generation biofuel production. Renew. Sustain. Energy Rev. 2015, 51, 1446–1460. [Google Scholar] [CrossRef]
- Godbole, V.; Pal, M.K.; Gautam, P. A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. Algal Res. 2021, 58, 102436. [Google Scholar] [CrossRef]
- Tang, C.L.; Feng, Z.H.; Zhan, C.; Ma, W.A.; Huang, Z.H. Experimental study on the effect of injector nozzle factor on the spray characteristics in a constant volume chamber: Near nozzle spray initiation, the acroscopic and the droplet statistics. Fuel 2017, 202, 583–594. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Li, H.; Hua, L.; Yong, Y. Droplet distribution characteristics of impact sprinklers with circular and noncircular nozzles: Effect of nozzle aspect ratios and equivalent diameters. Biosyst. Eng. 2021, 212, 200–214. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, C.; Li, H.; Xiang, Q. Influences of nozzle parameters and low-pressure on jet breakup and droplet characteristics. Int. J. Agric. Biol. Eng. 2016, 9, 22–32. [Google Scholar]
- Feng, Z.H.; Tong, S.Q.; Tang, C.L.; Zhan, C.; Nishida, K.; Huang, Z.H. Decoupling the Effect Of Surface Tension And Viscosity on Spray Characteristics under Different Ambient Pressures: Near-Nozzle Behavior And Macroscopic Characteristics. At. Sprays 2019, 29, 629–654. [Google Scholar] [CrossRef]
- Yang, W.; Zhong, W.; Jia, W.; Ou, M.; Dong, X.; Zhang, T.; Ding, S.; Yu, P. The effect of oil-in-water emulsion pesticide on the evolution of liquid sheet rim disintegration and the spraying distribution. Crop Prot. 2024, 177, 106547. [Google Scholar] [CrossRef]
- Gong, C.; Kang, C.; Jia, W.; Yang, W.; Wang, Y. The effect of spray structure of oil-based emulsion spray on the droplet characteristics. Biosyst. Eng. 2020, 198, 78–90. [Google Scholar] [CrossRef]
- Li, H.; Issaka, Z.; Jiang, Y.; Tang, P.; Chen, C. Influence Of a Fixed Water Dispersion Device on Jet Dispersion And Range From an Impact Sprinkler. Irrig. Drain. 2019, 68, 669–678. [Google Scholar] [CrossRef]
- Liao, J.; Luo, X.; Wang, P.; Zhou, Z.; O’Donnell, C.C.; Zang, Y.; Hewitt, A.J. Analysis of the Influence of Different Parameters on Droplet Characteristics and Droplet Size Classification Categories for Air Induction Nozzle. Agronomy 2020, 10, 256. [Google Scholar] [CrossRef]
- Hwang, J.; Bae, C.; Gupta, T. Application of waste cooking oil (WCO) biodiesel in a compression ignition engine. Fuel 2016, 176, 20–31. [Google Scholar] [CrossRef]
- Liu, H.F.; Huo, M.; Liu, Y.; Wang, X.; Wang, H.; Yao, M.F.; Lee, C.F.F. Time-resolved spray, flame, soot quantitative measurement fueling-butanol and soybean biodiesel in a constant volume chamber under various ambient emperatures. Fuel 2014, 133, 317–325. [Google Scholar] [CrossRef]
- Wang, X.G.; Huang, Z.H.; Kuti, O.A.; Zhang, W.; Nishida, K. Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure. Int. J. Heat Fluid Flow 2010, 31, 659–666. [Google Scholar] [CrossRef]
- Fu, W.; Li, F.Y.; Meng, K.S.; Liu, Y.J.; Shi, W.D.; Lin, Q.Z. Experiment and analysis of spray characteristics of biodiesel blending with di-butyl ether in a direct injection combustion chamber. Energy 2019, 185, 77–89. [Google Scholar] [CrossRef]
- Ma, X.; Li, F.; Wang, S.; Zhang, H. Evolution of biodiesel flow spray inside and near field in pressure swirl nozzles: Flow rate, atomization angle, and droplet size. Energy 2024, 291, 130337. [Google Scholar] [CrossRef]
- Chen, J.F.; Liu, Q.; Huang, Y.L.; Pachiannan, T.; Zhou, S.F.; Wang, Q.; Zhong, W.J. An optical study on spray and combustion characteristics of ethanol/ hydrogenated catalytic biodiesel blends in a constant volume combustion chamber. Therm. Sci. Eng. Prog. 2024, 49, 102448. [Google Scholar] [CrossRef]
- Algayyim, S.J.M.; Wandel, A.P.; Yusaf, T.; Al-Lwayzy, S. Butanol-acetone mixture blended with cottonseed biodiesel: Spray characteristics evolution, combustion characteristics, engine performance and emission. Proc. Combust. Inst. 2019, 37, 4729–4739. [Google Scholar] [CrossRef]
- Lee, D.; Jho, Y.; Lee, C.S. Effects of Soybean and Canola Oil-Based Biodiesel Blends on Spray, Combustion, and Emission Characteristics in a Diesel Engine. J. Energy Eng. 2014, 140, A4014012. [Google Scholar] [CrossRef]
- Battistoni, M.; Grimaldi, C.N. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels. Appl Energy 2012, 97, 656–666. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Hua, L.; Zhang, D.; Issaka, Z. Experimental Study on Jet Breakup Morphologies and Jet Characteristic Parameters of Non-circular Nozzles under Low-intermediate Pressures. Appl. Eng. Agric. 2019, 35, 617–632. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Chen, C.; Hua, L.; Zhang, D. Hydraulic Performance and Jet Breakup Characteristics of the Impact Sprinkler with Circular and Non-circular Nozzles. Appl. Eng. Agric. 2019, 35, 911–924. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Hua, L.; Zhang, D. Three-dimensional flow breakup characteristics of a circular jet with different nozzle geometries. Biosyst. Eng. 2020, 193, 216–231. [Google Scholar] [CrossRef]
- Qin, W.; Xue, X.; Cui, L.; Zhou, Q.; Xu, Z.; Chang, F. Optimization and test for spraying parameters of cotton defoliant sprayer. Int. J. Agric. Biol. Eng. 2016, 9, 63–72. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Liu, J.; Li, H.; Li, H. Experimental Study on Water Distribution and Droplet Kinetic Energy Intensity from Non-Circular Nozzles with Different Aspect Ratios. Agriculture 2022, 12, 2133. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Zhu, X.; Yuan, S. Droplet characterisation of a complete fluidic sprinkler with different nozzle dimensions. Biosyst. Eng. 2016, 148, 90–100. [Google Scholar] [CrossRef]
- Jing, D.L.; Zhang, F.; Li, Y.F.; Xu, H.M.; Shuai, S.J. Experimental investigation on the macroscopic and microscopic spray characteristics of dieseline fuel. Fuel 2017, 199, 478–487. [Google Scholar] [CrossRef]
- Feng, Z.H.; Yang, Z.; Jin, Y.; Si, Z.B.; He, Z.X. Experimental study on dribbling characteristics of gasoline/biodiesel blends after the end-of-injection. Int. J. Eng. Res. 2024, 25, 1053–1068. [Google Scholar] [CrossRef]
- Zhu, X.; Fordjour, A.; Agyen Dwomoh, F.; Kwame Lewballah, J.; Anim Ofosu, S.; Liu, J.; Dai, X.; Oteng, J. Experimental study on the effects of pressure loss on uniformity, application rate and velocity on different working conditions using the dynamic fluidic sprinkler. Heliyon 2024, 10, e27140. [Google Scholar] [CrossRef] [PubMed]
- Magnotti, G.M.; Genzale, C.L. Detailed assessment of diesel spray atomization models using visible and X-ray extinction measurements. Int. J. Multiph. Flow 2017, 97, 33–45. [Google Scholar] [CrossRef]
- Kim, H.J.; Suh, H.K.; Park, S.H.; Lee, C.S. An experimental and numerical investigation of atomization characteristics of biodiesel, dimethyl ether, and biodiesel-ethanol blended fuel. Energy Fuel 2008, 22, 2091–2098. [Google Scholar] [CrossRef]
- Lee, C.S.; Reitz, R.D. Effect of liquid properties on the breakup mechanism of high-speed liquid drops. At. Sprays 2001, 11, 1–19. [Google Scholar] [CrossRef]
- Esteban, B.; Riba, J.R.; Baquero, G.; Puig, R.; Rius, A. Characterization of the surface tension of vegetable oils to be used as fuel in diesel engines. Fuel 2012, 102, 231–238. [Google Scholar] [CrossRef]
- Guan, L.; Tang, C.L.; Yang, K.; Mo, J.; Huang, Z.H. Effect of di-n-butyl ether blending with soybean-biodiesel on spray and atomization characteristics in a common-rail fuel injection system. Fuel 2015, 140, 116–125. [Google Scholar] [CrossRef]
- Sun, F.Y.; Chen, H.; Geng, L.M.; Qi, D.H.; Wu, H.; Yan, X.G.; Ji, Z.H.; Zhang, P.; Chen, Z.M.; Zhang, W.B. Study on spray and combustion of acetone-butanol-ethanol (ABE)/biodiesel blends in a constant volume chamber. Energy 2025, 332, 137180. [Google Scholar] [CrossRef]
- Park, S.H.; Suh, H.K.; Lee, C.S. Nozzle flow and atomization characteristics of ethanol blended biodiesel fuel. Renew. Energy 2010, 35, 144–150. [Google Scholar] [CrossRef]
- Bang, S.H.; Lee, C.S. Fuel injection characteristics and spray behavior of DME blended with methyl ester derived from soybean oil. Fuel 2010, 89, 797–800. [Google Scholar] [CrossRef]
- ul Haq, M.; Jafry, A.T.; Ahmad, S.; Cheema, T.A.; Kamran, M.; Ajab, H.; Masjuki, H.H. Macroscopic spray behavior in pressurized chamber alongside thermal performance of quaternary castor biodiesel with butanol and 1-butoxybutane. Energy 2023, 282, 128912. [Google Scholar] [CrossRef]
- Hussain, Z.; Liu, J.; Chauhdary, J.N.; Zhao, Y. Evaluating the effect of operating pressure, nozzle size and mounting height on droplet characteristics of rotating spray plate sprinkler. Irrig. Sci. 2024. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, H.J.; Suh, H.K.; Lee, C.S. A study on the fuel injection and atomization characteristics of soybean oil methyl ester (SME). Int. J. Heat Fluid Flow 2009, 30, 108–116. [Google Scholar] [CrossRef]
- Chen, R.; Li, H.; Wang, J.; Song, Z. Critical factors influencing soil runoff and erosion in sprinkler irrigation: Water application rate and droplet kinetic energy. Agric. Water Manag. 2023, 283, 108299. [Google Scholar] [CrossRef]
- Tonini, S.; Gavaises, M.; Theodorakakos, A.; Cossali, G.E. Numerical investigation of a multiple injection strategy on the development of high-pressure diesel sprays. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2010, 224, 125–141. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, Y.F.; Dong, P.B.; Zhai, C.; Nishida, K.; Wang, Y.; Leng, X.Y. Diesel Spray Characteristics Of Multi-Hole Injectors under Geometrical Similarity Condition. At. Sprays 2025, 35, 19–45. [Google Scholar] [CrossRef]
- Chen, R.; Li, H.; Wang, J.; Guo, X.; Song, Z. Comparisons of Spray Characteristics between Non-circular and Circular Nozzles with Rotating Sprinklers. Appl. Eng. Agric. 2022, 38, 61–75. [Google Scholar] [CrossRef]
- Tunio, M.H.; Gao, J.; Lakhiar, I.A.; Solangi, K.A.; Qureshi, W.A.; Shaikh, S.A.; Chen, J. Influence of Atomization Nozzles and Spraying Intervals on Growth, Biomass Yield, and Nutrient Uptake of Butter-Head Lettuce under Aeroponics System. Agronomy 2021, 11, 97. [Google Scholar] [CrossRef]
- Chen, R.; Li, H.; Wang, J.; Chen, C. Effects of Plate Structure and Nozzle Diameter on Hydraulic Performance of Fixed Spray Plate Sprinklers at Low Working Pressures. Trans. ASABE 2021, 64, 231–242. [Google Scholar] [CrossRef]
- Hua, L.; Jiang, Y.; Li, H.; Qin, L. Effects of Different Nozzle Orifice Shapes on Water Droplet Characteristics for Sprinkler Irrigation. Horticulturae 2022, 8, 538. [Google Scholar] [CrossRef]
- Kuti, O.A.; Zhu, J.Y.; Nishida, K.; Wang, X.G.; Huang, Z.H. Characterization of spray and combustion processes of biodiesel fuel injected by diesel engine common rail system. Fuel 2013, 104, 838–846. [Google Scholar] [CrossRef]
- Xu, S.H.; Guo, G.M.; Yang, K.; Yuan, J.P.; Guan, W.; Jin, Y.; He, Z.X. Evaluation of a liquid-vapor mass transfer model for string cavitation inside the liquid nozzle with non-condensable gas effects. Phys. Fluids 2025, 37, 053329. [Google Scholar] [CrossRef]
- Joshi, R.M.; Pegg, M.J. Flow properties of biodiesel fuel blends at low temperatures. Fuel 2007, 86, 143–151. [Google Scholar] [CrossRef]
- Liao, J.; John Hewitt, A.; Wang, P.; Luo, X.; Zang, Y.; Zhou, Z.; Lan, Y.; O’Donnell, C. Development of droplet characteristics prediction models for air induction nozzles based on wind tunnel tests. Int. J. Agric. Biol. Eng. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Junping, L.; Xingye, Z.; Shouqi, Y.; Xingfa, L. Droplet Motion Model and Simulation of a Complete Fluidic Sprinkler. Trans. ASABE 2018, 61, 1297–1306. [Google Scholar] [CrossRef]
- Kegl, B.; Lesnik, L. Modeling of macroscopic mineral diesel and biodiesel spray characteristics. Fuel 2018, 222, 810–820. [Google Scholar] [CrossRef]
- Wang, J.; Song, Z.; Chen, R.; Yang, T.; Tian, Z. Experimental Study on Droplet Characteristics of Rotating Sprinklers with Circular Nozzles and Diffuser. Agriculture 2022, 12, 987. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Shlegel, N.E.; Solomatin, Y.; Strizhak, P.A. Combined techniques of secondary atomization of multi-component droplets. Chem. Eng. Sci. 2019, 209, 115199. [Google Scholar] [CrossRef]
- Li, T.X.; Zhu, D.L.; Akafuah, N.K.; Saito, K.; Law, C.K. Synthesis, droplet combustion, and sooting characteristics of biodiesel produced from waste vegetable oils. Proc. Combust. Inst. 2011, 33, 2039–2046. [Google Scholar] [CrossRef]
- Xi, T.; Li, C.; Qiu, W.; Wang, H.; Lv, X.; Han, C.; Ahmad, F. Droplet Deposition Behavior on a Pear Leaf Surface under Wind-Induced Vibration. Appl. Eng. Agric. 2020, 36, 913–926. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Wang, J.; Hao, D.; Wang, R. The Motion of Strawberry Leaves in an Air-Assisted Spray Field and its Influence on Droplet Deposition. Trans. ASABE 2021, 64, 83–93. [Google Scholar] [CrossRef]
- Zhou, W.J.; Xi, H.Y.; Zhou, S.; Zhang, Z.; Shreka, M. Numerical study on knock characteristics and mechanism of a heavy duty natural gas/diesel RCCI engine. Int. J. Hydrogen Energy 2022, 47, 37072–37089. [Google Scholar] [CrossRef]
- Zhai, C.; Li, K.C.; Chen, R.; Luo, H.L. Experimental investigation of fuel spray and combustion with wall impingement under premixed conditions: A comparative analysis of flat wall and 2-D piston cavity. Energy 2025, 315, 134386. [Google Scholar] [CrossRef]
- Lahane, S.; Subramanian, K.A. Impact of nozzle holes configuration on fuel spray, wall impingement and NO emission of a diesel engine for biodiesel-diesel blend (B20). Appl. Therm. Eng. 2014, 64, 307–314. [Google Scholar] [CrossRef]
- Gong, C.; Jia, F.; Kang, C. Deposition of Water and Emulsion Hollow Droplets on Hydrophilic and Hydrophobic Surfaces. Agriculture 2024, 14, 960. [Google Scholar] [CrossRef]
- Cai, C.; Mudawar, I. Review of the dynamic Leidenfrost point temperature for droplet impact on a heated solid surface. Int. J. Heat Mass Transf. 2023, 217, 124639. [Google Scholar] [CrossRef]
- Cai, C.; Chen, H.; Liu, H.; Si, C. Effect of iso-propanol additive on the impact dynamics of a Leidenfrost water droplet. Appl. Therm. Eng. 2023, 234, 121326. [Google Scholar] [CrossRef]
- Cai, Y.C.; Qin, Z.P.; Zhu, L.; Zhu, C.C.; Zhao, X.; Xie, Z.Q.; Sun, C.M.; You, H. The splashing of a droplet falling on a low-speed, immiscible rotating liquid film. Int. J. Multiphase Flow 2023, 169, 104587. [Google Scholar] [CrossRef]
- Xia, L.; Yang, Z.; Chen, F.Z.; Liu, T.; Tian, Y.L.; Zhang, D.W. Droplet impacting on pillared hydrophobic surfaces with different solid fractions. J. Colloid Interface Sci. 2024, 658, 61–73. [Google Scholar] [CrossRef]
- Laan, N.; de Bruin, K.G.; Bartolo, D.; Josserand, C.; Bonn, D. Maximum Diameter of Impacting Liquid Droplets. Phys. Rev. Appl. 2014, 2, 044018. [Google Scholar] [CrossRef]
- Breitenbach, J.; Roisman, I.V.; Tropea, C. From drop impact physics to spray cooling models: A critical review. Exp. Fluids 2018, 59, 85. [Google Scholar] [CrossRef]
- Xu, L. Liquid drop splashing on smooth, rough, and textured surfaces. Phys. Rev. E 2007, 75, 056316. [Google Scholar] [CrossRef]
- Jadidbonab, H.; Malgarinos, I.; Karathanassis, I.; Mitroglou, N.; Gavaises, M. We-T classification of diesel fuel droplet impact regimes. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20170759. [Google Scholar] [CrossRef]
- Sen, S.; Vaikuntanathan, V.; Sivakumar, D. Experimental investigation of biofuel drop impact on stainless steel surface. Exp. Therm. Fluid Sci. 2014, 54, 38–46. [Google Scholar] [CrossRef]
- Dong, Q.X.; Liu, C.; Lai, C.L.; Lin, J.Y.; Zhao, J.Y.; Liu, M.H. Experimental study on the dynamics characteristics of biodiesel/ethanol droplets impacting upon the heated wall. Int. Commun. Heat Mass Transf. 2024, 159, 108038. [Google Scholar] [CrossRef]
- Gong, C.; Li, D.; Kang, C. Visualization of the evolution of bubbles in the spray sheet discharged from the air-induction nozzle. Pest Manag. Sci. 2022, 78, 1850–1860. [Google Scholar] [CrossRef]
- Hu, J.C.; Liu, B.L.; Zhang, C.; Gao, H.L.; Zhao, Z.F.; Zhang, F.J.; Wang, Y. Experimental study on the spray characteristics of an air-assisted fuel injection system using kerosene and gasoline. Fuel 2019, 235, 782–794. [Google Scholar] [CrossRef]
- Xiang, Q.; Qureshi, W.A.; Tunio, M.H.; Solangi, K.A.; Xu, Z.; Lakhiar, I.A. low-pressure drop size distribution characterization of impact sprinkler jet nozzles with and without aeration. Agric. Water Manag. 2021, 243, 106458. [Google Scholar] [CrossRef]
- Tan, E.S.; Anwar, M.; Kumaran, P.; Indra, T.M.; Yoshikawa, K. Air assist atomization characterization of palm biodiesel through experimental investigation and CFD simulation. Biofuels 2017, 8, 571–577. [Google Scholar] [CrossRef]
- Kardos, R.A.; Rácz, E.; Maly, M.; Jedelsky, J.; Józsa, V. Detailed spray analysis of airblast atomization of various fuels in a reacting environment. Int. J. Heat Mass Transf. 2024, 227, 125548. [Google Scholar] [CrossRef]
- Liu, R.; Zhong, L.F.; Li, S.H.; Li, J.; Ji, H.C. Numerical investigation on the spray characteristics of biodiesel with gas-assisted atomization injection. Fuel 2024, 358, 130178. [Google Scholar] [CrossRef]
- Ma, X.; Li, F.S.; Wang, S. Droplet velocity and size characteristics of biodiesel in an air-assisted pressure swirl atomizer during industrial furnace. Fuel 2025, 388, 134446. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Li, H.; Wang, L. Enhancing hydraulic efficiency in jet impingement sprinklers: Comparative analysis of aperture ratios compared with non-impingement sprinklers. Biosyst. Eng. 2024, 248, 162–176. [Google Scholar] [CrossRef]
- Wu, D.; Li, J.; Liu, Z.H.; Xiong, Y.; Zheng, C.G.; Medwell, P.R. Eulerian and Lagrangian stagnation plane behavior of moderate Reynolds number round opposed-jets flow. Comput. Fluids 2016, 133, 116–128. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Zhang, P.; Chi, Y.C.; Yang, T.; Zhu, J.Z.; Lu, X.C. Eulerian-Lagrangian simulation and validating experiment of n-butanol/biodiesel dual-fuel impinging sprays. Fuel 2023, 350, 128761. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Wu, H.Q.; Mi, S.J.; Lu, X.C. Experimental Investigation on Cross-Impingement Characteristics Under Various Biodiesel-Butanol Blended Proportions and Ambient Conditions. J. Eng. Gas Turbines Power 2023, 145, 111005. [Google Scholar] [CrossRef]
- Kegl, T.; Kova, A.; Kegl, B.; Kegl, M. Nanomaterials as fuel additives in diesel engines: A review of current state, opportunities, and challenges. Prog. Energy Combust. 2021, 83, 100897. [Google Scholar] [CrossRef]
- Ul Haq, M.; Turab Jafry, A.; Ali, M.; Ajab, H.; Abbas, N.; Sajjad, U.; Hamid, K. Influence of nano additives on Diesel-Biodiesel fuel blends in diesel engine: A spray, performance, and emissions study. Energy Convers. Manag. X 2024, 23, 100574. [Google Scholar] [CrossRef]
- Devarajan, Y.; Nagappan, B.; Subbiah, G. A comprehensive study on emission and performance characteristics of a diesel engine fueled with nanoparticle-blended biodiesel. Environ. Sci. Pollut. Res. 2019, 26, 10662–10672. [Google Scholar] [CrossRef]
- Basha, J.S.; Anand, R.B. The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine. J. Braz. Soc. Mech. Sci. Eng. 2013, 35, 257–264. [Google Scholar] [CrossRef]
- Nanthagopal, K.; Ashok, B.; Tamilarasu, A.; Johny, A.; Mohan, A. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with methyl ester in a CI engine. Energy Convers. Manag. 2017, 146, 8–19. [Google Scholar] [CrossRef]
- Mei, D.Q.; Fang, Y.; Adu-Mensah, D.; Cai, W.Y.; Yuan, Y.N. Spray characteristics of fuel with cerium oxide nanoparticles. Chem. Eng. Sci. 2023, 266, 118298. [Google Scholar] [CrossRef]
- Ul Haq, M.; Jafry, A.T.; Abbasi, M.S.; Jawad, M.; Ahmad, S.; Cheema, T.A.; Abbas, N. Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions. Energies 2022, 15, 7808. [Google Scholar] [CrossRef]
- Tomar, M.; Kumar, N. Effect of multi-walled carbon nanotubes and alumina nano-additives in a light duty diesel engine fuelled with biodiesel blends. Sustain. Energy Technol. 2020, 42, 100833. [Google Scholar] [CrossRef]
- Wang, L.; Yu, X.; Geng, F.; Cheng, C.; Yang, J.; Deng, Q. Effects of tocopherols on the stability of flaxseed oil-in-water emulsions stabilized by different emulsifiers: Interfacial partitioning and interaction. Food Chem. 2022, 374, 131691. [Google Scholar] [CrossRef]
- Mahdi, A.A.; Mohammed, J.K.; Al-Ansi, W.; Al-Maqtari, Q.A.; Al-Adeeb, A.; Cui, H.; Lin, L. Stabilization of the oil-in-water emulsions of Citrus reticulata essential oil by different combinations of gum arabic/maltodextrin/whey protein. J. Food Process. Preserv. 2022, 46, e16976. [Google Scholar] [CrossRef]
- Gu, H.; Lv, R.; Huang, X.; Chen, Q.; Dong, Y. Rapid quantitative assessment of lipid oxidation in a rapeseed oil-in-water (o/w) emulsion by three-dimensional fluorescence spectroscopy. J. Food Compos. Anal. 2022, 114, 104762. [Google Scholar] [CrossRef]
- Park, S.; Woo, S.; Kim, H.; Lee, K. The characteristic of spray using diesel water emulsified fuel in a diesel engine. Appl. Energy 2016, 176, 209–220. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lin, H.P. Spray characteristics of emulsified castor biodiesel on engine emissions and deposit formation. Renew. Energy 2011, 36, 3507–3516. [Google Scholar] [CrossRef]
- Sudarshan, G.; Preetika, R.; Krishnasamy, A.; Basavaraja, M.G.; Indrapal, S.A. Preparation and utilization of biodiesel-water emulsions in compression ignition engines—A critical review. Fuel 2025, 394, 135124. [Google Scholar] [CrossRef]
- Najafi, G.; Shadidi, B. The influence of single and multi-carbon nanotubes as additives in diesel-biodiesel fuel blends on diesel engine combustion characteristics, performance, and emissions. Biofuels 2023, 15, 177–190. [Google Scholar] [CrossRef]
Method | Cost | Scalability | Environmental Impact | Effectiveness |
---|---|---|---|---|
Blending other fuels | Medium–Low | High | Excellent (depending on blend): Alcohol/ether blends improve sustainability | Medium: Atomization improves via adjusted viscosity/surface tension, with results varying by blend ratio |
Air-assisted atomization | Medium–High | Medium–Low | Good: Improved atomization reduces particulate emissions, but compressed air energy use indirectly increases carbon emissions | Medium–High: Air shear significantly reduces droplet size with stable atomization |
Dual-fuel impingement | Medium | Medium | Good: Synergistic combustion lowers emissions | Medium–High: Fuel impingement creates uniform droplet breakup |
Nano-biodiesel | High | Low | Moderate: Enhanced combustion reduces emissions, but nanoparticle release poses potential toxicity and environmental accumulation risks | High: Nanoparticles reduce viscosity and improve dispersion, markedly boosting atomization |
Water-emulsified biodiesel | Medium | Medium | Moderate: Water emulsification reduces NOx and particulates; micro-explosion enhances efficiency with no additional pollutants but faces challenges related to corrosiveness | High: Water evaporation triggers “micro-explosions” that shatter droplets, yielding significant atomization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Zhang, J.; Gu, J.; Leng, X.; He, Z.; Nishida, K. Improving Biodiesel Atomization Performance in CI Engines: A Review of Spray Behavior, Droplet Impingement, and Advanced Techniques. Processes 2025, 13, 2527. https://doi.org/10.3390/pr13082527
Feng Z, Zhang J, Gu J, Leng X, He Z, Nishida K. Improving Biodiesel Atomization Performance in CI Engines: A Review of Spray Behavior, Droplet Impingement, and Advanced Techniques. Processes. 2025; 13(8):2527. https://doi.org/10.3390/pr13082527
Chicago/Turabian StyleFeng, Zehao, Junlong Zhang, Jiechong Gu, Xianyin Leng, Zhixia He, and Keiya Nishida. 2025. "Improving Biodiesel Atomization Performance in CI Engines: A Review of Spray Behavior, Droplet Impingement, and Advanced Techniques" Processes 13, no. 8: 2527. https://doi.org/10.3390/pr13082527
APA StyleFeng, Z., Zhang, J., Gu, J., Leng, X., He, Z., & Nishida, K. (2025). Improving Biodiesel Atomization Performance in CI Engines: A Review of Spray Behavior, Droplet Impingement, and Advanced Techniques. Processes, 13(8), 2527. https://doi.org/10.3390/pr13082527