Effect of Acetylation on the Behavior of Hyperbranched Polyglycerols in Supercritical CO2
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Analytical Methods
2.3. General Procedure for the Acetylation of the HPG-OHs
2.4. Behavior in Dense CO2
3. Results and Discussion
3.1. Synthesis of the HPG-Acs
3.2. Thermal Characterization
3.3. Behavior in Dense CO2 of the HPG-OHs
3.4. Behavior in Dense CO2 of the HPG-Acs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, Y.H.; Webster, O.W. Hyperbranched Polyphenylenes. Macromolecules 1992, 25, 5561–5572. [Google Scholar] [CrossRef]
- Paleos, C.M.; Tsiourvas, D.; Sideratou, Z. Molecular engineering of dendritic polymers and their application as drug and gene delivery systems. Mol. Pharm. 2007, 4, 169–188. [Google Scholar] [CrossRef]
- Wiltshire, J.T.; Qiao, G.G. Recent Advances in Star Polymer Design: Degradability and the Potential for Drug Delivery. Aust. J. Chem. 2007, 60, 699–705. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, A.; Guo, J.; Uhrich, K.E. Unimolecular Micelles: Synthesis and Characterization of Amphiphilic Polymer Systems. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 703–711. [Google Scholar] [CrossRef]
- Raveendran, P.; Ikushima, Y.; Wallen, S.L. Polar Attributes of Supercritical Carbon Dioxide. Acc. Chem. Res. 2005, 38, 478–485. [Google Scholar] [CrossRef]
- Kerton, F.M. Alternative Solvents for Green Chemistry; Royal Society of Chemistry: Cambridge, UK, 2009. [Google Scholar]
- Nasir, M.I.; Bernards, M.A.; Charpentier, P.A. Acetylation of soybean lecithin and identification of components for solubility in supercritical carbon dioxide. J. Agric. Food Chem. 2007, 55, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Potluri, V.K.; Hamilton, A.D.; Karanikas, C.F.; Bane, S.E.; Xu, J.; Beckman, E.J.; Enick, R.M. The high CO2-solubility of per-acetylated α-, β-, and γ-cyclodextrin. Fluid Phase Equilibria 2003, 211, 211–217. [Google Scholar] [CrossRef]
- Lambert, A.; Ingrosso, F. A Molecular Dynamics Study of the Solvation Properties of Sugars in Supercritical Carbon Dioxide. Molecules 2025, 30, 1256. [Google Scholar] [CrossRef]
- Huang, W.-A.; Su, R.; Wang, J.-W.; Fan, Y.; Jiang, L.; Li, X.; Cao, J. Synthesis and characterization of a host–guest complex based on acetylated-β-cyclodextrin and its application in improving the viscosity of supercritical carbon dioxide. Fuel 2024, 363, 130837. [Google Scholar] [CrossRef]
- Maia-Obi, L.P.; Vidinha, P.; Ferraz, H.G.; Bazito, R.C. Non-Inclusion Complexation of Peracetylated β-Cyclodextrin with Ibuprofen in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2021, 169, 105098. [Google Scholar] [CrossRef]
- Rindfleisch, F.; DiNoia, T.P.; McHugh, M.A. Solubility of polymers and copolymers in supercritical CO2. J. Phys. Chem. 1996, 100, 15581–15587. [Google Scholar] [CrossRef]
- Sato, Y.; Takikawa, T.; Takishima, S.; Masuoka, H. Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene. J. Supercrit. Fluids 2001, 19, 187–198. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, K.; Liang, L.; Tan, B. Synthesis of oligomer vinyl acetate with different topologies by RAFT/MADIX method and their phase behaviour in supercritical carbon dioxide. Polymer 2013, 54, 5303–5309. [Google Scholar] [CrossRef]
- Gong, H.; Gui, W.; Zhang, H.; Lv, W.; Xu, L.; Li, Y.; Dong, M. Molecular dynamics study on the dissolution behaviors of poly(vinyl acetate)-polyether block copolymers in supercritical CO2. J. Appl. Polym. Sci. 2020, 138, 50151. [Google Scholar] [CrossRef]
- Valor, D.; Montes, A.; Cózar, A.; Pereyra, C.; de la Ossa, E.M. Development of Porous Polyvinyl Acetate/Polypyrrole/Gallic Acid Scaffolds Using Supercritical CO2 as Tissue Regenerative Agents. Polymers 2022, 14, 672. [Google Scholar] [CrossRef]
- Champeau, M.; Thomassin, J.-M.; Tassaing, T.; Jérôme, C. Drug loading of polymer implants by supercritical CO2 assisted impregnation: A review. J. Control. Release 2015, 209, 248–259. [Google Scholar] [CrossRef]
- Medina-Gonzalez, Y.; Camy, S.; Condoret, J.-S. ScCO2/green solvents: Biphasic promising systems for cleaner chemicals manufacturing. ACS Sustain. Chem. Eng. 2014, 2, 2623–2636. [Google Scholar] [CrossRef]
- Sunder, A.; Hanselmann, R.; Frey, H.; Mülhaupt, R. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules 1999, 32, 4240–4246. [Google Scholar] [CrossRef]
- Wu, W.B.; Chiu, W.Y.; Liau, W.B. Casting solvent effect on crystallization behavior of poly(vinyl acetate)/poly(ethylene oxide) blends: DSC study. J. Appl. Polym. Sci. 1997, 64, 411–421. [Google Scholar] [CrossRef]
- Rasband, W. ImageJ. Available online: http://imagej.nih.gov/ij/ (accessed on 15 July 2025).
- Xu, Y.; Gao, C.; Kong, H.; Yan, D.; Luo, P.; Li, W.; Mai, Y. One-pot synthesis of amphiphilic core-shell suprabranched macro-molecules. Macromolecules 2004, 37, 6264–6267. [Google Scholar] [CrossRef]
- Samuel, H.S.; Nweke, M.U.; Etim, E.E. Supercritical Fluids: Properties, Formation and Applications. J. Eng. Ind. Res. 2023, 4, 176–188. [Google Scholar] [CrossRef]
- Goodwin, A.; Baskaran, D. Inimer Mediated Synthesis of Hyperbranched Polyglycerol via Self-Condensing Ring-Opening Polymerization. Macromolecules 2012, 45, 9657–9665. [Google Scholar] [CrossRef]
- Rokicki, G.; Rakoczy, P.; Parzuchowski, P.; Sobiecki, M. Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: Glycerol carbonate. Green Chem. 2005, 7, 529–539. [Google Scholar] [CrossRef]
- Frey, H.; Haag, R. Dendritic polyglycerol: A new versatile biocompatible material. Rev. Mol. Biotechnol. 2002, 90, 257–267. [Google Scholar] [CrossRef]
- Upton, C.E.; Kelly, C.A.; Shakesheff, K.M.; Howdle, S.M. One dose or two? The use of polymers in drug delivery. Polym. Int. 2007, 56, 1457–1460. [Google Scholar] [CrossRef]
- Pini, R.; Storti, G.; Mazzotti, M.; Tai, H.; Shakesheff, K.M.; Howdle, S.M. Howdle, Sorption and swelling of poly(DL-lactic acid) and poly(lactic-co-glycolic acid) in supercritical CO2: An experimental and modeling study. J. Polym. Sci. B Polym. Phys. 2008, 46, 483–496. [Google Scholar] [CrossRef]
- Yoda, S.; Sato, K.; Oyama, H.T. Impregnation of paclitaxel into poly(dl-lactic acid) using high pressure mixture of ethanol and carbon dioxide. RSC Adv. 2011, 1, 156–162. [Google Scholar] [CrossRef]
- Alessi, P.; Cortesi, A.; Kikic, I.; Vecchione, F. Plasticization of polymers with supercritical carbon dioxide: Experimental determination of glass-transition temperatures. J. Appl. Polym. Sci. 2003, 88, 2189–2193. [Google Scholar] [CrossRef]
- Kazarian, S.G.; Vincent, M.F.; Bright, F.V.; Liotta, C.L.; Eckert, C.A. Specific Intermolecular Interaction of Carbon Dioxide with Polymers. J. Am. Chem. Soc. 1996, 118, 1729–1736. [Google Scholar] [CrossRef]
- Zhai, W.; Ko, Y.; Zhu, W.; Wong, A.; Park, C.B. A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2. Int. J. Mol. Sci. 2009, 10, 5381–5397. [Google Scholar] [CrossRef]
- Lei, Z.; Ohyabu, H.; Sato, Y.; Inomata, H.; Smith, R.L. Solubility, swelling degree and crystallinity of carbon dioxide–polypropylene system. J. Supercrit. Fluids 2007, 40, 452–461. [Google Scholar] [CrossRef]
- Shen, Z.; McHugh, M.; Xu, J.; Belardi, J.; Kilic, S.; Mesiano, A.; Bane, S.; Karnikas, C.; Beckman, E.; Enick, R. CO2-solubility of oligomers and polymers that contain the carbonyl group. Polymer 2003, 44, 1491–1498. [Google Scholar] [CrossRef]
- Sarbu, T.; Styranec, T.J.; Beckman, E.J. Design and synthesis of low cost, sustainable CO2-philes. Ind. Eng. Chem. Res. 2000, 39, 4678–4683. [Google Scholar] [CrossRef]
- Wind, J.D.; Sirard, S.M.; Paul, D.R.; Green, P.F.; Johnston, K.P.; Koros, W.J. Relaxation Dynamics of CO2 Diffusion, Sorption, and Polymer Swelling for Plasticized Polyimide Membranes. Macromolecules 2003, 36, 6442–6448. [Google Scholar] [CrossRef]
- Fortunatti-Montoya, M.; Sánchez, F.A.; Hegel, P.E.; Pereda, S. Fractionation of glycerol acetates with supercritical CO2. J. Supercrit. Fluids 2019, 153, 104575. [Google Scholar] [CrossRef]
- Gregorowicz, J.; Fraś, Z.; Parzuchowski, P.; Rokicki, G.; Kusznerczuk, M.; Dziewulski, S. Phase behaviour of hyperbranched polyesters and polyethers with modified terminal OH groups in supercritical solvents. J. Supercrit. Fluids 2010, 55, 786–796. [Google Scholar] [CrossRef]
Code | Initiator | Mn (g mol−1) | Đ (Mn/Mw) a | DB b | nOH c |
---|---|---|---|---|---|
GL-HPG-OH-1 | GL | 562 | 1.06 | 0.41 | 7.6 |
GL-HPG-OH-2 | GL | 932 | 1.09 | 0.45 | 13.5 |
DD-HPG-OH-1 | DD | 547 | 1.06 | 0.23 | 6.7 |
DD-HPG-OH-2 | DD | 804 | 1.18 | 0.36 | 10.1 |
TEG-HPG-OH-1 | TEG | 604 | 1.08 | 0.15 | 7.5 |
TEG-HPG-OH-2 | TEG | 855 | 1.10 | 0.43 | 10.9 |
Code | Initiator | %AD | Mn (g mol−1) | Đ (Mn/Mw) a |
---|---|---|---|---|
GL-HPG-Ac-1 | GL | 100 | 1114 | 1.07 |
GL-HPG-Ac-2 | GL | 95 | 1499 | 1.03 |
DD-HPG-Ac-1 | DD | 100 | 1102 | 1.08 |
DD-HPG-Ac-2 | DD | 100 | 1392 | 1.04 |
TEG-HPG-Ac-1 | TEG | 97 | 1337 | 1.04 |
TEG-HPG-Ac-2 | TEG | 97 | 1301 | 1.04 |
Code | Td (°C) | Tg1 (°C) | Tg2 (°C) | Mp (°C) |
---|---|---|---|---|
GL-HPG-OH-1 | 334.2 | −48.4, −31.2 | - | - |
GL-HPG-OH-2 | 298.3 | −53.2 | - | - |
DD-HPG-OH-1 | 183.9 | −48.9, −35.6 | −16.0 | 49.1 |
DD-HPG-OH-2 | 329.1 | −48.2, −30.7 | −8.9 | 32.8 |
TEG-HPG-OH-1 | 305.8 | −45.6, −27.1 | - | - |
TEG-HPG-OH-2 | 330.4 | −59.4, −47.2 | - | - |
GL-HPG-Ac-1 | 240.5 | −31.5 | - | - |
GL-HPG-Ac-2 | 337.7 | −25.9 | - | - |
DD-HPG-Ac-1 | 201.0 | −55.5 | - | −70–33 a |
DD-HPG-Ac-2 | 230.1 | −46.2 | - | - |
TEG-HPG-Ac-1 | 237.9 | −41.9 | - | - |
TEG-HPG-Ac-2 | 219.0 | −31.2 | - | - |
Polymer | Condition | %smax (%) | %sfinal (%) | t%s max (min) | Weight Loss (%) |
---|---|---|---|---|---|
GL-HPG-Ac-1 | 0.50 g.mL−1, 10 MPa, 45 °C | 41 | 40 | 22 | 6.7 |
0.74 g.mL−1, 15 MPa, 45 °C | 66 | 61 | 67 | 9.8 | |
0.90 g.mL−1, 25 MPa, 35 °C | 57 | 53 | 66 | 15.0 | |
GL-HPG-Ac-2 | 0.50 g.mL−1, 10 MPa, 45 °C | 23 | 23 | 21 | 1.8 |
0.74 g.mL−1, 15 MPa, 45 °C | 29 | 28 | 65 | 9.1 | |
0.90 g.mL−1, 25 MPa, 35 °C | 56 | 50 | 96 | 25.1 | |
DD-HPG-Ac-2 | 0.50 g.mL−1, 10 MPa, 45 °C | 59 | 58 | 61 | 6.1 |
0.74 g.mL−1, 15 MPa, 45 °C | 57 | 54 | 43 | 12.0 | |
0.90 g.mL−1, 25 MPa, 35 °C | 1 | −7 | 10 | 37.8 | |
TEG-HPG-Ac-1 | 0.50 g.mL−1, 10 MPa, 45 °C | 33 | 33 | 88 | 6.5 |
0.74 g.mL−1, 15 MPa, 45 °C | 36 | 35 | 60 | 7.9 | |
0.90 g.mL−1, 25 MPa, 35 °C | 41 | 28 | 65 | 21.2 | |
TEG-HPG-Ac-2 | 0.50 g.mL−1, 10 MPa, 45 °C | 45 | 44 | 47 | −0.6 |
0.74 g.mL−1, 15 MPa, 45 °C | 38 | 38 | 77 | 4.7 | |
0.90 g.mL−1, 25 MPa, 35 °C | 48 | 48 | 91 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia-Obi, L.P.; Bazito, R.C. Effect of Acetylation on the Behavior of Hyperbranched Polyglycerols in Supercritical CO2. Processes 2025, 13, 2510. https://doi.org/10.3390/pr13082510
Maia-Obi LP, Bazito RC. Effect of Acetylation on the Behavior of Hyperbranched Polyglycerols in Supercritical CO2. Processes. 2025; 13(8):2510. https://doi.org/10.3390/pr13082510
Chicago/Turabian StyleMaia-Obi, Lígia Passos, and Reinaldo Camino Bazito. 2025. "Effect of Acetylation on the Behavior of Hyperbranched Polyglycerols in Supercritical CO2" Processes 13, no. 8: 2510. https://doi.org/10.3390/pr13082510
APA StyleMaia-Obi, L. P., & Bazito, R. C. (2025). Effect of Acetylation on the Behavior of Hyperbranched Polyglycerols in Supercritical CO2. Processes, 13(8), 2510. https://doi.org/10.3390/pr13082510