Comparative Study on Full-Scale Pore Structure Characterization and Gas Adsorption Capacity of Shale and Coal Reservoirs
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Experimental Materials
3.2. Experimental Methods
4. Results
4.1. Organic Geochemical Characteristics
4.2. Pore Morphology Characteristics
4.3. Microstructural Pore Characteristics
4.3.1. LPCO2A
4.3.2. LTN2A
4.3.3. HPMI
Sample ID | Lithology | LPCO2A | LTN2A | HPMI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
VDFT | SDFT | DCO2 | SBET | VDFT | SDFT | DN2 | VHPMI | SHPMI | ||
(cm3/g) | (m2/g) | (nm) | (m2/g) | (cm3/g) | (m2/g) | (nm) | (cm3/g) | (m2/g) | ||
DJ-M-1 | Coal | 0.038 | 128.01 | 0.524 | 5.08 | 0.009 | 5.76 | 1.22 | 0.009 | 5.55 |
DJ-M-2 | Coal | 0.064 | 216.74 | 0.479 | 1.20 | 0.002 | 1.38 | 4.887 | 0.032 | 19.39 |
DJ-M-3 | Coal | 0.071 | 242.99 | 0.501 | 1.96 | 0.003 | 2.35 | 1.326 | 0.039 | 23.29 |
DJ-M-4 | Coal | 0.071 | 242.42 | 0.501 | 2.23 | 0.004 | 3.08 | 1.273 | 0.050 | 30.65 |
Average | 0.061 | 207.539 | 0.501 | 2.618 | 0.005 | 3.143 | 2.177 | 0.032 | 19.720 | |
DJ-Y-1 | Shale | 0.006 | 19.14 | 0.349 | 10.68 | 0.018 | 11.73 | 1.220 | 0.001 | 0.25 |
DJ-Y-2 | Shale | 0.008 | 26.43 | 0.548 | 7.45 | 0.013 | 8.09 | 1.220 | 0.001 | 0.01 |
DJ-Y-3 | Shale | 0.004 | 14.49 | 0.349 | 7.13 | 0.014 | 8.20 | 1.273 | 0.001 | 0.01 |
DJ-Y-4 | Shale | 0.008 | 26.99 | 0.349 | 20.01 | 0.023 | 22.89 | 1.220 | 0.002 | 0.56 |
Average | 0.007 | 21.762 | 0.399 | 11.315 | 0.017 | 12.729 | 1.233 | 0.001 | 0.205 |
4.4. CH4 Isothermal Adsorption Characteristics
5. Discussion
5.1. Quantitative Characterization of Full-Scale Pores in Shale and Coal
5.2. Differences in Adsorption Capacity Between Shale and Coal
5.3. Comparative Analysis of Coal and Shale Reservoir Characteristics
6. Conclusions
- (1)
- The average TOC content of shale in the Shanxi Formation of the research area is 2.66%, and the microscopic components are mainly composed of vitrinite and inertinite. The mineral composition is high in quartz and clay minerals, with a small amount of pyrite and carbonate minerals present. The average TOC content of coal rock is 74.22%, and the maceral compositions are mainly composed of vitrinite, with clay minerals and organic matter carbon being the main components.
- (2)
- Organic pores, inorganic pores, and microcracks are all developed in the shale of the Shanxi Formation in the research area. Compared with shale, coal rock mainly develops organic pores, intergranular pores, cleavage, and tectonic fractures, and observations reveal that cleats are mineral-filled. The PV of Shanxi Formation coal rock in the research area is mainly contributed by micropores, with less contribution from mesopores and macropores. The PV of shale is mainly contributed by mesopores, followed by micropores, and macropores are underdeveloped. The SSA of coal rock and shale pores is mainly contributed by micropores.
- (3)
- The adsorption capacity of Shanxi Formation coal rock for methane in the study area is 8–29 times that of shale reservoirs, indicating that its adsorbed gas content is much higher than that of shale. Mainly because coal rock contains a large number of organic matter micropores with a large SSA, micropores can provide a large number of adsorption sites for methane, providing a place for gas adsorption and occurrence.
- (4)
- Based on the understanding of reservoir characteristics and pore structures in the Shanxi Formation coal seams within the study area, a strategic shift in fracturing methodology was implemented. Through the application of targeted, ultra-large-scale volume fracturing technology, significant enhancement in CBM development outcomes has been achieved.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Zhou, D.H.; Wang, W.H.; Jiang, T.X.; Xue, Z.J. Development of Unconventional Gas and Technologies Adopted in China. Energy Geosci. 2020, 1, 55–68. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, G.; Yang, Z.; Tao, S.; Hou, L.; Zhu, R.; Yuan, X.; Ran, Q.; Li, D.; Wang, Z. Concepts, Characteristics, Potential and Technology of Unconventional Hydrocarbons: On Unconventional Petroleum Geology. Pet. Explor. Dev. 2013, 40, 413–428. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; He, D.; Wei, Y.; Li, J.; Jia, A.; Chen, J.; Zhao, Q.; Li, Y.; Li, J.; et al. Theory, Technology and Prospects of Conventional and Unconventional Natural Gas. Pet. Explor. Dev. 2018, 45, 604–618. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Cai, Y.; Ranjith, P.G.; Yao, Y. Multi-Scale Quantitative Characterization of 3-D Pore-Fracture Networks in Bituminous and Anthracite Coals Using FIB-SEM Tomography and X-Ray μ-CT. Fuel 2017, 209, 43–53. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, D.; Cai, Y.; Yao, Y.; Li, Z. 3D Characterization and Quantitative Evaluation of Pore-Fracture Networks of Two Chinese Coals Using FIB-SEM Tomography. Int. J. Coal Geol. 2017, 174, 41–54. [Google Scholar] [CrossRef]
- Wei, Q.; Li, X.; Zhang, J.; Hu, B.; Zhu, W.; Liang, W.; Sun, K. Full-size pore structure characterization of deep-buried coals and its impact on methane adsorption capacity: A case study of the Shihezi Formation coals from the Panji Deep Area in Huainan Coalfield, Southern North China. J. Pet. Sci. Eng. 2019, 173, 975–989. [Google Scholar] [CrossRef]
- Chen, S.; Tao, S.; Tang, D.; Xu, H.; Li, S.; Zhao, J.; Jiang, Q.; Yang, H. Pore Structure Characterization of Different Rank Coals Using N2 and CO2 Adsorption and Its Effect on CH4 Adsorption Capacity: A Case in Panguan Syncline, Western Guizhou, China. Energy Fuels 2017, 31, 6034–6044. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada. Int. J. Coal Geol. 2007, 70, 223–239. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Shi, Z.; Wang, Q.; Zhao, Q.; Dong, D.; Li, S.; Liu, D.; Sun, S.; Qiu, Z. Favorable Lithofacies Types and Genesis of Marine-Continental Transitional Black Shale: A Case Study of Permian Shanxi Formation in the Eastern Margin of Ordos Basin, NW China. Pet. Explor. Dev. 2021, 48, 1315–1328. [Google Scholar] [CrossRef]
- Song, X.; Lu, X.; Shen, Y.; Guo, S.; Guan, Y. A modified supercritical Dubinin–Radushkevich model for the accurate estimation of high-pressure methane adsorption on shales. Int. J. Coal Geol 2018, 193, 1–15. [Google Scholar] [CrossRef]
- Shang, F.; Zhu, Y.; Hu, Q.; Zhu, Y.; Wang, Y.; Du, M.; Liu, R.; Han, Y. Characterization of methane adsorption on shale of a complex tectonic area in Northeast Guizhou, China: Experimental results and geological significance. J. Nat. Gas Sci. Eng. 2020, 84, 103676. [Google Scholar] [CrossRef]
- Pszonka, J.; Schulz, B. SEM Automated Mineralogy applied for the quantification of mineral and textural sorting in submarine sediment gravity flows. Gospod. Surowcami Miner. Miner. Resour. Manag. 2022, 38, 105–131. [Google Scholar]
- Zheng, H.; Yang, F.; Guo, Q.; Pan, S.; Jiang, S.; Wang, H. Multi-scale pore structure, pore network and pore connectivity of tight shale oil reservoir from Triassic Yanchang Formation, Ordos Basin. J. Nat. Gas Sci. Eng. 2022, 212, 110283. [Google Scholar] [CrossRef]
- Yan, J.; Meng, Z.; Zhang, K.; Yao, H.; Hao, H. Pore distribution characteristics of various rank coals matrix and their influences on gas adsorption. J. Pet. Sci. Eng. 2020, 189, 107401. [Google Scholar] [CrossRef]
- He, Q.; Chen, S.; Li, S.; Guo, B.; Lu, J.; Li, Y.; Li, X.; Zhao, L.; Ma, Z. Organic geochemical characteristics and hydrocarbon generation mechanism of marine-continental transitional organic-rich shale: A case study from the Shanxi Formation in the eastern margin of the Ordos Basin. J. Pet. Sci. Eng. 2022, 219, 11116. [Google Scholar] [CrossRef]
- Li, Y.; Tang, D.; Wu, P.; Niu, X.; Wang, K.; Qiao, P.; Wang, Z. Continuous unconventional natural gas accumulations of Carboniferous-Permian coal-bearing strata in the Linxing area, northeastern Ordos Basin, China. J. Nat. Gas Sci. Eng. 2016, 36, 314–327. [Google Scholar] [CrossRef]
- Ahmadi, S.; Khormali, A.; Razmjooie, A. Experimental investigation on separation of water in crude oil emulsions using an oil-soluble demulsifier. Iran. J. Chem. Chem. Eng. 2023, 42, 2332–2343. [Google Scholar]
- Kuang, L.; Dong, D.; He, W.; Wen, S.; Sun, S.; Li, S.; Qiu, Z.; Liao, X.; Li, Y.; Wu, J.; et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China. Pet. Explor. Dev. 2020, 47, 435–446. [Google Scholar] [CrossRef]
- Niu, X.; Fan, L.; Yan, X.; Zhao, G.; Zhang, H.; Jing, X.; Zhang, M. Enrichment conditions and resource potential of coal-rock gas in Ordos Basin, NW China. Pet. Explor. Dev. 2024, 51, 972–985. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zheng, S.; Luo, Z.; Sheng, Y.; Wang, X. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly overmature marine shale. J. Nat. Gas Sci. Eng. 2019, 67, 134–146. [Google Scholar] [CrossRef]
- Wu, Z.; He, S.; Li, X.; Liu, X.; Zhai, G.; Huang, Z.; Yang, W. Comparative study on pore structure characteristics of marine and transitional facies shales: A case study of the Upper Permian Longtan Formation and Dalong Formation in the Lower Yangtze area, south China. J. Pet. Sci. Eng. 2022, 215, 110578. [Google Scholar] [CrossRef]
- Wang, J.Y.; Guo, S.B. Study on the Relationship between Hydrocarbon Generation and Pore Evolution in Continental Shale from the Ordos Basin, China. Pet. Sci. 2021, 18, 1305–1322. [Google Scholar] [CrossRef]
- Shan, C.; Zhao, W.; Wang, F.; Zhang, K.; Feng, Z.; Guo, L.; Ma, X.; Liao, T. Nanoscale Pore Structure Heterogeneity and Its Quantitative Characterization in Chang7 Lacustrine Shale of the Southeastern Ordos Basin, China. J. Pet. Sci. Eng. 2020, 187, 106754. [Google Scholar] [CrossRef]
- Liang, L.; Xiong, J.; Liu, X. An Investigation of the Fractal Characteristics of the Upper Ordovician Wufeng Formation Shale Using Nitrogen Adsorption Analysis. J. Nat. Gas Sci. Eng. 2015, 27, 402–409. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Yi, J.; Hu, Q. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Mar. Pet. Geol. 2016, 70, 27–45. [Google Scholar] [CrossRef]
- GB/T 21650.3-2011; Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption-Part 3: Analysis of Micropores by Gas Adsorption. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2011.
- GB/T 21650.2-2008; Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption-Part 2: Analysis of Mesopores and Macropores by Gas Adsorption. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2008.
- GB/T 21650.1-2008; Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption-Part 1: Mercury Porosimetry. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2008.
- Zhou, S.; Yan, G.; Xue, H.; Guo, W.; Li, X. 2D and 3D Nanopore Characterization of Gas Shale in Longmaxi Formation Based on FIB-SEM. Mar. Pet. Geol. 2016, 73, 174–180. [Google Scholar] [CrossRef]
- Evans, R.; Marconi, U.M.B.; Tarazona, P. Capillary condensation and adsorption in cylindrical and slit-like pores. J. Chem. Soc. 1986, 82, 1763–1787. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Wang, T.; Tian, F.; Deng, Z.; Hu, H. The Characteristic Development of Micropores in Deep Coal and Its Relationship with Adsorption Capacity on the Eastern Margin of the Ordos Basin, China. Minerals 2023, 13, 302. [Google Scholar] [CrossRef]
- IUPAC (International Union of Pure and Applied Chemistry). Physical chemistry division commission on colloid and surface chemistry, subcommittee on characterization of porous solids: Recommendations for the characterization of porous solids (technical report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Gelb, L.D.; Gubbins, K.E.; Radhakrishnan, R.; Sliwinska-Bartkowiak, M. Phase separation in confined systems. Rep. Prog. Phys. 1999, 62, 1573–1659. [Google Scholar] [CrossRef]
- El-Merraoui, M.; Aoshima, M.; Kaneko, K. Micropore size distribution of activated carbon fiber using the density functional theory and other methods. Langmuir 2000, 16, 4300–4304. [Google Scholar] [CrossRef]
- Washburn, E.W. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. USA 1921, 15, 115–116. [Google Scholar] [CrossRef]
- Wang, T.; Deng, Z.; Hu, H.; Wang, H.; Jiang, Z.; Wang, D. Study on pore structure and multifractal characteristics of middle- and high-rank coals based on gas adsorption method: A case study of Benxi Formation in the eastern margin of Ordos Basin. Energy Fuels 2024, 38, 4102–4121. [Google Scholar] [CrossRef]
- Cao, T.; Song, Z.; Wang, S.; Xia, J. Characterization of Pore Structure and Fractal Dimension of Paleozoic Shales from the Northeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 35, 882–895. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.; Zhu, R.; Tang, X.; Liu, K.; Jin, Z. Geological Controls on the Pore System of Lacustrine Unconventional Shale Reservoirs: The Triassic Chang 7 Member in the Ordos Basin, China. Geoenergy Sci. Eng. 2023, 221, 111139. [Google Scholar] [CrossRef]
- He, H.; Liu, P.; Xu, L.; Hao, S.; Qiu, X.; Shan, C.; Zhou, Y. Pore Structure Representations Based on Nitrogen Adsorption Experiments and an FHH Fractal Model: Case Study of the Block Z Shales in the Ordos Basin, China. J. Pet. Sci. Eng. 2021, 203, 108661. [Google Scholar] [CrossRef]
- Wang, T.; Deng, Z.; Hu, H.; Tian, F.; Ding, R.; Zhang, T.; Ma, Z.; Hou, S.; Li, X.; Dai, R.; et al. Pore structure and fractal characteristics of transitional shales with different lithofacies from the eastern margin of the Ordos Basin. Energy Sci Eng. 2023, 11, 3979–4000. [Google Scholar] [CrossRef]
- Liu, J.; Lu, D.; Li, P. Nano-Scale Dual-Pore-Shape Structure and Fractal Characteristics of Transitional Facies Shale Matrix. J. Nat. Gas Sci. Eng. 2019, 68, 102907. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, H.; Jiang, Z.; Sun, M.; Wu, Z.; Xu, Y.; Ke, Y. Pore structure differences between shale and coal and their gas migration mechanisms. Nat. Gas Ind. 2022, 42, 37–49. [Google Scholar]
- Sun, M.; Zhang, L.; Hu, Q.; Pan, Z.; Yu, B.; Sun, L.; Bai, L.; Fu, H.; Zhang, Y.; Zhang, C.; et al. Multiscale connectivity characterization of marine shales in southern China by fluid intrusion, small-angle neutron scattering (SANS), and FIB-SEM. Mar. Pet. Geol. 2020, 112, 104101. [Google Scholar] [CrossRef]
- Mastalerz, M.; He, L.; Melnichenko, Y.; Rupp, J. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques. Energy Fuels 2012, 26, 5109–5120. [Google Scholar] [CrossRef]
- Hu, C.; Tan, J.; Lu, Q.; Zhang, Y. Evolution of organic pores in Permian low maturity shales from the Dalong Formation in the Sichuan Basin: Insights from a thermal simulation experiment. Gas Sci. Eng. 2024, 121, 205166. [Google Scholar] [CrossRef]
Lithology | Ro (%) | Organic Matter Abundance | Macerals (%) | Minerals (%) | ||||
---|---|---|---|---|---|---|---|---|
TOC | S1 + S2 | Vitrinite | Inertinite | Exinite | Brittle Minerals | Clay Minerals | ||
Coal | 2.56~2.77 2.65 | 66.8~86.1 74.22 | 0.60~8.66 4.35 | 76.48~82.01 79.56 | 9.78~15.25 12.58 | 7.1~13.74 7.86 | 5~21 9.9 | 32~56 44 |
Shale | 0.56~28.5 2.66 | 0.56~6.62 1.86 | 0.12~7.77 0.77 | 20~48 38.3 | 20~57 34.5 | 15~44 27.1 | 24~88 61.75 | 12~76 38.25 |
Sample ID | Lithology | VL (cm3/g) | PL (MPa) |
---|---|---|---|
DJ-M-1 | Coal | 21.75 | 3.47 |
DJ-M-2 | Coal | 25.72 | 3.54 |
DJ-M-3 | Coal | 30.29 | 3.59 |
DJ-M-4 | Coal | 28.54 | 3.48 |
Average | 26.57 | 3.52 | |
DJ-Y-1 | Shale | 2.71 | 3.77 |
DJ-Y-2 | Shale | 1.04 | 5.54 |
DJ-Y-3 | Shale | 1.65 | 2.81 |
DJ-Y-4 | Shale | 2.29 | 2.88 |
Average | 1.92 | 3.75 |
Sample ID | Lithology | PV (cm3/g) | SSA (m2/g) | ||||||
---|---|---|---|---|---|---|---|---|---|
Micropores | Mesopores | Macropores | Total | Micropores | Mesopores | Macropores | Total | ||
DJ-M-1 | Coal | 0.038 | 0.008 | 0.002 | 0.047 | 128.18 | 3.10 | 0.01 | 131.30 |
DJ-M-2 | Coal | 0.064 | 0.002 | 0.001 | 0.067 | 216.78 | 0.82 | 0.03 | 217.64 |
DJ-M-3 | Coal | 0.071 | 0.003 | 0.002 | 0.076 | 243.06 | 1.24 | 0.04 | 244.34 |
DJ-M-4 | Coal | 0.071 | 0.003 | 0.002 | 0.077 | 242.42 | 1.33 | 0.02 | 243.76 |
Average | 0.061 | 0.004 | 0.002 | 0.067 | 207.61 | 1.62 | 0.02 | 209.26 | |
DJ-Y-1 | Shale | 0.006 | 0.015 | 0.000 | 0.022 | 19.87 | 6.57 | 0.00 | 26.44 |
DJ-Y-2 | Shale | 0.008 | 0.012 | 0.001 | 0.020 | 26.44 | 4.91 | 0.01 | 31.36 |
DJ-Y-3 | Shale | 0.004 | 0.011 | 0.001 | 0.017 | 14.74 | 4.36 | 0.03 | 19.13 |
DJ-Y-4 | Shale | 0.009 | 0.016 | 0.001 | 0.026 | 30.28 | 7.86 | 0.01 | 38.14 |
Average | 0.007 | 0.014 | 0.001 | 0.021 | 22.83 | 5.93 | 0.01 | 28.77 |
Sedimentary Environment | Marine–Continental Transitional Facies | ||
---|---|---|---|
Lithology | Coal | Shale | |
Organic geochemical characteristics | TOC (%) | 66.8~86.1/74.22 | 0.56~6.62/1.86 |
Type of organic matter | III | III | |
Maceral | Mainly vitrinite group and inertinite Group | Mainly liptinite group and vitrinite group | |
Mineral composition | Clay content (%) | 32~56/44 | 12~76/38.25 |
Brittle minerals (%) | 5~21/9.9 | 24~88/61.75 | |
Characteristics of pore structure | Pore type | Organic matter pores | Organic pores and pore fissures in clay minerals |
Micropore structure | The average proportion of PV is 90.6%; The average proportion of SSA is 99.0% | The average proportion of PV is 31.9%; the average proportion of SSA is 79.0% | |
Mesopore structure | The average proportion of PV is 6.8% | The average proportion of PV is 63.4%; the average proportion of SSA is 21.0% | |
Macropore structure | The average proportion of PV is 2.6% | The average proportion of PV is 4.7% | |
Full-scale PV distribution characteristics | The PV is mainly contributed by micropores, followed by mesopores and macropores | The PV is mainly contributed by mesopores, followed by micropores and macropores | |
Full-scale SSA distribution characteristics | The SSA is mainly contributed by micropores | The SSA is mainly contributed by micropores, followed by mesopores | |
Gas-bearing characteristics | VL (cm3/g) | 21.75~30.29 (26.57) | 1.04~2.71 (1.92) |
PL (MPa) | 3.47~3.59 (3.52) | 2.81~5.54 (3.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, M.; Wang, B.; Yu, X.; Tang, W.; Yu, M.; You, C.; Yang, J.; Wang, T.; Deng, Z. Comparative Study on Full-Scale Pore Structure Characterization and Gas Adsorption Capacity of Shale and Coal Reservoirs. Processes 2025, 13, 2246. https://doi.org/10.3390/pr13072246
Ouyang M, Wang B, Yu X, Tang W, Yu M, You C, Yang J, Wang T, Deng Z. Comparative Study on Full-Scale Pore Structure Characterization and Gas Adsorption Capacity of Shale and Coal Reservoirs. Processes. 2025; 13(7):2246. https://doi.org/10.3390/pr13072246
Chicago/Turabian StyleOuyang, Mukun, Bo Wang, Xinan Yu, Wei Tang, Maonan Yu, Chunli You, Jianghai Yang, Tao Wang, and Ze Deng. 2025. "Comparative Study on Full-Scale Pore Structure Characterization and Gas Adsorption Capacity of Shale and Coal Reservoirs" Processes 13, no. 7: 2246. https://doi.org/10.3390/pr13072246
APA StyleOuyang, M., Wang, B., Yu, X., Tang, W., Yu, M., You, C., Yang, J., Wang, T., & Deng, Z. (2025). Comparative Study on Full-Scale Pore Structure Characterization and Gas Adsorption Capacity of Shale and Coal Reservoirs. Processes, 13(7), 2246. https://doi.org/10.3390/pr13072246