Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage
Abstract
1. Introduction
2. Materials and Methods
2.1. Dry-Fermented Chicken Sausage Production
2.2. Microbiological Analyses
2.3. Identification of LAB
2.4. Screening of the Antilisterial Activity of LAB Isolates
2.4.1. Preparation of Strains
2.4.2. Indicator Listeria Strains
2.4.3. Agar Well Diffusion Assay
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santchurn, S.J.; Collignan, A. Fermented poultry sausages. In Handbook of Fermented Meat and Poultry; Toldrá, F., Ed.; Wiley: Ames, IA, USA, 2007; pp. 361–368. [Google Scholar]
- Yılmaz, İ.; Şimşek, O.; Işıklı, M. Fatty acid composition and quality characteristics of low-fat cooked sausages made with beef and chicken meat, tomato juice and sunflower oil. Meat Sci. 2002, 62, 253–258. [Google Scholar] [CrossRef]
- Zinina, O.; Merenkova, S.; Soloveva, A.; Savostina, T.; Sayfulmulyukov, E.; Lykasova, I.; Mizhevikina, A. The effect of starter cultures on the qualitative indicators of dry fermented sausages made from poultry meat. Agron. Res. 2018, 16, 2265–2281. [Google Scholar] [CrossRef]
- Raleng, A.; Thangjam, T.; Devi, M.P.; Bandana, S.; Behera, S.K. Enhancing Chicken Sausage Quality: Investigating the impact of chicken skin fat and corn starch powder on physicochemical attributes, textural properties, and storage stability. Indian J. Hill Farming 2023, 36, 31–39. [Google Scholar] [CrossRef]
- El Adab, S.; Essid, I.; Hassouna, M. Microbiological, biochemical and textural characteristics of a Tunisian dry fermented poultry eat sausage inoculated with selected starter cultures. J. Food Saf. 2015, 35, 75–85. [Google Scholar] [CrossRef]
- Pereira, N.R.; Tarley, C.R.T.; Matsushita, M.; de Souza, N.E. Proximate composition and fatty acid profile in Brazilian poultry sausages. J. Food Compos. Anal. 2000, 13, 915–920. [Google Scholar] [CrossRef]
- Menegas, L.Z.; Pimentel, T.C.; Garcia, S.; Prudencio, S.H. Dry-fermented chicken sausage produced with inulin and corn oil: Physicochemical, microbiological, and textural characteristics and acceptability during storage. Meat Sci. 2013, 93, 501–506. [Google Scholar] [CrossRef]
- Fessler, D.M.T.; Navarrete, C.D. Meat is good to taboo: Dietary proscriptions as a product of the interaction of psychological mechanisms and social processes. J. Cogn. Cult. 2003, 3, 1–40. [Google Scholar] [CrossRef]
- Zdolec, N.; Mikuš, T.; Kiš, M. Lactic acid bacteria in meat fermentation: Dry sausage safety and quality. In Lactic Acid Bacteria in Food Biotechnology Innovations and Functional Aspects Applied Biotechnology Reviews; Ray, R., Paramithiotis, S., de Carvalho Azevedo, V.A., Montet, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 145–159. ISBN 9780323898751. [Google Scholar]
- Zdolec, N.; Kiš, M.; Cvrtila, Ž.; Mikuš, T.; Kazazić, S.; Pleadin, J.; Lešić, T.; Kozačinski, L.; Dobranić, V.; Mazija, H. Microbiological and phisico-chemical properties of traditional dry-fermented hen meat sausages. Meso 2020, 22, 368–377. [Google Scholar] [CrossRef]
- Leistner, L.; Gould, G.W. The hurdle concept. In Hurdle Technologies; Food engineering series; Springer: Boston, MA, USA, 2002; pp. 17–28. [Google Scholar]
- Siddi, G.; Piras, F.; Spanu, V.; Meloni, M.P.; Sanna, R.; Carta, N.; Errico, M.; Cuccu, M.; De Santis, E.P.L.; Scarano, C. Selection of commercial protective cultures to be added in Sardinian fermented sausage to control Listeria monocytogenes. Ital. J. Food Saf. 2022, 11, 10368. [Google Scholar] [CrossRef]
- Zdolec, N. Fermented Meat Products: Health Aspects; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2017; ISBN 9781498733045. [Google Scholar]
- Mangia, N.P.; Cottu, M.; Mura, M.E.; Murgia, M.A.; Blaiotta, G. Technological parameters, anti-Listeria activity, biogenic amines formation and degradation ability of L. plantarum strains isolated from sheep-fermented sausage. Microorganisms 2021, 9, 1895. [Google Scholar] [CrossRef]
- Sakaridis, I.; Soultos, N.; Dovas, C.I.; Papavergou, E.; Ambrosiadis, I.; Koidis, P. Lactic acid bacteria from chicken carcasses with inhibitory activity against Salmonella spp. and Listeria monocytogenes. Anaerobe 2012, 18, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Miličević, B.; Danilović, B.; Zdolec, N.; Kozačinski, L.; Dobranić, V.; Savić, D. Microbiota of the fermented sausages: Influence to product quality and safety. Bulg. J. Agric. Sci. 2014, 20, 1061–1078. [Google Scholar]
- Deumier, F.; Collignan, A. The effects of sodium lactate and starter cultures on pH, lactic acid bacteria, Listeria monocytogenes and Salmonella spp. levels in pure chicken dry fermented sausage. Meat Sci. 2003, 65, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Geeta; Yadav, A.S. Antioxidant and antimicrobial profile of chicken sausages prepared after fermentation of minced chicken meat with Lactobacillus plantarum and with additional dextrose and starch. LWT 2017, 77, 249–258. [Google Scholar] [CrossRef]
- Menegas, L.Z.; Pimentel, T.C.; Garcia, S.; Prudencio, S.H. Effect of adding inulin as a partial substitute for corn oil on the physicochemical and microbiological characteristics during processing of dry-fermented chicken sausage. J. Food Process. Preserv. 2017, 41, 13166. [Google Scholar] [CrossRef]
- Austrich-Comas, A.; Serra-Castelló, C.; Jofré, A.; Gou, P.; Bover-Cid, S. Control of Listeria monocytogenes in chicken dry-fermented sausages with bioprotective starter culture and high-pressure processing. Front. Microbiol. 2022, 13, 983265. [Google Scholar] [CrossRef]
- Hugas, M.; Garriga, M.; Aymerich, M.T. Functionality of enterococci in meat products. Int. J. Food Microbiol. 2003, 88, 223–233. [Google Scholar] [CrossRef]
- Jiménez, E.; Ladero, V.; Chico, I.; Maldonado-Barragán, A.; López, M.; Martín, V.; Fernández, L.; Fernández, M.; Álvarez, M.A.; Torres, C.; et al. Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiol. 2013, 13, 288. [Google Scholar] [CrossRef]
- Mataragas, M.; Metaxopoulos, J.; Drosinos, E.H. Characterization of two bacteriocins produced by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausages. World J. Microbiol. Biotechnol. 2002, 18, 847–856. [Google Scholar] [CrossRef]
- Aymerich, T.; Martín, B.; Garriga, M.; Vidal-Carou, M.C.; Bover-Cid, S.; Hugas, M. Safety properties and molecular strain typing of lactic acid bacteria from slightly fermented sausages. J. Appl. Microbiol. 2006, 100, 40–49. [Google Scholar] [CrossRef]
- Vesković Moračanin, S.; Turubatović, L.; Škrinjar, M.; Obradović, D. Antilisterial activity of bacteriocin isolated from Leuconostoc mesenteroides ssp. mesenteroides IMAU:10231 in the production of Sremska sausages: Lactic acid bacteria isolation, bacteriocin identification and meat application experiments. Food Technol. Biotechnol. 2013, 51, 247–256. [Google Scholar]
- Helander, I.M.; von Wright, A.; Mattila-Sandholm, T.-M. Potential of lactic acid bacteria and novel anti-microbials against Gram-negative bacteria. Trends Food Sci. Technol. 1997, 8, 146–150. [Google Scholar] [CrossRef]
- Alakomi, H.-L.; Skyttä, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I.M. Lactic acid permeabilizes Gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 2000, 66, 2001–2005. [Google Scholar] [CrossRef]
- Volzing, K.; Borrero, J.; Sadowsky, M.J.; Kaznessis, Y.N. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria. ACS Synth. Biol. 2013, 2, 643–650. [Google Scholar] [CrossRef]
- Shabala, L.; Lee, S.H.; Cannesson, P.; Ross, T. Acid and NaCl limits to growth of Listeria monocytogenes and influence of sequence of inimical acid and NaCl levels on inactivation kinetics. J. Food Prot. 2008, 71, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, Y.; Nychas, G.J.E.; Luo, X.; Zhu, L.; Mao, Y.; Dong, P.; Zhang, Y. Utilizing lactic acid bacteria and their metabolites for controlling Listeria monocytogenes in meat products: Applications, limitations, and future perspectives. Trends Food Sci. Technol. 2024, 152, 104699. [Google Scholar] [CrossRef]
- Zdolec, N.; Hadžiosmanović, M.; Kozačinski, L.; Cvrtila, Ž.; Filipović, I.; Škrivanko, M.; Leskovar, K. Microbial and physicochemical succession in fermented sausages produced with bacteriocinogenic culture of Lactobacillus sakei and semi-purified bateriocin mesenterocin Y. Meat Sci. 2008, 80, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Milani, G.; Tabanelli, G.; Barbieri, F.; Montanari, C.; Gardini, F.; Belloso Daza, M.V.; Castellone, V.; Bozzetti, M.; Cocconcelli, P.S.; Bassi, D. Technological traits and mitigation activity of autochthonous lactic acid bacteria from mediterranean fermented meat-products. LWT 2024, 196, 115861. [Google Scholar] [CrossRef]
- Tönz, A.; Freimüller Leischtfeld, S.; Stevens, M.J.A.; Glinski-Häfeli, D.; Ladner, V.; Gantenbein-Demarchi, C.; Miescher Schwenninger, S. Growth control of Listeria monocytogenes in raw sausage via bacteriocin-producing Leuconostoc carnosum DH25. Foods 2024, 13, 298. [Google Scholar] [CrossRef]
- Tadić, V.; Djordjcvić, J.; Bosković, M.; Baltic, M.; Lakicevic, B.; Vasilev, D.; Dimitrijević, M. Two different starter cultures as potential inhibitors of L. monocytogenes in fermented sausages. Fleischwirtschaft 2018, 98, 93–97. [Google Scholar]
- Giello, M.; La Storia, A.; De Filippis, F.; Ercolini, D.; Villani, F. Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages. Food Microbiol. 2018, 72, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Martín, I.; Rodríguez, A.; Sánchez-Montero, L.; Padilla, P.; Córdoba, J.J. Effect of the dry-cured fermented sausage “Salchichón” processing with a selected Lactobacillus sakei in Listeria monocytogenes and microbial population. Foods 2021, 10, 856. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Bustins, N.; Costa, J.C.C.P.; Pérez-Rodríguez, F.; Martín, B.; Bover-Cid, S.; Jofré, A. The antilisterial effect of Latilactobacillus sakei CTC494 in relation to dry fermented sausage ingredients and temperature in meat simulation media. Fermentation 2024, 10, 326. [Google Scholar] [CrossRef]
- Li, X.; Zhao, G.; Zheng, Y.; Wang, Y.; Bai, X.; Li, F.; Gu, Y.; Zhu, C. Effects of single fermentation of Lactobacillus sakei and compound fermentation with Staphylococcus carnosus on the metabolomics of beef sausages. Food Chem. 2025, 464, 141728. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Angelucci, C.; Gardini, F.; Tabanelli, G. Use of indigenous lactic acid bacteria for industrial fermented sausage production: Microbiological, chemico-physical and sensory features and biogenic amine content. Fermentation 2024, 10, 507. [Google Scholar] [CrossRef]
Days of Sausages’ Maturation | ||||||
---|---|---|---|---|---|---|
0 | 7 | 14 | 30 | 60 | 90 | |
MRS counts | 4.60 ± 0.06 Aa | 7.12 ± 0.48 Ba | 7.90 ± 0.07 CEFa | 7.02 ± 0.11 BDa | 7.95 ± 0.10 EFa | 7.81 ± 0.18 Fa |
M17 counts | 4.64 ± 0.10 Aa | 7.34 ± 0.10 Ba | 7.78 ± 0.13 Cb | 7.82 ± 0.09 Cb | 7.70 ± 0.16 Cb | 7.88 ± 0.12 Ca |
Compass Enterococcus agar counts | 4.57 ± 0.07 Aa | 6.56 ± 0.18 Bb | 5.81 ± 0.20 Cc | 5.04 ± 0.08 Dc | 4.53 ± 0.11 AEc | 4.40 ± 0.08 AEb |
Strains with Antilisterial Activity | Isolation Day | Listeria innocua ATCC 33090 | Listeria monocytogenes ATCC 13932 | Listeria monocytogenes 1411 | Listeria monocytogenes 1414 | Listeria monocytogenes 1416 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
S | NS | S | NS | S | NS | S | NS | S | NS | ||
Positive control Leuconostoc mesenteroides E131 | + | + | + | + | + | + | + | + | + | + | |
Enterococcus faecalis 2 | 0 | + | + | + | + | + | + | + | + | + | + |
Enterococcus faecalis 6 | 0 | + | + | + | + | + | + | + | + | + | + |
Enterococcus faecalis 21 | 7 | + | + | + | + | + | + | + | + | + | + |
Leuconostoc mesenteroides 22 | 7 | + | + | + | + | + | + | + | + | + | + |
Leuconostoc mesenteroides 23 | 7 | + | + | − | − | − | − | + | + | + | + |
Leuconostoc mesenteroides 24 | 7 | + | + | − | − | − | − | + | + | + | + |
Lactococcus lactis 25 | 7 | + | + | − | − | − | − | + | + | + | + |
Lactococcus lactis 26 | 7 | + | + | − | − | − | − | + | + | + | + |
Leuconostoc mesenteroides 27 | 7 | + | + | − | − | − | − | + | + | + | + |
Leuconostoc mesenteroides 28 | 7 | + | + | − | − | − | − | + | + | + | + |
Lactococcus lactis 29 | 7 | + | + | − | − | − | − | + | + | + | + |
Lactococcus lactis 30 | 7 | + | + | − | − | − | − | + | + | + | + |
Enterococcus faecalis 37 | 14 | + | + | + | + | + | + | + | + | + | + |
Latilactobacillus sakei 38 | 14 | − | − | − | − | − | − | − | − | + | − |
Latilactobacillus sakei 40 | 14 | − | − | − | − | − | − | + | − | − | − |
Leuconostoc mesenteroides 43 | 14 | + | + | − | − | − | − | + | + | + | + |
Leuconostoc mesenteroides 46 | 14 | + | + | − | − | − | − | + | + | + | + |
Latilactobacillus sakei 49 | 30 | + | + | + | + | + | + | + | + | + | + |
Latilactobacillus sakei 50 | 30 | + | + | + | + | + | + | + | + | + | + |
Enterococcus faecalis 55 | 30 | + | + | + | + | + | + | + | + | + | + |
Leuconostoc mesenteroides 61 | 60 | − | − | + | − | + | − | − | − | − | − |
Leuconostoc mesenteroides 62 | 60 | − | − | + | − | + | − | − | − | − | − |
Leuconostoc mesenteroides 63 | 60 | − | − | − | − | − | − | + | + | − | − |
Leuconostoc mesenteroides 64 | 60 | − | − | − | − | − | − | − | − | + | + |
Leuconostoc mesenteroides 65 | 60 | − | − | − | − | − | − | + | + | − | − |
Leuconostoc mesenteroides 66 | 60 | − | − | − | − | − | − | + | + | − | − |
Leuconostoc mesenteroides 69 | 60 | − | − | − | − | + | + | − | − | + | + |
Leuconostoc mesenteroides 70 | 60 | − | − | − | − | + | + | − | − | + | + |
Leuconostoc mesenteroides 71 | 60 | − | − | − | − | − | − | + | + | + | + |
Leuconostoc mesenteroides 72 | 60 | − | − | − | − | − | − | + | + | − | − |
Leuconostoc mesenteroides 73 | 60 | − | − | + | + | − | − | + | + | + | + |
Leuconostoc mesenteroides 74 | 60 | − | − | + | + | − | − | + | + | + | + |
Leuconostoc mesenteroides 75 | 60 | + | + | − | − | + | + | + | + | + | + |
Latilactobacillus sakei 76 | 90 | − | − | − | − | + | + | + | + | + | + |
Latilactobacillus sakei 77 | 90 | − | − | − | − | + | + | + | + | + | + |
Latilactobacillus sakei 78 | 90 | − | − | − | − | + | + | + | + | + | + |
Latilactobacillus sakei 79 | 90 | − | − | − | − | − | − | − | − | + | + |
Latilactobacillus sakei 80 | 90 | − | − | − | − | − | − | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdolec, N.; Kiš, M.; Vukšić, M.; Mazija, H.; Bazina, I.; Kazazić, S. Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage. Processes 2025, 13, 2216. https://doi.org/10.3390/pr13072216
Zdolec N, Kiš M, Vukšić M, Mazija H, Bazina I, Kazazić S. Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage. Processes. 2025; 13(7):2216. https://doi.org/10.3390/pr13072216
Chicago/Turabian StyleZdolec, Nevijo, Marta Kiš, Mladenka Vukšić, Hrvoje Mazija, Ivana Bazina, and Snježana Kazazić. 2025. "Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage" Processes 13, no. 7: 2216. https://doi.org/10.3390/pr13072216
APA StyleZdolec, N., Kiš, M., Vukšić, M., Mazija, H., Bazina, I., & Kazazić, S. (2025). Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage. Processes, 13(7), 2216. https://doi.org/10.3390/pr13072216