Advancements in Metabolic Engineering: Enhancing Biofuel Production Through Escherichia coli and Saccharomyces cerevisiae Models
Abstract
1. Introduction
2. Various Strategies for Enhancing the Production of Biofuel
2.1. Microbial Engineering for Enhanced Lignocellulosic Biomass Utility
2.2. Approaches to Evade Effects of Lignocellulose-Derived Inhibitors
2.3. Engineering Microbial Pathways to Enhance Tolerance Towards Biofuel
2.4. Engineering the Plant Biomass for Biofuel Production
3. Metabolic Engineering to Improve Bio-Butanol
3.1. n-Butanol
3.2. Iso-Butanol
4. Different Phases of Metabolic Engineering
5. Fuels from Isoprenoid and Fatty Acid Pathways
5.1. Biofuels from Fatty Acids
5.2. Bacterial Biofuels from Fatty Acids
5.3. Yeast Biofuels from Fatty Acids
5.4. Biofuels from Isoprenoids
6. Metabolic Flux Analysis
6.1. Metabolic Pathways Analysis—A Quantitative Approach
6.2. Flux Balance Analysis
6.3. 13C-Metabolic Flux Analysis
7. Synthetic Biology Methodologies to Enhance Biofuel Yields
7.1. Multiplex Automated Genome Engineering
7.2. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9
7.3. RNA Interference Approach for Controlling Transcription and CRISPRi/CRISPRa
7.4. Metabolic Reorganization at Genome Level
8. Conclusive Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabinovitch-Deere, C.A.; Oliver, J.W.K.; Rodriguez, G.M.; Atsumi, S. Synthetic Biology and Metabolic Engineering Approaches To Produce Biofuels. Chem. Rev. 2013, 113, 4611–4632. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency. Energy Technology Perspectives 2020. Energy Technol. Perspect. 2020, 2020, 1–400. [Google Scholar] [CrossRef]
- Luque, R.; Herrero-Davila, L.; Campelo, J.M.; Clark, J.H.; Hidalgo, J.M.; Luna, D.; Marinas, J.M.; Romero, A.A. Biofuels: A Technological Perspective. Energy Environ. Sci. 2008, 1, 542–564. [Google Scholar] [CrossRef]
- Zhang, F.; Rodriguez, S.; Keasling, J.D. Metabolic Engineering of Microbial Pathways for Advanced Biofuels Production. Curr. Opin. Biotechnol. 2011, 22, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, B.; Chávez, A.; Forero, A.; García-Huante, Y.; Romero, A.; Sánchez, M.; Rocha, D.; Sánchez, B.; Rodríguez-Sanoja, R.; Sánchez, S.; et al. Production of Microbial Secondary Metabolites: Regulation by the Carbon Source. Crit. Rev. Microbiol. 2010, 36, 146–167. [Google Scholar] [CrossRef]
- Subtil, T.; Boles, E. Competition between Pentoses and Glucose during Uptake and Catabolism in Recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2012, 5, 14. [Google Scholar] [CrossRef]
- Peralta-Yahya, P.P.; Zhang, F.; del Cardayre, S.B.; Keasling, J.D. Microbial Engineering for the Production of Advanced Biofuels. Nature 2012, 488, 320–328. [Google Scholar] [CrossRef]
- Lian, J.; Mishra, S.; Zhao, H. Recent Advances in Metabolic Engineering of Saccharomyces cerevisiae: New Tools and Their Applications. Metab. Eng. 2018, 50, 85–108. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, S.-J.; Lee, D.-W. Design and Development of Synthetic Microbial Platform Cells for Bioenergy. Front. Microbiol. 2013, 4, 92. [Google Scholar] [CrossRef]
- Chandrasegaran, S.; Carroll, D. Origins of Programmable Nucleases for Genome Engineering. J. Mol. Biol. 2016, 428, 963–989. [Google Scholar] [CrossRef]
- d’Espaux, L.; Ghosh, A.; Runguphan, W.; Wehrs, M.; Xu, F.; Konzock, O.; Dev, I.; Nhan, M.; Gin, J.; Reider Apel, A.; et al. Engineering High-Level Production of Fatty Alcohols by Saccharomyces cerevisiae from Lignocellulosic Feedstocks. Metab. Eng. 2017, 42, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.-X.; He, X.; Wu, Y.-Q.; Liu, J.-Z. Enhancing Production of Pinene in Escherichia coli by Using a Combination of Tolerance, Evolution, and Modular Co-Culture Engineering. Front. Microbiol. 2018, 9, 1623. [Google Scholar] [CrossRef] [PubMed]
- Esvelt, K.M.; Wang, H.H. Genome-Scale Engineering for Systems and Synthetic Biology. Mol. Syst. Biol. 2013, 9, 641. [Google Scholar] [CrossRef]
- Pabbathi, N.P.P.; Velidandi, A.; Tavarna, T.; Gupta, S.; Raj, R.S.; Gandam, P.K.; Baadhe, R.R. Role of Metagenomics in Prospecting Novel Endoglucanases, Accentuating Functional Metagenomics Approach in Second-Generation Biofuel Production: A Review. Biomass Convers. Biorefinery 2023, 13, 1371–1398. [Google Scholar] [CrossRef] [PubMed]
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, Xylanase Families and Extremophilic Xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef]
- Kurosawa, K.; Wewetzer, S.J.; Sinskey, A.J. Triacylglycerol Production from Corn Stover Using a Xylose-Fermenting Rhodococcus opacus Strain for Lignocellulosic Biofuels. J. Microb. Biochem. Technol. 2014, 6, 254–259. [Google Scholar] [CrossRef]
- Mazzoli, R.; Lamberti, C.; Pessione, E. Engineering New Metabolic Capabilities in Bacteria: Lessons from Recombinant Cellulolytic Strategies. Trends Biotechnol. 2012, 30, 111–119. [Google Scholar] [CrossRef]
- Hu, M.-L.; Zha, J.; He, L.-W.; Lv, Y.-J.; Shen, M.-H.; Zhong, C.; Li, B.-Z.; Yuan, Y.-J. Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization. Front. Microbiol. 2016, 7, 241. [Google Scholar] [CrossRef]
- Kim, S.; Baek, S.-H.; Lee, K.; Hahn, J.-S. Cellulosic Ethanol Production Using a Yeast Consortium Displaying a Minicellulosome and β-Glucosidase. Microb. Cell Fact. 2013, 12, 14. [Google Scholar] [CrossRef]
- Moraïs, S.; Stern, J.; Kahn, A.; Galanopoulou, A.P.; Yoav, S.; Shamshoum, M.; Smith, M.A.; Hatzinikolaou, D.G.; Arnold, F.H.; Bayer, E.A. Enhancement of Cellulosome-Mediated Deconstruction of Cellulose by Improving Enzyme Thermostability. Biotechnol. Biofuels 2016, 9, 164. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Lee, B.-R.; Sathiyanarayanan, G.; Song, H.-S.; Kim, J.; Jeon, J.-M.; Kim, J.-H.; Park, S.-H.; Yu, J.-H.; Park, K.; et al. Medium Engineering for Enhanced Production of Undecylprodigiosin Antibiotic in Streptomyces coelicolor Using Oil Palm Biomass Hydrolysate as a Carbon Source. Bioresour. Technol. 2016, 217, 141–149. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.-O. Bioconversion of Lignocellulose: Inhibitors and Detoxification. Biotechnol. Biofuels 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-S.; Jeon, J.-M.; Kim, H.-J.; Bhatia, S.K.; Sathiyanarayanan, G.; Kim, J.; Won Hong, J.; Gi Hong, Y.; Young Choi, K.; Kim, Y.-G.; et al. Increase in Furfural Tolerance by Combinatorial Overexpression of NAD Salvage Pathway Enzymes in Engineered Isobutanol-Producing E. coli. Bioresour. Technol. 2017, 245, 1430–1435. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Lee, B.-R.; Sathiyanarayanan, G.; Song, H.S.; Kim, J.; Jeon, J.-M.; Yoon, J.-J.; Ahn, J.; Park, K.; Yang, Y.-H. Biomass-Derived Molecules Modulate the Behavior of Streptomyces Coelicolor for Antibiotic Production. 3 Biotech 2016, 6, 223. [Google Scholar] [CrossRef]
- Allen, S.A.; Clark, W.; McCaffery, J.M.; Cai, Z.; Lanctot, A.; Slininger, P.J.; Liu, Z.L.; Gorsich, S.W. Furfural Induces Reactive Oxygen Species Accumulation and Cellular Damage in Saccharomyces Cerevisiae. Biotechnol. Biofuels 2010, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.N.; Jarboe, L.R.; Turner, P.C.; Pharkya, P.; Yomano, L.P.; York, S.W.; Nunn, D.; Shanmugam, K.T.; Ingram, L.O. Furfural Inhibits Growth by Limiting Sulfur Assimilation in Ethanologenic Escherichia coli Strain LY180. Appl. Environ. Microbiol. 2009, 75, 6132–6141. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yomano, L.P.; Lee, J.Y.; York, S.W.; Zheng, H.; Mullinnix, M.T.; Shanmugam, K.T.; Ingram, L.O. Engineering Furfural Tolerance in Escherichia coli Improves the Fermentation of Lignocellulosic Sugars into Renewable Chemicals. Proc. Natl. Acad. Sci. USA 2013, 110, 4021–4026. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Yomano, L.P.; Geddes, R.D.; Shanmugam, K.T.; Ingram, L.O. Improving Escherichia coli FucO for Furfural Tolerance by Saturation Mutagenesis of Individual Amino Acid Positions. Appl. Environ. Microbiol. 2013, 79, 3202–3208. [Google Scholar] [CrossRef]
- Seo, H.-M.; Jeon, J.-M.; Lee, J.H.; Song, H.-S.; Joo, H.-B.; Park, S.-H.; Choi, K.-Y.; Kim, Y.H.; Park, K.; Ahn, J.; et al. Combinatorial Application of Two Aldehyde Oxidoreductases on Isobutanol Production in the Presence of Furfural. J. Ind. Microbiol. Biotechnol. 2016, 43, 37–44. [Google Scholar] [CrossRef]
- Gorsich, S.W.; Dien, B.S.; Nichols, N.N.; Slininger, P.J.; Liu, Z.L.; Skory, C.D. Tolerance to Furfural-Induced Stress Is Associated with Pentose Phosphate Pathway Genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2006, 71, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Glebes, T.Y.; Sandoval, N.R.; Reeder, P.J.; Schilling, K.D.; Zhang, M.; Gill, R.T. Genome-Wide Mapping of Furfural Tolerance Genes in Escherichia coli. PLoS ONE 2014, 9, e87540. [Google Scholar] [CrossRef] [PubMed]
- Cavka, A.; Jönsson, L.J. Detoxification of Lignocellulosic Hydrolysates Using Sodium Borohydride. Bioresour. Technol. 2013, 136, 368–376. [Google Scholar] [CrossRef]
- Guo, X.; Cavka, A.; Jönsson, L.J.; Hong, F. Comparison of Methods for Detoxification of Spruce Hydrolysate for Bacterial Cellulose Production. Microb. Cell Fact. 2013, 12, 93. [Google Scholar] [CrossRef]
- Alriksson, B.; Cavka, A.; Jönsson, L.J. Improving the Fermentability of Enzymatic Hydrolysates of Lignocellulose through Chemical In-Situ Detoxification with Reducing Agents. Bioresour. Technol. 2011, 102, 1254–1263. [Google Scholar] [CrossRef]
- Persson, P.; Larsson, S.; Jönsson, L.J.; Nilvebrant, N.-O.; Sivik, B.; Munteanu, F.; Thörneby, L.; Gorton, L. Supercritical Fluid Extraction of a Lignocellulosic Hydrolysate of Spruce for Detoxification and to Facilitate Analysis of Inhibitors. Biotechnol. Bioeng. 2002, 79, 694–700. [Google Scholar] [CrossRef]
- Moreno, A.D.; Ibarra, D.; Alvira, P.; Tomás-Pejó, E.; Ballesteros, M. A Review of Biological Delignification and Detoxification Methods for Lignocellulosic Bioethanol Production. Crit. Rev. Biotechnol. 2015, 35, 342–354. [Google Scholar] [CrossRef]
- Okuda, N.; Soneura, M.; Ninomiya, K.; Katakura, Y.; Shioya, S. Biological Detoxification of Waste House Wood Hydrolysate Using Ureibacillus thermosphaericus for Bioethanol Production. J. Biosci. Bioeng. 2008, 106, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Nichols, N.N.; Sharma, L.N.; Mowery, R.A.; Chambliss, C.K.; van Walsum, G.P.; Dien, B.S.; Iten, L.B. Fungal Metabolism of Fermentation Inhibitors Present in Corn Stover Dilute Acid Hydrolysate. Enzym. Microb. Technol. 2008, 42, 624–630. [Google Scholar] [CrossRef]
- Parawira, W.; Tekere, M. Biotechnological Strategies to Overcome Inhibitors in Lignocellulose Hydrolysates for Ethanol Production: Review. Crit. Rev. Biotechnol. 2011, 31, 20–31. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Kim, J.; Song, H.-S.; Kim, H.J.; Jeon, J.-M.; Sathiyanarayanan, G.; Yoon, J.-J.; Park, K.; Kim, Y.-G.; Yang, Y.-H. Microbial Biodiesel Production from Oil Palm Biomass Hydrolysate Using Marine rhodococcus sp. YHY01. Bioresour. Technol. 2017, 233, 99–109. [Google Scholar] [CrossRef]
- Favaro, L.; Basaglia, M.; Trento, A.; Van Rensburg, E.; García-Aparicio, M.; Van Zyl, W.H.; Casella, S. Exploring Grape Marc as Trove for New Thermotolerant and Inhibitor-Tolerant Saccharomyces cerevisiae Strains for Second-Generation Bioethanol Production. Biotechnol. Biofuels 2013, 6, 168. [Google Scholar] [CrossRef] [PubMed]
- Sommer, M.O.A.; Church, G.M.; Dantas, G. A Functional Metagenomic Approach for Expanding the Synthetic Biology Toolbox for Biomass Conversion. Mol. Syst. Biol. 2010, 6, 360. [Google Scholar] [CrossRef]
- Olson, D.G.; McBride, J.E.; Joe Shaw, A.; Lynd, L.R. Recent Progress in Consolidated Bioprocessing. Curr. Opin. Biotechnol. 2012, 23, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, K.; Palmqvist, B.; Lidén, G. Improving Simultaneous Saccharification and Co-Fermentation of Pretreated Wheat Straw Using Both Enzyme and Substrate Feeding. Biotechnol. Biofuels 2010, 3, 17. [Google Scholar] [CrossRef]
- Dunlop, M.J. Engineering Microbes for Tolerance to Next-Generation Biofuels. Biotechnol. Biofuels 2011, 4, 32. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, M.J.; Dossani, Z.Y.; Szmidt, H.L.; Chu, H.C.; Lee, T.S.; Keasling, J.D.; Hadi, M.Z.; Mukhopadhyay, A. Engineering Microbial Biofuel Tolerance and Export Using Efflux Pumps. Mol. Syst. Biol. 2011, 7, 487. [Google Scholar] [CrossRef]
- Rutherford, B.J.; Dahl, R.H.; Price, R.E.; Szmidt, H.L.; Benke, P.I.; Mukhopadhyay, A.; Keasling, J.D. Functional Genomic Study of Exogenous N-Butanol Stress in Escherichia coli. Appl. Environ. Microbiol. 2010, 76, 1935–1945. [Google Scholar] [CrossRef]
- Heipieper, H.J.; Fischer, J. Bacterial Solvent Responses and Tolerance: Cis–Trans Isomerization. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 4203–4211. [Google Scholar] [CrossRef]
- Wagner, A.; Donaldson, L.; Kim, H.; Phillips, L.; Flint, H.; Steward, D.; Torr, K.; Koch, G.; Schmitt, U.; Ralph, J. Suppression of 4-Coumarate-CoA Ligase in the Coniferous Gymnosperm Pinus radiata. Plant Physiol. 2009, 149, 370–383. [Google Scholar] [CrossRef]
- Coleman, H.D.; Park, J.-Y.; Nair, R.; Chapple, C.; Mansfield, S.D. RNAi-Mediated Suppression of P-Coumaroyl-CoA 3′-Hydroxylase in Hybrid Poplar Impacts Lignin Deposition and Soluble Secondary Metabolism. Proc. Natl. Acad. Sci. USA 2008, 105, 4501–4506. [Google Scholar] [CrossRef]
- Steen, E.J.; Chan, R.; Prasad, N.; Myers, S.; Petzold, C.J.; Redding, A.; Ouellet, M.; Keasling, J.D. Metabolic Engineering of Saccharomyces cerevisiae for the Production of N-Butanol. Microb. Cell Fact. 2008, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, S.; Liao, J.C. Metabolic Engineering for Advanced Biofuels Production from Escherichia coli. Curr. Opin. Biotechnol. 2008, 19, 414–419. [Google Scholar] [CrossRef]
- Ezeji, T.C.; Qureshi, N.; Blaschek, H.P. Butanol Fermentation Research: Upstream and Downstream Manipulations. Chem. Rec. 2004, 4, 305–314. [Google Scholar] [CrossRef]
- Inui, M.; Suda, M.; Kimura, S.; Yasuda, K.; Suzuki, H.; Toda, H.; Yamamoto, S.; Okino, S.; Suzuki, N.; Yukawa, H. Expression of Clostridium acetobutylicum Butanol Synthetic Genes in Escherichia coli. Appl. Microbiol. Biotechnol. 2008, 77, 1305–1316. [Google Scholar] [CrossRef] [PubMed]
- Dellomonaco, C.; Clomburg, J.M.; Miller, E.N.; Gonzalez, R. Engineered Reversal of the β-Oxidation Cycle for the Synthesis of Fuels and Chemicals. Nature 2011, 476, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Saini, M.; Wang, Z.W.; Chiang, C.-J.; Chao, Y.-P. Metabolic Engineering of Escherichia coli for Production of N-Butanol from Crude Glycerol. Biotechnol. Biofuels 2017, 10, 173. [Google Scholar] [CrossRef]
- Shen, C.R.; Lan, E.I.; Dekishima, Y.; Baez, A.; Cho, K.M.; Liao, J.C. Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli. Appl. Environ. Microbiol. 2011, 77, 2905–2915. [Google Scholar] [CrossRef]
- Saini, M.; Li, S.-Y.; Wang, Z.W.; Chiang, C.-J.; Chao, Y.-P. Systematic Engineering of the Central Metabolism in Escherichia coli for Effective Production of N-Butanol. Biotechnol. Biofuels 2016, 9, 69. [Google Scholar] [CrossRef]
- Ohtake, T.; Pontrelli, S.; Laviña, W.A.; Liao, J.C.; Putri, S.P.; Fukusaki, E. Metabolomics-Driven Approach to Solving a CoA Imbalance for Improved 1-Butanol Production in Escherichia coli. Metab. Eng. 2017, 41, 135–143. [Google Scholar] [CrossRef]
- Schadeweg, V.; Boles, E. N-Butanol Production in Saccharomyces cerevisiae Is Limited by the Availability of Coenzyme A and Cytosolic Acetyl-CoA. Biotechnol. Biofuels 2016, 9, 44. [Google Scholar] [CrossRef]
- Krivoruchko, A.; Serrano-Amatriain, C.; Chen, Y.; Siewers, V.; Nielsen, J. Improving Biobutanol Production in Engineered Saccharomyces cerevisiae by Manipulation of Acetyl-CoA Metabolism. J. Ind. Microbiol. Biotechnol. 2013, 40, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Schadeweg, V.; Boles, E. Increasing N-Butanol Production with Saccharomyces cerevisiae by Optimizing Acetyl-CoA Synthesis, NADH Levels and Trans-2-Enoyl-CoA Reductase Expression. Biotechnol. Biofuels 2016, 9, 257. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zeng, Q.; Han, S.; Wang, Z.; Dong, Q.; Bi, Y.; Zhao, Y. High-Efficient n-Butanol Production by Co-Culturing Clostridium acetobutylicum and Saccharomyces cerevisiae Integrated with Butyrate Fermentative Supernatant Addition. World J. Microbiol. Biotechnol. 2017, 33, 76. [Google Scholar] [CrossRef]
- Das, M.; Patra, P.; Ghosh, A. Metabolic Engineering for Enhancing Microbial Biosynthesis of Advanced Biofuels. Renew. Sustain. Energy Rev. 2020, 119, 109562. [Google Scholar] [CrossRef]
- Buijs, N.A.; Siewers, V.; Nielsen, J. Advanced Biofuel Production by the Yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 2013, 17, 480–488. [Google Scholar] [CrossRef]
- Lan, E.I.; Liao, J.C. Microbial Synthesis of N-Butanol, Isobutanol, and Other Higher Alcohols from Diverse Resources. Bioresour. Technol. 2013, 135, 339–349. [Google Scholar] [CrossRef]
- Fenkl, M.; Pechout, M.; Vojtisek, M. N-Butanol and Isobutanol as Alternatives to Gasoline: Comparison of Port Fuel Injector Characteristics. EPJ Web Conf. 2016, 114, 02021. [Google Scholar] [CrossRef]
- Generoso, W.C.; Brinek, M.; Dietz, H.; Oreb, M.; Boles, E. Secretion of 2,3-Dihydroxyisovalerate as a Limiting Factor for Isobutanol Production in Saccharomyces cerevisiae. FEMS Yeast Res. 2017, 17, fox029. [Google Scholar] [CrossRef]
- Koppolu, V.; Vasigala, V.K.R. Role of Escherichia coli in Biofuel Production. Microbiol. Insights 2016, 9, MBI.S10878. [Google Scholar] [CrossRef]
- Chong, H.; Geng, H.; Zhang, H.; Song, H.; Huang, L.; Jiang, R. Enhancing E. coli Isobutanol Tolerance through Engineering Its Global Transcription Factor CAMP Receptor Protein (CRP). Biotechnol. Bioeng. 2014, 111, 700–708. [Google Scholar] [CrossRef]
- Noda, S.; Mori, Y.; Oyama, S.; Kondo, A.; Araki, M.; Shirai, T. Reconstruction of Metabolic Pathway for Isobutanol Production in Escherichia coli. Microb. Cell Fact. 2019, 18, 124. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhou, J.; Zhang, Z.; Kim, C.H.; Jiang, B.; Shi, J.; Hao, J. Isobutanol and 2-Ketoisovalerate Production by Klebsiella pneumoniae via a Native Pathway. Metab. Eng. 2017, 43, 71–84. [Google Scholar] [CrossRef]
- Jung, H.-M.; Kim, Y.H.; Oh, M.-K. Formate and Nitrate Utilization in Enterobacter aerogenes for Semi-Anaerobic Production of Isobutanol. Biotechnol. J. 2017, 12, 1700121. [Google Scholar] [CrossRef]
- Ida, K.; Ishii, J.; Matsuda, F.; Kondo, T.; Kondo, A. Eliminating the Isoleucine Biosyntheticpathway to Reduce Competitive Carbon Outflow during Isobutanol Production by Saccharomyces cerevisiae. Microb. Cell Fact. 2015, 14, 62. [Google Scholar] [CrossRef]
- Park, S.-H.; Kim, S.; Hahn, J.-S. Metabolic Engineering of Saccharomyces Cerevisiae for the Production of Isobutanol and 3-Methyl-1-Butanol. Appl. Microbiol. Biotechnol. 2014, 98, 9139–9147. [Google Scholar] [CrossRef]
- Erb, T.J.; Jones, P.R.; Bar-Even, A. Synthetic Metabolism: Metabolic Engineering Meets Enzyme Design. Curr. Opin. Chem. Biol. 2017, 37, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Bar-Even, A.; Noor, E.; Lewis, N.E.; Milo, R. Design and Analysis of Synthetic Carbon Fixation Pathways. Proc. Natl. Acad. Sci. USA 2010, 107, 8889–8894. [Google Scholar] [CrossRef] [PubMed]
- Bogorad, I.W.; Lin, T.-S.; Liao, J.C. Synthetic Non-Oxidative Glycolysis Enables Complete Carbon Conservation. Nature 2013, 502, 693–697. [Google Scholar] [CrossRef]
- Kallio, P.; Pásztor, A.; Thiel, K.; Akhtar, M.K.; Jones, P.R. An Engineered Pathway for the Biosynthesis of Renewable Propane. Nat. Commun. 2014, 5, 4731. [Google Scholar] [CrossRef]
- Bar-Even, A.; Flamholz, A.; Noor, E.; Milo, R. Rethinking Glycolysis: On the Biochemical Logic of Metabolic Pathways. Nat. Chem. Biol. 2012, 8, 509–517. [Google Scholar] [CrossRef]
- Schwander, T.; Schada von Borzyskowski, L.; Burgener, S.; Cortina, N.S.; Erb, T.J. A Synthetic Pathway for the Fixation of Carbon Dioxide In Vitro. Science 2016, 354, 900–904. [Google Scholar] [CrossRef]
- Yim, H.; Haselbeck, R.; Niu, W.; Pujol-Baxley, C.; Burgard, A.; Boldt, J.; Khandurina, J.; Trawick, J.D.; Osterhout, R.E.; Stephen, R.; et al. Metabolic Engineering of Escherichia coli for Direct Production of 1,4-Butanediol. Nat. Chem. Biol. 2011, 7, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, S.; Tee, T.W.; Chowdhury, A.; Zomorrodi, A.R.; Yoon, J.M.; Fu, Y.; Shanks, J.V.; Maranas, C.D. An Integrated Computational and Experimental Study for Overproducing Fatty Acids in Escherichia coli. Metab. Eng. 2012, 14, 687–704. [Google Scholar] [CrossRef] [PubMed]
- d’Espaux, L.; Mendez-Perez, D.; Li, R.; Keasling, J.D. Synthetic Biology for Microbial Production of Lipid-Based Biofuels. Curr. Opin. Chem. Biol. 2015, 29, 58–65. [Google Scholar] [CrossRef]
- Steen, E.J.; Kang, Y.; Bokinsky, G.; Hu, Z.; Schirmer, A.; McClure, A.; del Cardayre, S.B.; Keasling, J.D. Microbial Production of Fatty-Acid-Derived Fuels and Chemicals from Plant Biomass. Nature 2010, 463, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Gu, Q.; Wang, W.; Wong, L.; Bower, A.G.W.; Collins, C.H.; Koffas, M.A.G. Modular Optimization of Multi-Gene Pathways for Fatty Acids Production in E. coli. Nat. Commun. 2013, 4, 1409. [Google Scholar] [CrossRef]
- Haushalter, R.W.; Groff, D.; Deutsch, S.; The, L.; Chavkin, T.A.; Brunner, S.F.; Katz, L.; Keasling, J.D. Development of an Orthogonal Fatty Acid Biosynthesis System in E. coli for Oleochemical Production. Metab. Eng. 2015, 30, 1–6. [Google Scholar] [CrossRef]
- Xiao, Y.; Bowen, C.H.; Liu, D.; Zhang, F. Exploiting Nongenetic Cell-to-Cell Variation for Enhanced Biosynthesis. Nat. Chem. Biol. 2016, 12, 339–344. [Google Scholar] [CrossRef]
- Leber, C.; Polson, B.; Fernandez-Moya, R.; Da Silva, N.A. Overproduction and Secretion of Free Fatty Acids through Disrupted Neutral Lipid Recycle in Saccharomyces cerevisiae. Metab. Eng. 2015, 28, 54–62. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Buijs, N.A.; Zhu, Z.; Qin, J.; Siewers, V.; Nielsen, J. Production of Fatty Acid-Derived Oleochemicals and Biofuels by Synthetic Yeast Cell Factories. Nat. Commun. 2016, 7, 11709. [Google Scholar] [CrossRef]
- Gajewski, J.; Pavlovic, R.; Fischer, M.; Boles, E.; Grininger, M. Engineering Fungal de Novo Fatty Acid Synthesis for Short Chain Fatty Acid Production. Nat. Commun. 2017, 8, 14650. [Google Scholar] [CrossRef]
- de Jong, B.W.; Shi, S.; Valle-Rodríguez, J.O.; Siewers, V.; Nielsen, J. Metabolic Pathway Engineering for Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae Using Stable Chromosomal Integration. J. Ind. Microbiol. Biotechnol. 2015, 42, 477–486. [Google Scholar] [CrossRef]
- Eriksen, D.T.; HamediRad, M.; Yuan, Y.; Zhao, H. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae. ACS Synth. Biol. 2015, 4, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Buijs, N.A.; Zhou, Y.J.; Siewers, V.; Nielsen, J. Long-Chain Alkane Production by the Yeast Saccharomyces cerevisiae. Biotechnol. Bioeng. 2015, 112, 1275–1279. [Google Scholar] [CrossRef]
- Runguphan, W.; Keasling, J.D. Metabolic Engineering of Saccharomyces Cerevisiae for Production of Fatty Acid-Derived Biofuels and Chemicals. Metab. Eng. 2014, 21, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-X.; Xiao, W.-H.; Liu, D.; Zhang, J.-L.; Ding, M.-Z.; Yuan, Y.-J. Biosynthesis of Odd-Chain Fatty Alcohols in Escherichia coli. Metab. Eng. 2015, 29, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Chen, J.; Zhou, J.; Wang, Y.; Yang, M.; Qi, X.; Xing, J.; Wang, Q.; Ma, Y. High Production of Fatty Alcohols in Escherichia coli with Fatty Acid Starvation. Microb. Cell Fact. 2016, 15, 129. [Google Scholar] [CrossRef]
- Teixeira, P.G.; Ferreira, R.; Zhou, Y.J.; Siewers, V.; Nielsen, J. Dynamic Regulation of Fatty Acid Pools for Improved Production of Fatty Alcohols in Saccharomyces cerevisiae. Microb. Cell Fact. 2017, 16, 45. [Google Scholar] [CrossRef]
- Tai, M.; Stephanopoulos, G. Engineering the Push and Pull of Lipid Biosynthesis in Oleaginous Yeast Yarrowia lipolytica for Biofuel Production. Metab. Eng. 2013, 15, 1–9. [Google Scholar] [CrossRef]
- Blazeck, J.; Hill, A.; Liu, L.; Knight, R.; Miller, J.; Pan, A.; Otoupal, P.; Alper, H.S. Harnessing Yarrowia lipolytica Lipogenesis to Create a Platform for Lipid and Biofuel Production. Nat. Commun. 2014, 5, 3131. [Google Scholar] [CrossRef]
- Qiao, K.; Imam Abidi, S.H.; Liu, H.; Zhang, H.; Chakraborty, S.; Watson, N.; Kumaran Ajikumar, P.; Stephanopoulos, G. Engineering Lipid Overproduction in the Oleaginous Yeast Yarrowia lipolytica. Metab. Eng. 2015, 29, 56–65. [Google Scholar] [CrossRef]
- Xu, P.; Qiao, K.; Ahn, W.S.; Stephanopoulos, G. Engineering Yarrowia lipolytica as a Platform for Synthesis of Drop-in Transportation Fuels and Oleochemicals. Proc. Natl. Acad. Sci. USA 2016, 113, 10848–10853. [Google Scholar] [CrossRef]
- Hanko, E.K.R.; Denby, C.M.; Sànchez i Nogué, V.; Lin, W.; Ramirez, K.J.; Singer, C.A.; Beckham, G.T.; Keasling, J.D. Engineering β-Oxidation in Yarrowia Lipolytica for Methyl Ketone Production. Metab. Eng. 2018, 48, 52–62. [Google Scholar] [CrossRef] [PubMed]
- George, K.W.; Alonso-Gutierrez, J.; Keasling, J.D.; Lee, T.S. Isoprenoid Drugs, Biofuels, and Chemicals—Artemisinin, Farnesene, and Beyond. Adv. Biochem. Eng. Biotechnol. 2015, 148, 355–389. [Google Scholar] [CrossRef]
- Li, M.; Hou, F.; Wu, T.; Jiang, X.; Li, F.; Liu, H.; Xian, M.; Zhang, H. Recent Advances of Metabolic Engineering Strategies in Natural Isoprenoid Production Using Cell Factories. Nat. Prod. Rep. 2020, 37, 80–99. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.E.; Romero, P.R.; Kirst, H.; Melis, A. Role of Isopentenyl-Diphosphate Isomerase in Heterologous Cyanobacterial (Synechocystis) Isoprene Production. Photosynth. Res. 2016, 130, 517–527. [Google Scholar] [CrossRef]
- Association of Natural Rubber Producing Countries. News From Secretariat; The Association of Natural Rubber Producing Countries (ANRPC): Kuala Lumpur, Malaysia, 2021. [Google Scholar]
- Li, M.; Nian, R.; Xian, M.; Zhang, H. Metabolic Engineering for the Production of Isoprene and Isopentenol by Escherichia coli. Appl. Microbiol. Biotechnol. 2018, 102, 7725–7738. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.E.; Rueda-Romero, P.; Kirst, H.; Melis, A. Engineering Isoprene Synthase Expression and Activity in Cyanobacteria. ACS Synth. Biol. 2017, 6, 2281–2292. [Google Scholar] [CrossRef]
- Chaves, J.E.; Melis, A. Biotechnology of Cyanobacterial Isoprene Production. Appl. Microbiol. Biotechnol. 2018, 102, 6451–6458. [Google Scholar] [CrossRef]
- Tashiro, M.; Kiyota, H.; Kawai-Noma, S.; Saito, K.; Ikeuchi, M.; Iijima, Y.; Umeno, D. Bacterial Production of Pinene by a Laboratory-Evolved Pinene-Synthase. ACS Synth. Biol. 2016, 5, 1011–1020. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, C.; Yang, L.; Choi, E.-S.; Kim, S.-W. Geranyl Diphosphate Synthase: An Important Regulation Point in Balancing a Recombinant Monoterpene Pathway in Escherichia coli. Enzym. Microb. Technol. 2015, 68, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Sarria, S.; Wong, B.; Martín, H.G.; Keasling, J.D.; Peralta-Yahya, P. Microbial Synthesis of Pinene. ACS Synth. Biol. 2014, 3, 466–475. [Google Scholar] [CrossRef]
- Peralta-Yahya, P.P.; Ouellet, M.; Chan, R.; Mukhopadhyay, A.; Keasling, J.D.; Lee, T.S. Identification and Microbial Production of a Terpene-Based Advanced Biofuel. Nat. Commun. 2011, 2, 483. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yoon, S.-H.; Jang, H.-J.; Chung, Y.-R.; Kim, J.-Y.; Choi, E.-S.; Kim, S.-W. Metabolic Engineering of Escherichia coli for α-Farnesene Production. Metab. Eng. 2011, 13, 648–655. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Yin, Q.; Zhang, J.; Zhang, C.; Qi, W.; Gao, L.; Tao, Z.; Su, R.; He, Z. Utilization of Biodiesel By-Product as Substrate for High-Production of β-Farnesene via Relatively Balanced Mevalonate Pathway in Escherichia coli. Bioresour. Technol. 2017, 243, 228–236. [Google Scholar] [CrossRef]
- Schempp, F.M.; Drummond, L.; Buchhaupt, M.; Schrader, J. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds. J. Agric. Food Chem. 2018, 66, 2247–2258. [Google Scholar] [CrossRef]
- Ilmén, M.; Oja, M.; Huuskonen, A.; Lee, S.; Ruohonen, L.; Jung, S. Identification of Novel Isoprene Synthases through Genome Mining and Expression in Escherichia coli. Metab. Eng. 2015, 31, 153–162. [Google Scholar] [CrossRef]
- Yang, J.; Nie, Q.; Liu, H.; Xian, M.; Liu, H. A Novel MVA-Mediated Pathway for Isoprene Production in Engineered E. coli. BMC Biotechnol. 2016, 16, 5. [Google Scholar] [CrossRef]
- Pade, N.; Erdmann, S.; Enke, H.; Dethloff, F.; Dühring, U.; Georg, J.; Wambutt, J.; Kopka, J.; Hess, W.R.; Zimmermann, R.; et al. Insights into Isoprene Production Using the Cyanobacterium Synechocystis sp. PCC 6803. Biotechnol. Biofuels 2016, 9, 89. [Google Scholar] [CrossRef]
- Meadows, A.L.; Hawkins, K.M.; Tsegaye, Y.; Antipov, E.; Kim, Y.; Raetz, L.; Dahl, R.H.; Tai, A.; Mahatdejkul-Meadows, T.; Xu, L.; et al. Rewriting Yeast Central Carbon Metabolism for Industrial Isoprenoid Production. Nature 2016, 537, 694–697. [Google Scholar] [CrossRef]
- Yang, X.; Nambou, K.; Wei, L.; Hua, Q. Heterologous Production of α-Farnesene in Metabolically Engineered Strains of Yarrowia lipolytica. Bioresour. Technol. 2016, 216, 1040–1048. [Google Scholar] [CrossRef]
- Gomaa, L.; Loscar, M.E.; Zein, H.S.; Abdel-Ghaffar, N.; Abdelhadi, A.A.; Abdelaal, A.S.; Abdallah, N.A. Boosting Isoprene Production via Heterologous Expression of the Kudzu Isoprene Synthase Gene (KIspS) into Bacillus spp. Cell Factory. AMB Express 2017, 7, 161. [Google Scholar] [CrossRef]
- Lin, P.-C.; Saha, R.; Zhang, F.; Pakrasi, H.B. Metabolic Engineering of the Pentose Phosphate Pathway for Enhanced Limonene Production in the Cyanobacterium Synechocystis sp. PCC 6803. Sci. Rep. 2017, 7, 17503. [Google Scholar] [CrossRef] [PubMed]
- Tippmann, S.; Ferreira, R.; Siewers, V.; Nielsen, J.; Chen, Y. Effects of Acetoacetyl-CoA Synthase Expression on Production of Farnesene in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2017, 44, 911–922. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, S.; Cao, J.; Qiao, J.; Zhao, G.-R. Systematic Optimization of Limonene Production in Engineered Escherichia coli. J. Agric. Food Chem. 2019, 67, 7087–7097. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Liu, X.; Jiang, G.; Wu, J.; Zhang, J.; Lei, D.; Yuan, Y.-J.; Qiao, J.; Zhao, G.-R. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae. ACS Synth. Biol. 2019, 8, 968–975. [Google Scholar] [CrossRef]
- Feist, A.M.; Herrgård, M.J.; Thiele, I.; Reed, J.L.; Palsson, B.Ø. Reconstruction of Biochemical Networks in Microorganisms. Nat. Rev. Microbiol. 2009, 7, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, K.; Yamada, Y.; Shinoda, K.; Nakayama, Y.; Tomita, M. GEM System: Automatic Prototyping of Cell-Wide Metabolic Pathway Models from Genomes. BMC Bioinform. 2006, 7, 168. [Google Scholar] [CrossRef]
- Durot, M.; Bourguignon, P.Y.; Schachter, V. Genome-Scale Models of Bacterial Metabolism: Reconstruction and Applications. FEMS Microbiol. Rev. 2009, 33, 164–190. [Google Scholar] [CrossRef]
- Reed, J.L.; Famili, I.; Thiele, I.; Palsson, B.O. Towards Multidimensional Genome Annotation. Nat. Rev. Genet. 2006, 7, 130–141. [Google Scholar] [CrossRef]
- Zhang, W.; Li, F.; Nie, L. Integrating Multiple “omics” Analysis for Microbial Biology: Application and Methodologies. Microbiology 2010, 156, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Ishii, N.; Nakahigashi, K.; Baba, T.; Robert, M.; Soga, T.; Kanai, A.; Hirasawa, T.; Naba, M.; Hirai, K.; Hoque, A.; et al. Multiple High-Throughput Analyses Monitor the Response of E. coli to Perturbations. Science 2007, 316, 593–597. [Google Scholar] [CrossRef]
- Trinh, C.T.; Wlaschin, A.; Srienc, F. Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism. Appl. Microbiol. Biotechnol. 2009, 81, 813–826. [Google Scholar] [CrossRef]
- Papin, J.A.; Stelling, J.; Price, N.D.; Klamt, S.; Schuster, S.; Palsson, B.O. Comparison of Network-Based Pathway Analysis Methods. Trends Biotechnol. 2004, 22, 400–405. [Google Scholar] [CrossRef]
- Desai, R.P.; Harris, L.M.; Welker, N.E.; Papoutsakis, E.T. Metabolic Flux Analysis Elucidates the Importance of the Acid-Formation Pathways in Regulating Solvent Production by Clostridium acetobutylicum. Metab. Eng. 1999, 1, 206–213. [Google Scholar] [CrossRef]
- Raganati, F.; Procentese, A.; Olivieri, G.; Russo, M.E.; Salatino, P.; Marzocchella, A. MFA of Clostridium acetobutylicum Pathway: The Role of Glucose and Xylose on the Acid Formation/Uptake. Chem. Eng. Trans. 2014, 38, 337–342. [Google Scholar] [CrossRef]
- Savinell, J.M.; Palsson, B.O. Optimal Selection of Metabolic Fluxes for in Vivo Measurement. I. Development of Mathematical Methods. J. Theor. Biol. 1992, 155, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Varma, A.; Palsson, B.O. Metabolic Capabilities of Escherichia coli: I. Synthesis of Biosynthetic Precursors and Cofactors. J. Theor. Biol. 1993, 165, 477–502. [Google Scholar] [CrossRef] [PubMed]
- Orth, J.D.; Thiele, I.; Palsson, B.Ø. What Is Flux Balance Analysis? Nat. Biotechnol. 2010, 28, 245–248. [Google Scholar] [CrossRef]
- Segrè, D.; Vitkup, D.; Church, G.M. Analysis of Optimality in Natural and Perturbed Metabolic Networks. Proc. Natl. Acad. Sci. USA 2002, 99, 15112–15117. [Google Scholar] [CrossRef]
- Simeonidis, E.; Price, N.D. Genome-Scale Modeling for Metabolic Engineering. J. Ind. Microbiol. Biotechnol. 2015, 42, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Young, J.D.; Shastri, A.A.; Stephanopoulos, G.; Morgan, J.A. Mapping Photoautotrophic Metabolism with Isotopically Nonstationary 13C Flux Analysis. Metab. Eng. 2011, 13, 656–665. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Berla, B.; He, L.; Pakrasi, H.B.; Tang, Y.J. 13C-MFA Delineates the Photomixotrophic Metabolism of Synechocystis sp. PCC 6803 under Light- and Carbon-Sufficient Conditions. Biotechnol. J. 2014, 9, 684–692. [Google Scholar] [CrossRef]
- Antoniewicz, M.R.; Kraynie, D.F.; Laffend, L.A.; González-Lergier, J.; Kelleher, J.K.; Stephanopoulos, G. Metabolic Flux Analysis in a Nonstationary System: Fed-Batch Fermentation of a High Yielding Strain of E. coli Producing 1,3-Propanediol. Metab. Eng. 2007, 9, 277–292. [Google Scholar] [CrossRef]
- Wiechert, W. 13C Metabolic Flux Analysis. Metab. Eng. 2001, 3, 195–206. [Google Scholar] [CrossRef]
- Sauer, U. Metabolic Networks in Motion: 13C-Based Flux Analysis. Mol. Syst. Biol. 2006, 2, 62. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, C. Fluxome Analysis Using GC-MS. Microb. Cell Fact. 2007, 6, 6. [Google Scholar] [CrossRef]
- Shimizu, K. Metabolic Flux Analysis Based on 13C-Labeling Experiments and Integration of the Information with Gene and Protein Expression Patterns. In Recent Progress of Biochemical and Biomedical Engineering in Japan II; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–49. ISBN 978-3-540-39876-9. [Google Scholar]
- Toya, Y.; Kono, N.; Arakawa, K.; Tomita, M. Metabolic Flux Analysis and Visualization. J. Proteome Res. 2011, 10, 3313–3323. [Google Scholar] [CrossRef]
- David, A.; Hector, G.M. Genome-Scale 13C Fluxomics Modeling for Metabolic Engineering of Saccharomyces cerevisiae. In The Elements of Law; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1859, pp. 99–106. ISBN 9781493987573. [Google Scholar]
- He, L.; Xiao, Y.; Gebreselassie, N.; Zhang, F.; Antoniewicz, M.R.; Tang, Y.J.; Peng, L. Central Metabolic Responses to the Overproduction of Fatty Acids in Escherichia coli Based on 13C-Metabolic Flux Analysis. Biotechnol. Bioeng. 2014, 111, 575–585. [Google Scholar] [CrossRef]
- Wang, H.H.; Isaacs, F.J.; Carr, P.A.; Sun, Z.Z.; Xu, G.; Forest, C.R.; Church, G.M. Programming Cells by Multiplex Genome Engineering and Accelerated Evolution. Nature 2009, 460, 894–898. [Google Scholar] [CrossRef]
- Barbieri, E.M.; Muir, P.; Akhuetie-Oni, B.O.; Yellman, C.M.; Isaacs, F.J. Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes. Cell 2017, 171, 1453–1467.e13. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-Guided Human Genome Engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, Z.; Huang, C.; Zhang, Y.; Wang, Z.; Tang, Y.; Chen, T.; Zhao, X. Metabolic Engineering of Escherichia coli Using CRISPR–Cas9 Meditated Genome Editing. Metab. Eng. 2015, 31, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, A.S.; Jawed, K.; Yazdani, S.S. CRISPR/Cas9-Mediated Engineering of Escherichia coli for n-Butanol Production from Xylose in Defined Medium. J. Ind. Microbiol. Biotechnol. 2019, 46, 965–975. [Google Scholar] [CrossRef]
- Zhang, J.; Zong, W.; Hong, W.; Zhang, Z.-T.; Wang, Y. Exploiting Endogenous CRISPR-Cas System for Multiplex Genome Editing in Clostridium tyrobutyricum and Engineer the Strain for High-Level Butanol Production. Metab. Eng. 2018, 47, 49–59. [Google Scholar] [CrossRef]
- Lian, J.; Jin, R.; Zhao, H. Construction of Plasmids with Tunable Copy Numbers in Saccharomyces cerevisiae and Their Applications in Pathway Optimization and Multiplex Genome Integration. Biotechnol. Bioeng. 2016, 113, 2462–2473. [Google Scholar] [CrossRef]
- Shi, S.; Liang, Y.; Zhang, M.M.; Ang, E.L.; Zhao, H. A Highly Efficient Single-Step, Markerless Strategy for Multi-Copy Chromosomal Integration of Large Biochemical Pathways in Saccharomyces cerevisiae. Metab. Eng. 2016, 33, 19–27. [Google Scholar] [CrossRef]
- Li, M.; Lang, X.; Moran Cabrera, M.; De Keyser, S.; Sun, X.; Da Silva, N.; Wheeldon, I. CRISPR-Mediated Multigene Integration Enables Shikimate Pathway Refactoring for Enhanced 2-Phenylethanol Biosynthesis in Kluyveromyces marxianus. Biotechnol. Biofuels 2021, 14, 3. [Google Scholar] [CrossRef]
- Lindberg, P.; Park, S.; Melis, A. Engineering a Platform for Photosynthetic Isoprene Production in Cyanobacteria, Using Synechocystis as the Model Organism. Metab. Eng. 2010, 12, 70–79. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, H.; Zhang, Y.; Li, Y.; Ma, Y. Designing and Creating a Modularized Synthetic Pathway in Cyanobacterium Synechocystis Enables Production of Acetone from Carbon Dioxide. Metab. Eng. 2012, 14, 394–400. [Google Scholar] [CrossRef]
- Liu, X.; Sheng, J.; Curtiss III, R. Fatty Acid Production in Genetically Modified Cyanobacteria. Proc. Natl. Acad. Sci. USA 2011, 108, 6899–6904. [Google Scholar] [CrossRef]
- Lan, E.I.; Liao, J.C. ATP Drives Direct Photosynthetic Production of 1-Butanol in Cyanobacteria. Proc. Natl. Acad. Sci. USA 2012, 109, 6018–6023. [Google Scholar] [CrossRef] [PubMed]
- Takahama, K.; Matsuoka, M.; Nagahama, K.; Ogawa, T. Construction and Analysis of a Recombinant Cyanobacterium Expressing a Chromosomally Inserted Gene for an Ethylene-Forming Enzyme at the PsbAI Locus. J. Biosci. Bioeng. 2003, 95, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.R.; Liao, J.C. Photosynthetic Production of 2-Methyl-1-Butanol from CO2 in Cyanobacterium Synechococcus elongatus PCC7942 and Characterization of the Native Acetohydroxyacid Synthase. Energy Environ. Sci. 2012, 5, 9574–9583. [Google Scholar] [CrossRef]
- Hou, B.K.; Ellis, L.B.M.; Wackett, L.P. Encoding Microbial Metabolic Logic: Predicting Biodegradation. J. Ind. Microbiol. Biotechnol. 2004, 31, 261–272. [Google Scholar] [CrossRef]
- Prather, K.L.J.; Martin, C.H. De Novo Biosynthetic Pathways: Rational Design of Microbial Chemical Factories. Curr. Opin. Biotechnol. 2008, 19, 468–474. [Google Scholar] [CrossRef]
- Hatzimanikatis, V.; Li, C.; Ionita, J.A.; Henry, C.S.; Jankowski, M.D.; Broadbelt, L.J. Exploring the Diversity of Complex Metabolic Networks. Bioinformatics 2005, 21, 1603–1609. [Google Scholar] [CrossRef]
- Jagadevan, S.; Banerjee, A.; Banerjee, C.; Guria, C.; Tiwari, R.; Baweja, M.; Shukla, P. Recent Developments in Synthetic Biology and Metabolic Engineering in Microalgae towards Biofuel Production. Biotechnol. Biofuels 2018, 11, 185. [Google Scholar] [CrossRef]
- Smith, J.D.; Suresh, S.; Schlecht, U.; Wu, M.; Wagih, O.; Peltz, G.; Davis, R.W.; Steinmetz, L.M.; Parts, L.; St. Onge, R.P. Quantitative CRISPR Interference Screens in Yeast Identify Chemical-Genetic Interactions and New Rules for Guide RNA Design. Genome Biol. 2016, 17, 45. [Google Scholar] [CrossRef]
- Si, T.; Luo, Y.; Bao, Z.; Zhao, H. RNAi-Assisted Genome Evolution in Saccharomyces Cerevisiae for Complex Phenotype Engineering. ACS Synth. Biol. 2015, 4, 283–291. [Google Scholar] [CrossRef]
- Crook, N.C.; Schmitz, A.C.; Alper, H.S. Optimization of a Yeast RNA Interference System for Controlling Gene Expression and Enabling Rapid Metabolic Engineering. ACS Synth. Biol. 2014, 3, 307–313. [Google Scholar] [CrossRef]
- Wu, J.; Du, G.; Chen, J.; Zhou, J. Enhancing Flavonoid Production by Systematically Tuning the Central Metabolic Pathways Based on a CRISPR Interference System in Escherichia coli. Sci. Rep. 2015, 5, 13477. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, L.A.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A.; et al. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell 2013, 154, 442. [Google Scholar] [CrossRef]
- Bikard, D.; Jiang, W.; Samai, P.; Hochschild, A.; Zhang, F.; Marraffini, L.A. Programmable Repression and Activation of Bacterial Gene Expression Using an Engineered CRISPR-Cas System. Nucleic Acids Res. 2013, 41, 7429–7437. [Google Scholar] [CrossRef] [PubMed]
- Hlavova, M.; Turoczy, Z.; Bisova, K. Improving Microalgae for Biotechnology—From Genetics to Synthetic Biology. Biotechnol. Adv. 2015, 33, 1194–1203. [Google Scholar] [CrossRef] [PubMed]
- De Bhowmick, G.; Koduru, L.; Sen, R. Metabolic Pathway Engineering towards Enhancing Microalgal Lipid Biosynthesis for Biofuel Application—A Review. Renew. Sustain. Energy Rev. 2015, 50, 1239–1253. [Google Scholar] [CrossRef]
- Kumar, A.; Guria, C.; Chitres, G.; Chakraborty, A.; Pathak, A.K. Modelling of Microalgal Growth and Lipid Production in Dunaliella Tertiolecta Using Nitrogen-Phosphorus-Potassium Fertilizer Medium in Sintered Disk Chromatographic Glass Bubble Column. Bioresour. Technol. 2016, 218, 1021–1036. [Google Scholar] [CrossRef]
- Shah, A.R.; Ahmad, A.; Srivastava, S.; Jaffar Ali, B.M. Reconstruction and Analysis of a Genome-Scale Metabolic Model of Nannochloropsis gaditana. Algal Res. 2017, 26, 354–364. [Google Scholar] [CrossRef]
- Loira, N.; Mendoza, S.; Paz Cortés, M.; Rojas, N.; Travisany, D.; Di Genova, A.; Gajardo, N.; Ehrenfeld, N.; Maass, A. Reconstruction of the Microalga Nannochloropsis Salina Genome-Scale Metabolic Model with Applications to Lipid Production. BMC Syst. Biol. 2017, 11, 66. [Google Scholar] [CrossRef]
- Gimpel, J.A.; Mayfield, S.P. Analysis of Heterologous Regulatory and Coding Regions in Algal Chloroplasts. Appl. Microbiol. Biotechnol. 2013, 97, 4499–4510. [Google Scholar] [CrossRef] [PubMed]
- Gomes de Oliveira Dal’Molin, C.; Quek, L.-E.; Palfreyman, R.W.; Nielsen, L.K. AlgaGEM—A Genome-Scale Metabolic Reconstruction of Algae Based on the Chlamydomonas reinhardtii Genome. BMC Genom. 2011, 12, S5. [Google Scholar] [CrossRef] [PubMed]
Molecule | Host Organism | Genetic Alteration | Ref. |
---|---|---|---|
FFA | E. coli | Expressing FASI from Corynebacterium glutamicum | [88] |
Development of FFA biosensor mediated PopQC method to select the high-performing cells | [89] | ||
S. cerevisiae | Overexpressed acyltransferases and lipases, ΔPXA1, ΔPOX1, ΔFAA1, ΔFAA4, and ΔFAT | [90] | |
Expressing Rhodosporidium toruloides FAS-ACP domains, ΔFAA1, ΔFAA4, ΔPOX1, ΔHFD1; upregulating ACL, Ctp1 | [91] | ||
Mutations in the active sites of keto synthase and malonyl- palmitoyltransferase subunits of FASI | [92] | ||
FAEE | S. cerevisiae | Chromosomal integration of WS2, ADH2, ADH6, ACC1, and mutated acetyl CoA synthetase | [93] |
Insertion of Brevibacterium ammoniagenes FASI and bacterial WS2 | [94] | ||
Alkane | S. cerevisiae | FAR and FADO from Synechococcus elongates; ΔHFD1 | [95] |
Expressing MmCAR and Aspergillus nidulans 4′-phosphopantetheinyl transferase (NpgA) | [96] | ||
Fatty alcohol | E. coli | C. glutamicum FAS1A into E. coli and Marinobacter aquaeolei ACP/CoA-reductase | [88] |
Oryza sativa αDOX; overexpressed ‘tesA, AHR, and fadR | [97] | ||
Δ‘tesA, heterologous FAR | [98] | ||
S. cerevisiae | ΔFAA1, ΔFAA4, ΔHFD1; Mycobacterium marinum MmCAR and M. aquaeolei FAR | [91] | |
M. aquaeolei FAR (FaCoAR); upregulated Adh5 and MmCAR | [99] | ||
Upregulation of MmFAR, mutated ACC1, Ole1; ΔADH6, ΔDGA1, and ΔHFD1 | [11] | ||
Methyl ketones | E. coli | Upregulation of ‘tesA, fadD, fadM, fadB, and mlut_11700 genes | [88] |
Molecule | Host | Genetical Importance | Ref. |
---|---|---|---|
Isoprene | E. coli | Identify isoprene synthases from Ipomoea batatas, Populus alba, and Pueraria montana that could be used in E. coli. | [119] |
Isoprene | E. coli | OleTJE from Jeotgalicoccus sp.; OhyAEM from Elizabethkingia meningoseptica | [120] |
Isoprene | Synechocystis PCC6803 | Plasmid-based system containing kudzu ispS expressed in low sodium chloride concentrations. | [121] |
Isoprene | Synechocystis | fni gene from Streptococcus pneumoniae to increase the cellular DMAPP:IPP ratio. | [107] |
Farnesene | S. cerevisiae | Formerly engineered for artemisinic acid production further modified to produce farnesene by allowing biosynthesis of cytosolic acetyl-CoA with reduced ATP requirement. | [122] |
Farnesene | Y. lipolytica | Overexpression of HMG1, idi, ERG20, and codon-optimized farnesene synthase | [123] |
Isoprene | B. subtilis | ispS gene from Pueraria spp. | [124] |
Isoprene | Synechocystis | Fusion of the IspS gene to the β-subunit of phycocyanin. | [110] |
Limonene | Synechocystis sp. PCC 6803 | Overexpression of ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase gene in pentose phosphate pathway; limonene synthase from Mentha spicata and geranyl diphosphate synthase from Abies grandis. | [125] |
Farnesene | E. coli | Over-expression of IPP isomerase and FPP synthase. | [117] |
Farnesene | S. cerevisiae | nphT7 from Streptomyces sp. to catalyze irreversible condensation of acetyl CoA and Malonyl CoA to produce acetoacetyl CoA hence directing the flux to the MVA pathway. | [126] |
Pinene | E. coli | Mutated Abies grandis GPPS through error-prone PCR and DNA shuffling; insertion of a tunable intergenic region GPPS and PS genes. | [12] |
Limonene | E. coli | Heterologous expression of mutated Enterococcus faecalis MvaS, Methanosarcina mazei MK, Solanum lycopersicum SlNPPS (neryl pyrophosphate synthase), and M. spicata MsLS. | [127] |
Limonene | S. cerevisiae | Orthogonal limonene biosynthetic pathway containing exogenous S. lycopersicum SlNDPS1 (catalyzes IPP and DMAPP to cis-GPP) and Citrus limon limonene synthase. | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pabbathi, N.P.P.; Velidandi, A.; Pogula, S.; Gandam, P.K.; Baadhe, R.R. Advancements in Metabolic Engineering: Enhancing Biofuel Production Through Escherichia coli and Saccharomyces cerevisiae Models. Processes 2025, 13, 2115. https://doi.org/10.3390/pr13072115
Pabbathi NPP, Velidandi A, Pogula S, Gandam PK, Baadhe RR. Advancements in Metabolic Engineering: Enhancing Biofuel Production Through Escherichia coli and Saccharomyces cerevisiae Models. Processes. 2025; 13(7):2115. https://doi.org/10.3390/pr13072115
Chicago/Turabian StylePabbathi, Ninian Prem Prashanth, Aditya Velidandi, Soni Pogula, Pradeep Kumar Gandam, and Rama Raju Baadhe. 2025. "Advancements in Metabolic Engineering: Enhancing Biofuel Production Through Escherichia coli and Saccharomyces cerevisiae Models" Processes 13, no. 7: 2115. https://doi.org/10.3390/pr13072115
APA StylePabbathi, N. P. P., Velidandi, A., Pogula, S., Gandam, P. K., & Baadhe, R. R. (2025). Advancements in Metabolic Engineering: Enhancing Biofuel Production Through Escherichia coli and Saccharomyces cerevisiae Models. Processes, 13(7), 2115. https://doi.org/10.3390/pr13072115