Quantitative Detection of Mixed Gas Infrared Spectra Based on Joint SAE and PLS Downscaling with XGBoost
Abstract
1. Introduction
2. Methods
2.1. Data Acquisition and Preprocessing
2.1.1. Data Generation
2.1.2. Data Enhancement
2.2. SAE-PLS Joint Dimension Reduction Framework
Algorithm 1. # SAE-PLS Joint Dimensionality Reduction Algorithm |
def SAE_PLS(X, Y): # Phase 1: SAE Dimension Decision optimal_dim = SAE_DimSearcher( encoder = Sequential(Linear(p,64), ReLU(), Linear(64,d)), decoder = Sequential(Linear(d,64), ReLU(), Linear(64,p)), early_stop = PlateauDetector(patience = 5, threshold = 0.01) ).fit(X) # Phase 2: PLS Supervised Projection pls = PLSRegression(n_components = optimal_dim) X_latent = pls.fit_transform(X, Y) return X_latent, pls |
2.3. Model Parameter Setting
2.4. Performance Evaluation Index
3. Results and Discussion
3.1. Quantitative Evaluation of Dimensionality Reduction Effect
3.2. Model Performance Comparison
3.3. Robustness Test
4. Conclusions and Outlook
4.1. Conclusions
4.2. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Ma, Y.; Duan, Z.; Zhang, Y.; Duan, X.; Liu, B.; Yuan, Z.; Wu, Y.; Jiang, Y.; Tai, H. Local dynamic neural network for quantitative analysis of mixed gases. Sens. Actuators B Chem. 2024, 404, 135230. [Google Scholar] [CrossRef]
- Liu, N.; Xu, L.; Zhou, S.; Zhang, L.; Li, J. Simultaneous detection of multiple atmospheric components using an NIR and MIR laser hybrid gas sensing system. ACS Sens. 2020, 5, 3607–3616. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, L.; Ai, W.; Lin, B.; Feng, Q.; Cai, K. Kernel functions embedded in support vector machine learning models for rapid water pollution assessment via near-infrared spectroscopy. Sci. Total Environ. 2020, 714, 136765. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, T.; Zhang, Q.; Wei, Y.; Liu, T.; Hou, Z.; Qiu, B.; Sun, M. Suppression of cross-interference in the absorption spectra of gas mixtures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 327, 125352. [Google Scholar] [CrossRef]
- Liang, J.G.; Jiang, Y.; Wu, J.K.; Wang, C.; von Gratowski, S.; Gu, X.; Pan, L. Multiplex-gas detection based on non-dispersive infrared technique: A review. Sens. Actuators A Phys. 2023, 356, 114318. [Google Scholar] [CrossRef]
- Ju, W.; Lu, C.; Liu, C.; Jiang, W.; Zhang, Y.; Hong, F. Rapid Identification of Atmospheric Gaseous Pollutants Using Fourier-Transform Infrared Spectroscopy Combined with Independent Component Analysis. J. Spectrosc. 2020, 2020, 8920732. [Google Scholar] [CrossRef]
- Torres, L.F.; Damascena, M.A.; Alves, M.M.A.; Santos, K.S.; Franceschi, E.; Dariva, C.; Barros, V.A.; Melo, D.C.; Borges, G.R. Use of near-infrared spectroscopy for the online monitoring of natural gas composition (hydrocarbons, water and CO2 content) at high pressure. Vib. Spectrosc. 2024, 131, 103653. [Google Scholar] [CrossRef]
- Hasan, B.M.S.; Abdulazeez, A.M. A review of principal component analysis algorithm for dimensionality reduction. J. Soft Comput. Data Min. 2021, 2, 20–30. [Google Scholar]
- Prasetiyowati, M.I.; Maulidevi, N.U.; Surendro, K. Feature selection to increase the random forest method performance on high dimensional data. Int. J. Adv. Intell. Inform. 2020, 6, 303–312. [Google Scholar] [CrossRef]
- Gaye, B.; Zhang, D.; Wulamu, A. Improvement of support vector machine algorithm in big data background. Math. Probl. Eng. 2021, 2021, 5594899. [Google Scholar] [CrossRef]
- Wilson, A.; Anwar, M.R. The Future of Adaptive Machine Learning Algorithms in High-Dimensional Data Processing. Int. Trans. Artif. Intell. 2024, 3, 97–107. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Y.; Huang, W.; Dong, Y.; Ma, H.; Wu, K.; Guo, A. Combining random forest and XGBoost methods in detecting early and mid-term winter wheat stripe rust using canopy level hyperspectral measurements. Agriculture 2022, 12, 74. [Google Scholar] [CrossRef]
- Enders, A.A.; North, N.M.; Fensore, C.M.; Velez-Alvarez, J.; Allen, H.C. Functional group identification for FTIR spectra using image-based machine learning models. Anal. Chem. 2021, 93, 9711–9718. [Google Scholar] [CrossRef]
- Ji, H.; Deng, H.; Lu, H.; Zhang, Z. Predicting a molecular fingerprint from an electron ionization mass spectrum with deep neural networks. Anal. Chem. 2020, 92, 8649–8653. [Google Scholar] [CrossRef]
- Wang, X.; Shi, X.; Duan, H.; Zhou, L.; Wu, H.; Lu, J.; Davidrajuh, R. Research on infrared optical CO detection based on BP neural network algorithm. In Proceedings of the Third International Conference on Algorithms, Microchips, and Network Applications (AMNA 2024), Xi’an, China, 8–10 March 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13171, pp. 136–143. [Google Scholar]
- Xiang, Z.; Chen, J.; Bao, Y.; Li, H. An active learning method combining deep neural network and weighted sampling for structural reliability analysis. Mech. Syst. Signal Process. 2020, 140, 106684. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.X.; Li, X.; Li, H. Noise level penalizing robust Gaussian process regression for NIR spectroscopy quantitative analysis. Chemom. Intell. Lab. Syst. 2020, 201, 104014. [Google Scholar] [CrossRef]
- Kistenev, Y.V.; Skiba, V.E.; Prischepa, V.V.; Borisov, A.V.; Vrazhnov, D.A. Gas-mixture IR absorption spectra denoising using deep learning. J. Quant. Spectrosc. Radiat. Transf. 2024, 313, 108825. [Google Scholar] [CrossRef]
- Sun, J.; Tian, L.; Chang, J.; Kolomenskii, A.A.; Schuessler, H.A.; Xia, J.; Feng, C.; Zhang, S. Adaptively optimized gas analysis model with deep learning for near-infrared methane sensors. Anal. Chem. 2022, 94, 2321–2332. [Google Scholar] [CrossRef]
- Cao, Y.; Cheng, X.; Xu, Z.; Tian, X.; Cheng, G.; Peng, F.; Wang, J. High precision and sensitivity detection of gas measurement by laser wavelength modulation spectroscopy implementing an optical fringe noise suppression method. Opt. Lasers Eng. 2023, 166, 107570. [Google Scholar] [CrossRef]
- Elaraby, S.; Abuelenin, S.M.; Moussa, A.; Sabry, Y.M. Deep Learning on Synthesized Sensor Characteristics and Transmission Spectra Enabling MEMS-Based Spectroscopic Gas Analysis beyond the Fourier Transform Limit. Foundations 2021, 1, 304–317. [Google Scholar] [CrossRef]
- Naughton, N.; Sun, J.; Tekinalp, A.; Parthasarathy, T.; Chowdhary, G.; Gazzola, M. Elastica: A compliant mechanics environment for soft robotic control. IEEE Robot. Autom. Lett. 2021, 6, 3389–3396. [Google Scholar] [CrossRef]
- Jang, H.D.; Kwon, S.; Nam, H.; Chang, D.E. Semi-Supervised Autoencoder for Chemical Gas Classification with FTIR Spectrum. Sensors 2024, 24, 3601. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jiang, M.; Dou, W.; Meng, D.; Wang, C.; Wang, J.; Wang, X.; Sun, L.; Jiang, S.; Chen, F.; et al. Narrow-band multi-component gas analysis based on photothermal spectroscopy and partial least squares regression method. Sens. Actuators B Chem. 2023, 377, 133029. [Google Scholar] [CrossRef]
- Menduni, G.; Zifarelli, A.; Sampaolo, A.; Patimisco, P.; Giglio, M.; Amoroso, N.; Wu, H.; Dong, L.; Bellotti, R.; Spagnolo, V. High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition. Photoacoustics 2022, 26, 100349. [Google Scholar] [CrossRef]
- Wang, Q.; Zou, X.; Chen, Y.; Zhu, Z.; Yan, C.; Shan, P.; Wang, S.; Fu, Y. XGBoost algorithm assisted multi-component quantitative analysis with Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 323, 124917. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Saurabh, K.; Kumar, C.; Pandit, D.; Chaulya, S.K.; Ray, S.K.; Prasad, G.M.; Mandal, S.K. t-SNE and variational auto-encoder with a bi-LSTM neural network-based model for prediction of gas concentration in a sealed-off area of underground coal mines. Soft Comput. 2021, 25, 14183–14207. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Wu, Y.; Chen, X.; Chen, X.; Zeng, M.; Yang, J.; Su, Y.; Hu, N.; Yang, Z. Classification and concentration prediction of VOCs with high accuracy based on an electronic nose using an ELM-ELM integrated algorithm. IEEE Sens. J. 2022, 22, 14458–14469. [Google Scholar] [CrossRef]
Gas Name | Specification |
---|---|
CO | GAS (400 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2) |
CO2 | GAS (200 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2) |
CH4 | GAS (150 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2) |
C2H2 | GAS (50 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2) |
C2H4 | GAS (150 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2) |
C2H6 | GAS (150 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2) |
Method | MSE | R2 |
---|---|---|
PCA | 0.014 | 0.983 |
PLS | 0.012 | 0.986 |
AE | 0.033 | 0.946 |
SAE | 0.041 | 0.952 |
SAE-PCA | 0.013 | 0.985 |
SAE-PLS | 0.012 | 0.987 |
Regression Model | MSE (%) | R2 |
---|---|---|
SVR | 0.429 | 0.506 |
KNN | 0.029 | 0.967 |
DT | 0.035 | 0.960 |
RF | 0.042 | 0.951 |
ET | 0.075 | 0.914 |
Bagging | 0.048 | 0.944 |
GBRF | 0.043 | 0.951 |
AdaBoost | 0.142 | 0.840 |
XGBoost | 0.012 | 0.987 |
Noise Level | MSE (%) | ||||
---|---|---|---|---|---|
S-PLS-X | S-PLS-RF | PCA-X | PCA-DT | S-PCA-X | |
20 dB | 0.012 | 0.042 | 0.014 | 0.074 | 0.013 |
15 dB | 0.018 | 0.054 | 0.024 | 0.082 | 0.021 |
10 dB | 0.023 | 0.064 | 0.034 | 0.089 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Wang, B.; Bao, X.; Qi, H.; Peng, Y.; Xu, Z.; Zhang, F. Quantitative Detection of Mixed Gas Infrared Spectra Based on Joint SAE and PLS Downscaling with XGBoost. Processes 2025, 13, 2112. https://doi.org/10.3390/pr13072112
Zhou X, Wang B, Bao X, Qi H, Peng Y, Xu Z, Zhang F. Quantitative Detection of Mixed Gas Infrared Spectra Based on Joint SAE and PLS Downscaling with XGBoost. Processes. 2025; 13(7):2112. https://doi.org/10.3390/pr13072112
Chicago/Turabian StyleZhou, Xichao, Baigen Wang, Xingjiang Bao, Hongtao Qi, Yong Peng, Zishang Xu, and Fan Zhang. 2025. "Quantitative Detection of Mixed Gas Infrared Spectra Based on Joint SAE and PLS Downscaling with XGBoost" Processes 13, no. 7: 2112. https://doi.org/10.3390/pr13072112
APA StyleZhou, X., Wang, B., Bao, X., Qi, H., Peng, Y., Xu, Z., & Zhang, F. (2025). Quantitative Detection of Mixed Gas Infrared Spectra Based on Joint SAE and PLS Downscaling with XGBoost. Processes, 13(7), 2112. https://doi.org/10.3390/pr13072112