Effects of Operational Parameters Variation During Ultrafiltration Process on Goat Skim Milk (GSM) Concentration for Cheese Elaboration
Abstract
1. Introduction
2. Materials and Methods
2.1. Origin of Goat’s Milk
2.2. Preparation of Milk for Ultrafiltration
2.3. Ultrafiltration Assay
2.4. Technical Characterization of Ultrafiltration Parameters
2.4.1. Transmembrane Pressure (TMP)
2.4.2. Flux Density (J)
2.4.3. Volume Reduction Factor (VRF)
2.5. Physicochemical Analysis of GSM and UF-GSM Cheeses
2.6. Cheese Manufacturing
2.6.1. Cheese Yield
2.6.2. Texture Determination
2.7. Statistical Analysis
3. Results
3.1. Optimization of the Operational Parameters During UF Process
3.1.1. Transmembrane Pressure Evolution
3.1.2. Milk Flow Density
3.1.3. Hydraulic Resistance to the Flow of Milk (Rh)
3.1.4. Evolution of Temperature and Permeate Flux
3.1.5. Evolution of VRF and GSM Permeate Volume
3.1.6. Effect of Volume Concentration Factor on Protein Content of GSM
3.2. Physicochemical Parameters of GSM During Ultrafiltration and Effect of Volume Reduction Factors
3.3. Evolution of Mineral Levels in GSM During Ultrafiltration
3.4. Colorimetric Analysis of GSM
3.5. Effect of Ultrafiltration on GSM Cheese-Making Properties
3.5.1. Effect on Cheese Yield
3.5.2. Effect on Physicochemical and Textural Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UF | Ultrafiltration |
TMP | Transmembrane pressure |
TPA | Texture profile analysis |
GSM | Goat skimmed milk |
UF-GSM | Ultrafiltered goat skimmed milk |
VRF | Volume reduction factor |
Rh | Hydraulic resistance |
References
- Soltani, M.; Saremnezhad, S.; Faraji, A.R.; Hayaloglu, A.A. Perspectives and Recent Innovations on White Cheese Produced by Conventional Methods or Ultrafiltration Technique. Int. Dairy J. 2022, 125, 105232. [Google Scholar] [CrossRef]
- Jeewanthi, R.K.C.; Lee, N.-K.; Lee, K.A.; Yoon, Y.C.; Paik, H.-D. Comparative Analysis of Improved Soy-Mozzarella Cheeses Made of Ultrafiltrated and Partly Skimmed Soy Blends with Other Mozzarella Types. J. Food Sci. Technol. 2015, 52, 5172–5179. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Montoro, M.; Olalla, M.; Giménez-Martínez, R.; Bergillos-Meca, T.; Ruiz-López, M.D.; Cabrera-Vique, C.; Artacho, R.; Navarro-Alarcón, M. Ultrafiltration of Skimmed Goat Milk Increases Its Nutritional Value by Concentrating Nonfat Solids Such as Proteins, Ca, P, Mg, and Zn. J. Dairy Sci. 2015, 98, 7628–7634. [Google Scholar] [CrossRef] [PubMed]
- Deshwal, G.K.; Ameta, R.; Sharma, H.; Singh, A.K.; Panjagari, N.R.; Baria, B. Effect of Ultrafiltration and Fat Content on Chemical, Functional, Textural and Sensory Characteristics of Goat Milk-Based Halloumi Type Cheese. LWT 2020, 126, 109341. [Google Scholar] [CrossRef]
- Karami, M.; Ehsani, M.R.; Mousavi, S.M.; Rezaei, K.; Safari, M. Changes in the Rheological Properties of Iranian UF-Feta Cheese during Ripening. Food Chem. 2009, 112, 539–544. [Google Scholar] [CrossRef]
- Govindasamy-Lucey, S.; Jaeggi, J.J.; Bostley, A.L.; Johnson, M.E.; Lucey, J.A. Standardization of Milk Using Cold Ultrafiltration Retentates for the Manufacture of Parmesan Cheese. J. Dairy Sci. 2004, 87, 2789–2799. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Yang, T.; Liu, X.; Hemar, Y.; Regenstein, J.M.; Zhou, P. Effects of Skim Milk Pre-Acidification and Retentate PH-Restoration on Spray-Drying Performance, Physico-Chemical and Functional Properties of Milk Protein Concentrates. Food Chem. 2019, 272, 539–548. [Google Scholar] [CrossRef]
- Jrad, Z.; Oussaief, O.; Bouhemda, T.; Khorchani, T.; EL-Hatmi, H. Potential Effects of Ultrafiltration Process and Date Powder on Textural, Sensory, Bacterial Viability, Antioxidant Properties and Phenolic Profile of Dromedary Greek Yogurt. Int. J. Food Sci. Technol. 2019, 54, 854–861. [Google Scholar] [CrossRef]
- Méthot-Hains, S.; Benoit, S.; Bouchard, C.; Doyen, A.; Bazinet, L.; Pouliot, Y. Effect of Transmembrane Pressure Control on Energy Efficiency during Skim Milk Concentration by Ultrafiltration at 10 and 50 C. J. Dairy Sci. 2016, 99, 8655–8664. [Google Scholar] [CrossRef]
- Dushkova, M.; Kodinova, S. Reduction of Energy Demand during Ultrafiltration of Goat’s Milk. In Proceedings of the E3S Web of Conferences, 25th Scientific Conference on Power Engineering and Power Machines (PEPM’2020), Sozopol, Bulgaria, 19–21 September 2020; EDP Sciences: Les Ulis, France, 2020; Volume 207, p. 1016. [Google Scholar]
- Castelló, E.; Braga, L.; Fuentes, L.; Etchebehere, C. Possible Causes for the Instability in the H2 Production from Cheese Whey in a CSTR. Int. J. Hydrogen Energy 2018, 43, 2654–2665. [Google Scholar] [CrossRef]
- Kodinova, S.; Dushkova, M. Optimization of Energy Demand during Ultrafiltration of Cow’s Milk with Different Membranes. In Proceedings of the E3S Web of Conferences, 25th Scientific Conference on Power Engineering and Power Machines (PEPM’2020), Sozopol, Bulgaria, 19–21 September 2020; EDP Sciences: Les Ulis, France, 2020; Volume 207, p. 1017. [Google Scholar]
- ISO 2949; Lait et produits laitiers liquides—Aréomètres à masse volumique pour utilisation dans les produits ayant une tension superficielle d’environ 45 mN/m. International Organization for Standardization: Geneva, Switzerland, 1974.
- El Hatmi, H.; Jrad, Z.; Mkadem, W.; Chahbani, A.; Oussaief, O.; Zid, M.B.; Zaidi, S.; Khorchani, S.; Belguith, K.; Mihoubi, N.B. Fortification of Soft Cheese Made from Ultrafiltered Dromedary Milk with Allium Roseum Powder: Effects on Textural, Radical Scavenging, Phenolic Profile and Sensory Characteristics. LWT 2020, 132, 109885. [Google Scholar] [CrossRef]
- ISO 8968-1; Lait et Produits Laitiers—Détermination de la Teneur en Azote. Partie 1: Méthode Kjeldahl et Calcul de la Teneur en Protéines Brutes. International Organization for Standardization: Geneva, Switzerland, 2014.
- Bekele, B.; Hansen, E.B.; Eshetu, M.; Ipsen, R.; Hailu, Y. Effect of Starter Cultures on Properties of Soft White Cheese Made from Camel (Camelus Dromedarius) Milk. J. Dairy Sci. 2019, 102, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Quezada, C.; Estay, H.; Cassano, A.; Troncoso, E.; Ruby-Figueroa, R. Prediction of Permeate Flux in Ultrafiltration Processes: A Review of Modeling Approaches. Membranes 2021, 11, 368. [Google Scholar] [CrossRef]
- Gavazzi-April, C.; Benoit, S.; Doyen, A.; Britten, M.; Pouliot, Y. Preparation of Milk Protein Concentrates by Ultrafiltration and Continuous Diafiltration: Effect of Process Design on Overall Efficiency. J. Dairy Sci. 2018, 101, 9670–9679. [Google Scholar] [CrossRef]
- Lu, P.; Liang, S.; Zhou, T.; Xue, T.; Mei, X.; Wang, Q. Layered Double Hydroxide Nanoparticle Modified Forward Osmosis Membranes via Polydopamine Immobilization with Significantly Enhanced Chlorine and Fouling Resistance. Desalination 2017, 421, 99–109. [Google Scholar] [CrossRef]
- Grandison, M.K.; Boudinot, F.D. Age-Related Changes in Protein Binding of Drugs: Implications for Therapy. Clin. Pharmacokinet. 2000, 38, 271–290. [Google Scholar] [CrossRef]
- Seyed Shahabadi, S.I.; Kong, J.; Lu, X. Aqueous-Only, Green Route to Self-Healable, UV-Resistant, and Electrically Conductive Polyurethane/Graphene/Lignin Nanocomposite Coatings. ACS Sustain. Chem. Eng. 2017, 5, 3148–3157. [Google Scholar] [CrossRef]
- Ng, K.S.Y.; Haribabu, M.; Harvie, D.J.E.; Dunstan, D.E.; Martin, G.J.O. Mechanisms of Flux Decline in Skim Milk Ultrafiltration: A Review. J. Memb. Sci. 2017, 523, 144–162. [Google Scholar] [CrossRef]
- Cunha-Vaz, J. Mechanisms of Retinal Fluid Accumulation and Blood-Retinal Barrier Breakdown. Dev. Ophthalmol. 2017, 58, 11–20. [Google Scholar]
- Sotillo, A.Q.; Méndez, M.L.H. La Leche de Cabra; EDITUM: Murcia, Spain, 1994; Volume 2, ISBN 8476845472. [Google Scholar]
- Park, B.Y.; Yoon, K.Y. Biological Activity of Enzymatic Hydrolysates and the Membrane Ultrafiltration Fractions from Perilla Seed Meal Protein. Czech J. Food Sci. 2019, 37, 180–185. [Google Scholar] [CrossRef]
- Park, Y.W.; Haenlein, G.F.W. Goat Milk, Its Products and Nutrition. Handb. food Prod. Manuf. 2007, 2, 449–488. [Google Scholar]
- GÜLER-AKIN, M.B.; Serdar Akin, M.; Korkmaz, A. Influence of Different Exopolysaccharide-producing Strains on the Physicochemical, Sensory and Syneresis Characteristics of Reduced-fat Stirred Yoghurt. Int. J. Dairy Technol. 2009, 62, 422–430. [Google Scholar] [CrossRef]
- Luo, J.; Meyer, A.S.; Mateiu, R.V.; Pinelo, M. Cascade Catalysis in Membranes with Enzyme Immobilization for Multi-Enzymatic Conversion of CO2 to Methanol. New Biotechnol. 2015, 32, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Charcosset, C. Classical and Recent Applications of Membrane Processes in the Food Industry. Food Eng. Rev. 2021, 13, 322–343. [Google Scholar] [CrossRef]
- Da Cunha, T.M.P.; Canella, M.H.M.; Haas, I.C.d.S.; Amboni, R.D.d.M.C.; Prudencio, E.S. A Theoretical Approach to Dairy Products from Membrane Processes. Food Sci. Technol. 2022, 42, e12522. [Google Scholar] [CrossRef]
- Dons, T.; Kirkensgaard, J.J.; Candelario, V.; Andersen, U.; Ahrné, L. Structural and physical-chemical properties of milk fat globules fractionated by a series of silicon carbide membranes. Food Res. Int. 2024, 192, 114680. [Google Scholar] [CrossRef]
- Boutrou, R.; Coirre, E.; Jardin, J.; Léonil, J. Phosphorylation and Coordination Bond of Mineral Inhibit the Hydrolysis of the β-Casein (1− 25) Peptide by Intestinal Brush-Border Membrane Enzymes. J. Agric. Food Chem. 2010, 58, 7955–7961. [Google Scholar] [CrossRef]
- Milovanovic, B.; Djekic, I.; Miocinovic, J.; Djordjevic, V.; Lorenzo, J.M.; Barba, F.J.; Mörlein, D.; Tomasevic, I. What Is the Color of Milk and Dairy Products and How Is It Measured? Foods 2020, 9, 1629. [Google Scholar] [CrossRef]
- Lucas, A.; Rock, E.; Agabriel, C.; Chilliard, Y.; Coulon, J.B. Relationships between Animal Species (Cow versus Goat) and Some Nutritional Constituents in Raw Milk Farmhouse Cheeses. Small Rumin. Res. 2008, 74, 243–248. [Google Scholar] [CrossRef]
- Pazzola, M.; Stocco, G.; Dettori, M.L.; Bittante, G.; Vacca, G.M. Effect of Goat Milk Composition on Cheesemaking Traits and Daily Cheese Production. J. Dairy Sci. 2019, 102, 3947–3955. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H.; Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Processed Cheese and Substitute/Imitation Cheese Products. In Fundamentals of Cheese Science; Springer: Boston, MA, USA, 2017; pp. 589–627. [Google Scholar]
- Walstra, P. The Roles of Proteins and Peptides in Formation and Stabilisation of Emulsions. Spec. Publ. Soc. Chem. 2002, 278, 237–244. [Google Scholar]
- Broyard, C.; Gaucheron, F. Modifications of Structures and Functions of Caseins: A Scientific and Technological Challenge. Dairy Sci. Technol. 2015, 95, 831–862. [Google Scholar] [CrossRef]
- Corredig, M.; Nair, P.K.; Li, Y.; Eshpari, H.; Zhao, Z. Invited Review: Understanding the Behavior of Caseins in Milk Concentrates. J. Dairy Sci. 2019, 102, 4772–4782. [Google Scholar] [CrossRef]
- Serna-Hernandez, S.O.; Escobedo-Avellaneda, Z.; García-García, R.; Rostro-Alanis, M. de J.; Welti-Chanes, J. High Hydrostatic Pressure Induced Changes in the Physicochemical and Functional Properties of Milk and Dairy Products: A Review. Foods 2021, 10, 1867. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Lopez, L.M.; Garcia-Galicia, I.A.; Tirado-Gallegos, J.M.; Sanchez-Vega, R.; Huerta-Jimenez, M.; Ashokkumar, M.; Alarcon-Rojo, A.D. Recent Advances in the Application of Ultrasound in Dairy Products: Effect on Functional, Physical, Chemical, Microbiological and Sensory Properties. Ultrason. Sonochem. 2021, 73, 105467. [Google Scholar] [CrossRef]
- Aydogdu, T.; O’Mahony, J.A.; McCarthy, N.A. PH, the Fundamentals for Milk and Dairy Processing: A Review. Dairy 2023, 4, 395–409. [Google Scholar] [CrossRef]
- Barone, G.; Yazdi, S.R.; Lillevang, S.K.; Ahrné, L. Calcium: A Comprehensive Review on Quantification, Interaction with Milk Proteins and Implications for Processing of Dairy Products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5616–5640. [Google Scholar] [CrossRef]
Trial | Q (105 m3/s) | TMP (10−5 Pa) | J (105 m/s) | Rh (1013 m−1) |
---|---|---|---|---|
0.865 ± 0.015 | 0.585 ± 0.005 | 3.56 ± 0.1 | 0.215 ± 0.045 |
VRF | 0 | 1.1 | 1.5 | 1.7 | 2 | 2.3 | 2.6 |
---|---|---|---|---|---|---|---|
pH | 6.46 ± 0.04 a | 6.09 ± 0.00 b | 5.66 ± 0.00 c | 5.62 ± 0.00 d | 5.69 ± 0.00 e | 5.47 ± 0.00 f | 5.44 ± 0.00 g |
Acidity (D°) | 21.25 ± 1.29 a | 22.33 ± 1.24 a | 23.33 ± 0.94 a | 25.67 ± 0.94 b | 26.67 ± 1.88 c | 27.67 ± 0.47 c | 35 ± 2.44 d |
Density | 1.030 ± 0.03 a | 1.030 ± 0.01 a | 1.030 ± 0.00 a | 1.033 ± 0.00 a | 1.034 ± 0.00 a | 1.038 ± 0.00 a | 1.040 ± 0.00 a |
Viscosity (cP) | 3.62 ± 0.18 a | 3.63 ± 0.20 a | 3.74 ± 0.01 a | 3.82 ± 0.02 a | 4.04 ± 0.30 b | 4.37 ± 0.70 b | 4.70 ± 0.01 b |
Dry Extract % | 7.73 ± 0.03 a | 8.07 ± 0.02 b | 8.16 ± 0.06 b | 8.26 ± 0.08 b | 8.41 ± 0.05 e | 8.41 ± 0.05 e | 8.47 ± 0.07 e |
Proteins (%) | 3.14 ± 0.00 a | 3.16 ± 0.27 a | 3.39 ± 0.00 a | 3.91 ± 0.01 b | 4.12 ± 0.01 b | 4.62 ± 0.00 c | 4.86 ± 0.01 c |
Fat (%) | 0.00 ± 0.05 a | 0 a | 0 a | 0 a | 0 a | 0 a | 0.16 ± 0.01 b |
Color Parameters | GSM | UF-GSM |
---|---|---|
L* | 66.45 ± 0.25 a | 55 ± 2.39 b |
a* | −2.74 ± 0.05 a | −1.39 ± 0.08 b |
b* | 13.13 ± 0.11 a | 8.94 ± 0.44 b |
ΔE | 61.8 ± 0.075 a | 42.95 ± 2.42 b |
Control | UF-GSM Cheese | |
---|---|---|
Protein (%) | 10.6 ± 0.012 a | 12.4 ± 0.02 b |
Dry extract (%) | 11.23 ± 0.02 a | 15.12 ± 0.011 b |
Ash (%) | 1.10 ± 0.07 a | 1.85 ± 0.03 a |
Mineral Composition | ||
Sodium (mg/kg) | 0.323 | 0.72 |
Potassium (mg/kg) | 0.443 | 6.418 |
Calcium (mg/kg) | 1.143 | 6.42 |
Magnesium (mg/kg) | 0.072 | 0.27 |
Copper (mg/kg) | 0.0008 | 0.003 |
Iron (mg/kg) | 0.002 | 0.152 |
pH | 6.62 ± 0.055 a | 5.37 ± 0.02 b |
Acidity (°D) | 43.00 ± 1.00 a | 72.50 ± 1.50 b |
Color Parameters | ||
L* | 58.29 ± 2.84 a | 59.23 ± 0.74 a |
a* | −1.25 ± 0.05 a | −1.05 ± 0.16 a |
b* | 10.65 ± 1.37 a | 10.57 ± 0.8 a |
ΔE | 46.50 ± 3.05 a | 47.42 ± 0.96 a |
Textural Parameters | ||
Hardness (N) | 0.876 ± 0.043 a | 0.189 ± 0.095 b |
Cohesion | 0.348 ± 0.0016 a | 0.706 ± 0.000 b |
Adhesion (N) | 1.639 ± 0.0003 a | 0.860 ± 0.0030 a |
Chewability (N/mm2) | 30.796 ± 0.0022 a | 19.837 ± 0.0030 b |
Breaking Force (N) | 3.420 ± 0.0020 a | 1.219 ± 0.0010 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chahbani, A.; Jrad, Z.; Jarray, R.; Ammar, E.; El Hatmi, H. Effects of Operational Parameters Variation During Ultrafiltration Process on Goat Skim Milk (GSM) Concentration for Cheese Elaboration. Processes 2025, 13, 2093. https://doi.org/10.3390/pr13072093
Chahbani A, Jrad Z, Jarray R, Ammar E, El Hatmi H. Effects of Operational Parameters Variation During Ultrafiltration Process on Goat Skim Milk (GSM) Concentration for Cheese Elaboration. Processes. 2025; 13(7):2093. https://doi.org/10.3390/pr13072093
Chicago/Turabian StyleChahbani, Amna, Zeineb Jrad, Rihab Jarray, Emna Ammar, and Halima El Hatmi. 2025. "Effects of Operational Parameters Variation During Ultrafiltration Process on Goat Skim Milk (GSM) Concentration for Cheese Elaboration" Processes 13, no. 7: 2093. https://doi.org/10.3390/pr13072093
APA StyleChahbani, A., Jrad, Z., Jarray, R., Ammar, E., & El Hatmi, H. (2025). Effects of Operational Parameters Variation During Ultrafiltration Process on Goat Skim Milk (GSM) Concentration for Cheese Elaboration. Processes, 13(7), 2093. https://doi.org/10.3390/pr13072093