Octagonal Starfish-Inspired Roller Imprinting Control for Multi-Space and Multi-Axial Microstructure Replication
Abstract
:1. Introduction
2. Structure Design and Control Mechanism of the Negative Poisson Ratio Material
2.1. Structure Design and Mechanical Property Test Using the Negative Poisson Ratio
2.1.1. Analysis of NPR Geometric Structure of Metallic Materials and Analysis of the Design and Simulation of Junctions
2.1.2. Analysis of NPR Geometric Structure of Metallic Materials and Analysis of the Design and Simulation of Junctions
2.2. Space Angle Adjustment Mechanism
3. Experimental Procedure
3.1. Design and Development of the Multi-Space and Multi-Axial Roller Imprinting System Controllable Mold Structure
3.2. Selection and Preparation of the NPR Structure Mold, Microstructure Mold, and Photoresist Material
3.2.1. Selection of the NPR Structure Mold, Microstructure Mold, and Photoresist Material
3.2.2. Preparation of the NPR Structure Mold, Microstructure Mold, and Sandwich Microstructure Mold
3.3. Processing of the Multi-Space and Multi-Axial Roller Imprinting System with Controllable Mold
4. Results and Discussion
4.1. Comprehensive Analysis and Discussion on the Mechanical Properties of the Negative Poisson Ratio Structure and Microstructure Mold
4.1.1. Simulation and Analysis on the Influence of Mold Thickness on the Sandwich Polymer Poisson Ratio
4.1.2. Simulation and Analysis of the Influence of PDMS Mold Mixture Ratio on the Sandwich Polymer Poisson Ratio
4.2. Analysis and Discussion on the Mechanical Properties of the Sandwich Microstructure Mold Applicable for Research
4.3. Microstructure Structure Adjustment and Discussion on Research System Replication Formability
4.3.1. Sandwich Mold Adjustment and Discussion on Imprinting Replication Formability
4.3.2. Analysis on Microstructure Optical Detection
4.3.3. Discussion on the Limitations and Scalability of the Proposed Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Wang, H.; Lai, L.; Li, Y. Preparation of microneedle array mold based on MEMS lithography technology. Micromachines 2020, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Yahagi, T.; Murayama, H.; Watanabe, Y.; Mineta, T. Fabrication of MEMS mold with inclined micro-multi-fin structure and shape transfer to resin by thermal imprint process. Jpn. J. Appl. Phys. 2020, 59, SIIJ02. [Google Scholar] [CrossRef]
- Ansari, A.; Trehan, R.; Watson, C.; Senyo, S. Increasing silicone mold longevity: A review of surface modification techniques for PDMS-PDMS double casting. Soft Mater. 2021, 19, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; He, Y.; Wang, T.; Zhu, Z.; Xu, R.; Yu, Q.; Zhao, B.; Zhao, W.; Liu, P.; Wang, X. A review of the techniques for the mold manufacturing of micro/nanostructures for precision glass molding. Int. J. Extrem. Manuf. 2021, 3, 042002. [Google Scholar] [CrossRef]
- You, K.; Fang, F.; Yan, G.; Zhang, Y. Experimental investigation on laser assisted diamond turning of binderless tungsten carbide by in-process heating. Micromachines 2020, 11, 1104. [Google Scholar] [CrossRef] [PubMed]
- Acherjee, B. State-of-art review of laser irradiation strategies applied to laser transmission welding of polymers. Opt. Laser Technol. 2021, 137, 106737. [Google Scholar] [CrossRef]
- Weng, Y.J.; Huang, J.C.; Chen, Y.Y.; Hsu, S.T.; Zhang, Z.R. A study on the dynamic forming mechanism development of the negative Poisson’s ratio elastomer molds—Plate to plate (P2P) forming process. Polymers 2021, 13, 3255. [Google Scholar] [CrossRef] [PubMed]
- Supreeti, S. Soft Nanoimprint Lithography on Curved Surfaces. Doctoral Dissertation, TU Ilmenau, Ilmenau, Germany, 2020. [Google Scholar]
- Ryan, K.R.; Down, M.P.; Hurst, N.J.; Keefe, E.M.; Banks, C.E. Additive manufacturing (3D imprinting) of electrically conductive polymers and polymer nanocomposites and their applications. EScience 2022, 2, 365–381. [Google Scholar] [CrossRef]
- Su, R.; Wen, J.; Su, Q.; Wiederoder, M.S.; Koester, S.J.; Uzarski, J.R.; McAlpine, M.C. 3D printed self-supporting elastomeric structures for multifunctional microfluidics. Sci. Adv. 2020, 6, eabc9846. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.M.; Ali, Z. Fabrication methods for microfluidic devices: An overview. Micromachines 2021, 12, 319. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kazanskiy, N.L.; Kutluyarov, R.V.; Butt, M.A. Polymer waveguide-based optical sensors—Interest in bio, gas, temperature, and mechanical sensing applications. Coatings 2023, 13, 549. [Google Scholar] [CrossRef]
- Soldera, M.; Wang, Q.; Soldera, F.; Lang, V.; Abate, A.; Lasagni, A.F. Toward high-throughput texturing of polymer foils for enhanced light trapping in flexible perovskite solar cells using roll-to-roll hot embossing. Adv. Eng. Mater. 2020, 22, 1901217. [Google Scholar] [CrossRef]
- Handrea-Dragan, M.; Botiz, I. Multifunctional structured platforms: From patterning of polymer-based films to their subsequent filling with various nanomaterials. Polymers 2021, 13, 445. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Goswami, A. Hot embossing of polymers–A review. Mater. Today Proc. 2020, 26, 405–414. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, B.; Chen, T. A high efficiency industrial polysilicon solar cell with a honeycomb-like surface fabricated by wet etching using a photoresist mask. Appl. Surf. Sci. 2016, 387, 1265–1273. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Lee, Y.C. Step and scanning lithography for patterning seamless microstructures on the inner surface of a hollow roller. J. Micromech. Microeng. 2019, 29, 105012. [Google Scholar] [CrossRef]
- Kang, M.A.; Kim, S.J.; Song, W.; Chang, S.J.; Park, C.Y.; Myung, S.; Lim, J.; Lee, S.S.; An, K.S. Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method. Carbon 2017, 116, 167–173. [Google Scholar] [CrossRef]
- MatWeb, L.L.C. Material Property Data. MatWeb. Available online: https://asia.matweb.com/search/SearchProperty.asp?e=1 (accessed on 1 March 2025).
- Grimes, A.; Breslauer, D.N.; Long, M.; Pegan, J.; Lee, L.P.; Khine, M. Shrinky-Dink microfluidics: Rapid generation of deep and rounded patterns. Lab Chip 2008, 8, 170–172. [Google Scholar] [CrossRef]
Materials | Stretch (mm) | Poisson’s Ratio |
---|---|---|
Nickel (Ni) | 0.02 | −0.085 |
0.06 | −0.085 | |
0.1 | −0.085 | |
Zinc (Zn) | 0.02 | −0.086 |
0.06 | −0.086 | |
0.1 | −0.086 | |
Magnesium (Mg) | 0.02 | −0.085 |
0.06 | −0.085 | |
0.1 | −0.085 |
Shape | Acrylonitrile Butadiene Styrene (ABS) | |||
---|---|---|---|---|
Materials | Stretch Length (mm) | Tensile Stress (MPa) | Poisson’s Ratio | |
Round | 0.02 | 10.133 | −0.038 | |
Square | 0.02 | 16.011 | −0.056 |
Shape | Thermoplastic Elastomer (TPE) | ||
---|---|---|---|
Materials | Stretch Length (mm) | Poisson’s Ratio | |
Round | 0.1 | −0.077 | |
0.3 | −0.077 | ||
0.5 | −0.077 | ||
Square | 0.1 | −0.048 | |
0.3 | −0.048 | ||
0.5 | −0.048 |
Thickness of PDMS (mm) | Sandwich Polymer Mold | |
---|---|---|
Stretch Length (mm) | Poisson’s Ratio | |
2 | 1 | 0.189 |
2 | 0.182 | |
3 | 0.183 | |
3 | 1 | 0.347 |
2 | 0.358 | |
3 | 0.348 |
Thickness of PDMS (mm) | Sandwich Polymer Mold | |
---|---|---|
Stretch Length (mm) | Poisson’s Ratio | |
2 | 1 | 0.016 |
2 | 0.015 | |
3 | 0.015 | |
3 | 1 | 0.185 |
2 | 0.184 | |
3 | 0.184 | |
4 | 1 | 0.321 |
2 | 0.320 | |
3 | 0.319 |
Proportion (A:B) | Loading Rate (mm/min) | Tension Stress (MPa) | Modulus (MPa) | Poisson’s Ratio | Shear Strength (N/cm2) |
---|---|---|---|---|---|
10:1 | 6 | 0.165 | 2.35 | 0.49 | 177.25 |
15:1 | 6 | 0.101 | 1.68 | 0.46 | 58.78 |
20:1 | 6 | 0.034 | 0.63 | 0.42 | 15.92 |
Stretch Length (mm) | Microstructure Feature Size | |
---|---|---|
Diameter (mm) | Hight (mm) | |
0 | 208.2 | 89.92 |
1 | 209.5 | 89.73 |
3 | 210.8 | 89.41 |
5 | 211.6 | 88.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, Y.-J.; Zhong, Y.-X.; Guo, J.-C.; Wang, Z.-J. Octagonal Starfish-Inspired Roller Imprinting Control for Multi-Space and Multi-Axial Microstructure Replication. Processes 2025, 13, 1966. https://doi.org/10.3390/pr13071966
Weng Y-J, Zhong Y-X, Guo J-C, Wang Z-J. Octagonal Starfish-Inspired Roller Imprinting Control for Multi-Space and Multi-Axial Microstructure Replication. Processes. 2025; 13(7):1966. https://doi.org/10.3390/pr13071966
Chicago/Turabian StyleWeng, Yung-Jin, Yi-Xuan Zhong, Jin-Chen Guo, and Zi-Jia Wang. 2025. "Octagonal Starfish-Inspired Roller Imprinting Control for Multi-Space and Multi-Axial Microstructure Replication" Processes 13, no. 7: 1966. https://doi.org/10.3390/pr13071966
APA StyleWeng, Y.-J., Zhong, Y.-X., Guo, J.-C., & Wang, Z.-J. (2025). Octagonal Starfish-Inspired Roller Imprinting Control for Multi-Space and Multi-Axial Microstructure Replication. Processes, 13(7), 1966. https://doi.org/10.3390/pr13071966