Utilization of Agro-Industrial Residues from the Rosa damascena Mill. Oil Industry: A Literature Review on Biomass Potential for Food and Feed Ingredients
Abstract
:1. Introduction
Rosaceae Family
2. Agro-Waste in Bio-Based Livestock
2.1. Application of Rose Extracts in Animal Nutrition
2.2. Application of Rose Oil By-Products as Feed
Animal Model | Treatment | Duration | Evaluated Parameters |
---|---|---|---|
Broilers Ross 308 | 40 mg biological active components (RPE) to 1 kg body weight | 49-day feeding at 7-day intervals | Growth performance, feed conversion, carcass analysis [49] |
365-day storage at −18 °C | TBARS, fatty acid composition in breast fillets (m. pectoralis major) and thighs (m. biceps femoris) [43] | ||
Extruded feed with rose petal meal at dose rate of 25 g.kg−1 and 50 g.kg−1 | 60-day feeding | Proximate composition, pH, WHC, instrumental color, cooking loss, sensory profile [44] | |
2 and 4% rose water | Feeding for 35 d | Growth performance, feed intake, feed conversion carcass parameters, hot carcass yield, histomorphology parameters [50] | |
Pigs Danube White–155-day old | 0.255 g dry distilled rose petals (DDRP)/kg/d or 0.545 g/kg/d | 45-day feeding | FAN content and WHC of m. longissimus thoracis and m. Semimembranosus [51] |
pH, instrumental color, AV, POV, TBARS [52] | |||
Growth performance, blood parameters, liver weight and histology of ovaries and liver, lean meat content, proximate composition of muscles [53] | |||
Pigs Danube White–uncastrated males–146-day old | 5 g of dried distilled rose petals (DDRP) in 1 kg of feed | 40-day feeding | Live weight, hot carcass weight, dressing, backfat thickness, lean meat, pH, instrumental color, WHC, fatty acids profile [53] |
Lambs | 545 mg dry distilled rose petals (DDRP)/kg live weigh/d | 50-day feeding | Growth performance, feed intake, pH of m. Longissimus lumborum et thoracis, and blood count [41] |
Proximate composition, sterols, tocopherols and carotenoids content, amino acid profiles, WHC, and microbiological status [56] | |||
7-day storage at (0–4 °C) | α-aminoacidic nitrogen, AV, POV, TBARS, fatty acid composition, instrumental color, microbiological status [54] | ||
365-days storage at (−18 °C) | Longissimus dorsi and Semimembranosus muscles and perirenal adipose tissue–pH, instrumental color, TBARS, proteolysis and oxidative status of total proteins, fatty acid profiles, biogenic amines [54] |
2.3. Application of Rose Extracts in Meat Production
2.4. Application of Rose Extracts in Dairy Production
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HAT | hydrogen atom transfer |
SET | single electron transfer |
RMS | response surface methodology |
SLA | sodium L-ascorbate |
FDRPE | freeze-dried spent rose petals extract |
References
- Dintcheva, N.T.; Morici, E. Recovery of rose flower waste to formulate eco-friendly biopolymer packaging films. Molecules 2023, 28, 3165. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Lante, A. Environmentally friendly techniques for the recovery of polyphenols from food by-products and their impact on polyphenol oxidase: A critical review. Appl. Sci. 2022, 12, 1923. [Google Scholar] [CrossRef]
- Slavov, A.; Vasileva, I.; Denev, P.; Dinkova, R.; Teneva, D.; Ognyanov, M.; Georgiev, Y. Polyphenol-rich extracts from essential oil industry wastes. Bulg. Chem. Commun. 2020, 52, 78–83. [Google Scholar]
- Giannakourou, M.C.; Tsironi, T.; Thanou, I.; Tsagri, A.M.; Katsavou, E.; Lougovois, V.; Sinanoglou, V.J. Shelf life extension and improvement of the nutritional value of fish fillets through osmotic treatment based on the sustainable use of Rosa damascena distillation by-products. Foods 2019, 8, 421. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Lante, A. Polyphenols: A Comprehensive Review of their Nutritional Properties. Open Biotechnol. J. 2021, 15, 164–172. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Bio-processing of agro-byproducts to animal feed. Crit. Rev. Biotechnol. 2012, 32, 382–400. [Google Scholar] [CrossRef]
- Rossi, R.; Mainardi, E.; Vizzarri, F.; Corino, C. Verbascoside-Rich Plant Extracts in Animal Nutrition. Antioxidants 2024, 13, 39. [Google Scholar] [CrossRef]
- Slavov, A.; Denev, P.; Panchev, I.; Shikov, V.; Nenov, N.; Yantcheva, N.; Vasileva, I. Combined recovery of polysaccharides and polyphenols from Rosa damascena wastes. Ind. Crop. Prod. 2017, 100, 85–94. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Food and Forestry (MAFF); “Agrostatistics” Department. Yields from Field Crops—Harvest 2019. No. 375—June 2020; Harvest 2020. No. 391—June 2021; Harvest 2021. No. 407—June 2022; Harvest 2022. No. 427—June 2023. Available online: https://www.mzh.government.bg/bg/statistika-i-analizi/ (accessed on 1 February 2025). (In Bulgarian)
- Liu, W.Y.; Chen, L.Y.; Huang, Y.Y.; Fu, L.; Song, L.Y.; Wang, Y.Y.; Bi, Y.F. Antioxidation and active constituents analysis of flower residue of Rosa damascena. Chin. Herb. Med. 2020, 12, 336–341. [Google Scholar] [CrossRef]
- Wu, H.; Yin, J.; Xiao, S.; Zhang, J.; Richards, M.P. Quercetin as an inhibitor of hemoglobin-mediated lipid oxidation: Mechanisms of action and use of molecular docking. Food Chem. 2022, 384, 132473. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [PubMed]
- Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural phenolic compounds for the control of oxidation, bacterial spoilage, and foodborne pathogens in meat. Foods 2020, 9, 794. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed]
- Perron, N.R.; Wang, H.C.; DeGuire, S.N.; Jenkins, M.; Lawson, M.; Brumaghim, J.L. Kinetics of iron oxidation upon polyphenol binding. Dalton Trans. 2010, 39, 9982–9987. [Google Scholar] [CrossRef]
- Baydar, N.G.; Baydar, H. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Ind. Crop. Prod. 2013, 41, 375–380. [Google Scholar] [CrossRef]
- Yavari, A.; Javadi, M.; Mirmiran, P.; Bahadoran, Z. Exercise-induced oxidative stress and dietary antioxidants. Asian J. Sports Med. 2015, 6, e24898. [Google Scholar] [CrossRef]
- Eghbaliferiz, S.; Iranshahi, M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 2016, 30, 1379–1391. [Google Scholar] [CrossRef]
- Dora, M.; Wesana, J.; Gellynck, X.; Seth, N.; Dey, B.; De Steur, H. Importance of sustainable operations in food loss: Evidence from the Belgian food processing industry. Ann. Oper. Res. 2020, 290, 47–72. [Google Scholar] [CrossRef]
- Madureira, J.; Barros, L.; Cabo Verde, S.; Margaca, F.; Santos Buelga, C.; Ferreira, I.C.F.R. Ionizing Radiation Technologies to Increase the Extraction of Bioactive Compounds from Agro-Industrial Residues: A Review. J. Agric. Food Chem. 2020, 68, 11054–11067. [Google Scholar] [CrossRef]
- Shahriari, S.; Yasa, N.; Mohammadirad, A.; Khorasani, R.; Abdollahi, M. In vivo Antioxidant Potentials of Rosa Damascene Petal Extract from Guilan, Iran, Comparable to α-tocopherol. Int. J. Pharmacol. 2007, 3, 187–190. [Google Scholar] [CrossRef]
- Shikov, V.; Kammerer, D.R.; Mihalev, K.; Mollov, P.; Carle, R. Heat stability of strawberry anthocyanins in model solutions containing natural copigments extracted from rose (Rosa damascena Mill.) petals. J. Agric. Food Chem. 2008, 56, 8521–8526. [Google Scholar] [CrossRef] [PubMed]
- Shikov, V.; Kammerer, D.R.; Mihalev, K.; Mollov, P.; Carle, R. Antioxidant capacity and colour stability of texture-improved canned strawberries as affected by the addition of rose (Rosa damascena Mill.) petal extracts. Food Res. Int. 2012, 46, 552–556. [Google Scholar] [CrossRef]
- Dinkova, R.; Vardakas, A.; Dimitrova, E.; Weber, F.; Passon, M.; Shikov, V.; Schieber, A.; Mihalev, K. Valorization of rose (Rosa damascena Mill.) by-product: Polyphenolic characterization and potential food application. Eur. Food Res. Technol. 2022, 248, 2351–2358. [Google Scholar] [CrossRef]
- Hamza, R.Z.; Al-Yasi, H.M.; Ali, E.F.; Fawzy, M.A.; Abdelkader, T.G.; Galal, T.M. Chemical characterization of Taif rose (Rosa damascena Mill var. trigentipetala) waste methanolic extract and its hepatoprotective and antioxidant effects against cadmium chloride (CdCl2)-induced hepatotoxicity and potential anticancer activities against liver cancer cells (HepG2). Crystals 2022, 12, 460. [Google Scholar]
- Dodevska, T.; Vasileva, I.; Denev, P.; Karashanova, D.; Georgieva, B.; Kovacheva, D.; Yantcheva, N.; Slavov, A. Rosa damascena waste mediated synthesis of silver nanoparticles: Characteristics and application for an electrochemical sensing of hydrogen peroxide and vanillin. Mater. Chem. Phys. 2019, 231, 335–343. [Google Scholar] [CrossRef]
- Nunes, H.; Miguel, M.G. Rosa damascena essential oils: A brief review about chemical composition and biological properties. Trends Pharmacol. Sci. 2017, 1, 111–128. [Google Scholar]
- Ali, E.F.; Al-Yasi, H.M.; Majrashi, A.; Farahat, E.A.; Eid, E.M.; Galal, T.M. Chemical and Nutritional Characterization of the Different Organs of Taif’s Rose (Rosa damascena Mill. var. trigintipetala) and Possible Recycling of the Solid Distillation Wastes in Taif City, Saudi Arabia. Agriculture 2022, 12, 1925. [Google Scholar] [CrossRef]
- Szumacher-Strabel, M.; Cieślak, A.; Zmora, P.; Pers-Kamczyc, E.; Bielak, P.; Stanisławska, E. The potential of the wild dogrose (Rosa canina) to mitigate in vitro rumen methane production. J. Anim. Feed Sci. 2011, 20, 285–299. [Google Scholar] [CrossRef]
- Jiménez, S.; Jiménez-Moreno, N.; Luquin, A.; Laguna, M.; Rodríguez-Yoldi, M.J.; Ancín-Azpilicueta, C. Chemical composition of rosehips from different Rosa species: An alternative source of antioxidants for the food industry. Food Addit. Contam. Part A 2017, 34, 1121–1130. [Google Scholar] [CrossRef]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef]
- Fathima, S.N.; Murthy, S.V. Cardioprotective effects to chronic administration of Rosa damascena petals in isoproterenol induced myocardial infarction: Biochemical, histopathological and ultrastructural studies. Biomed. Pharmacol. J. 2019, 12, 1155–1166. [Google Scholar] [CrossRef]
- Tekeli, A. Effect of rosehip fruit (Rosa canina L.) supplementation to rations of broilers grown under cold stress conditions on some performance, blood, morphological, carcass, and meat quality characteristics. Eur. Poult. Sci. 2014, 78, 1–14. [Google Scholar] [CrossRef]
- Ozturk, Y.S.; Ercisli, S. Antibacterial and antioxidant activity of fruits of some rose species from Turkey. Rom. Biotechnol. Lett. 2011, 16, 6407–6411. [Google Scholar]
- Kaya, H.; Kaya, A.; Esenbuğa, N.; Macit, M. The effect of rosehip seed supplementation into laying hens diets on performance, egg quality traits, yolk lipid profile and serum parameters. Alinteri J. Agric. Sci. 2019, 34, 84–87. [Google Scholar] [CrossRef]
- Sabino, M.; Carmelo, V.A.O.; Mazzoni, G.; Cappelli, K.; Capomaccio, S.; Ajmone-Marsan, P.; Verini-Supplizi, A.; Trabalza-Marinucci, M.; Kadarmideen, H.N. Gene co-expression networks in liver and muscle transcriptome reveal sex-specific gene expression in lambs fed with a mix of essential oils. BMC Genom. 2018, 19, 236. [Google Scholar] [CrossRef]
- Baydar, H.; Sagdic, O.; Ozkan, G.; Karadogan, T. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control 2004, 15, 169–172. [Google Scholar] [CrossRef]
- Esenbuga, N.; Macit, M.; Karaoglu, M.; Aksakal, V.; Yoruk, M.A.; Gül, M.; Aksu, M.I.; Bilgin, Ö.C. A study on possibility of Rosa canina seed use as feed ıngredient in diets of Morkaraman male lambs. Trop. Anim. Health Prod. 2011, 43, 1379–1384. [Google Scholar] [CrossRef]
- Vlahova-Vangelova, D.; Balev, D.; Kolev, N.; Terziyska, M.; Dragoev, S. The Effect of Dietary Dry Distilled Rose Petals or Dihydroquercetin Supplementation on the Oxidative Stability and Quality of Lamb Muscles and Fat. Lett. Appl. NanoBioSci. 2021, 11, 4280–4293. [Google Scholar]
- Surai, P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. 2014, 98, 19–31. [Google Scholar] [CrossRef]
- Stancheva, N.Z.; Nakev, J.L.; Vlahova-Vangelova, D.B.; Balev, D.K.; Dragoev, S.G. Impact of Siberian Larch Dihydroquercetin or Dry Distilled Rose Petals as Feed Supplements on Lamb’s Growth Performance, Carcass Characteristics and Blood Count Parameters. Iran. J. Appl. Anim. Sci. 2021, 11, 339–350. [Google Scholar]
- Singh, J.; Gaikwad, D.S. Phytogenic feed additives in animal nutrition. In Natural Bioactive Products in Sustainable Agriculture; Springer: Singapore, 2020; pp. 273–289. [Google Scholar]
- Chobanova, S.; Penchev, I.G.; Atanasoff, A.; Ribarski, S.; Karkelanov, N. Chemical composition, technological and organoleptic characteristics of meat from chicken broilers, fed with supplement of rose petal meal. Bulg. J. Agric. Sci. 2019, 25 (Suppl. 3), 81–84. [Google Scholar]
- Aktan, S.; Sagdic, O. Dried rose (Rosa damascena Mill.) dreg: An alternative litter material in broiler production. S. Afr. J. Anim. Sci. 2004, 34, 75–79. [Google Scholar] [CrossRef]
- Gjorgovska, N.; Grigorova, S.; Levkov, V. Application of rose hip fruits as feed supplement in animal nutrition. J. Agric. Food Dev. 2021, 7, 12–15. [Google Scholar]
- Song, X.; Yang, Y.; Wang, C.; Zhu, W.; Zhou, C.; Wu, W. Rosa roxburghii tratt residue: A novel feed resource for cattle indicated by the non-deleterious performance and blood metabolites. Trop. Anim. Health Prod. 2024, 56, 340. [Google Scholar] [CrossRef]
- Li, H.; Song, X.; Wu, W.; Zhou, C. Rosa roxburghii tratt residue as an alternative feed for improving growth, blood metabolites, rumen fermentation, and slaughter performance in Hu sheep. Front. Vet. Sci. 2024, 11, 1397051. [Google Scholar] [CrossRef]
- Balev, D.; Vlahova-Vangelova, D.; Mihalev, K.; Shikov, V.; Dragoev, S.; Nikolov, V. Application of natural dietary antioxidants in broiler feeds. J. Mt. Agric. Balk. 2015, 18, 224–232. [Google Scholar]
- Vlahova-Vangelova, D.B.; Balev, D.K.; Dragoev, S.G.; Dinkova, R.H. Oxidative changes in frozen poultry enriched with biological active components. J. Mt. Agric. Balk. 2021, 24, 81–92. [Google Scholar]
- Yıldız, G.; Aydın, Ö.D.; Bayraktaroğlu, A.G. The effect of rose water (Rosa damascena mill) supplementation in broiler rations on growth performance, some carcass parameters and intestinal histomorphology. Alinteri J. Agric. Sci. 2020, 35, 36–43. [Google Scholar]
- Vlahova-Vangelova, D.; Balev, D.; Dragoev, S. Changes of Fatty Acid Profiles and Content of Sterols, Tocopherols and Carotenoids in Pork by Antioxidant Type Phytonutrients. Lett. Appl. NanoBioSci. 2020, 11, 9749–9761. [Google Scholar]
- Ivanova, S.G.; Nakev, J.L.; Nikolova, T.I.; Vlahova-Vangelova, D.B.; Balev, D.K.; Dragoev, S.G.; Gerrard, D.; Grozlekova, L.; Tashkova, D.A. Effect of new livestock feeds’ phytonutrients on productivity, carcass composition and meat quality in pigs. Bulg. J. Agric. Sci. 2021, 27, 1178–1186. [Google Scholar]
- Ivanova, S.G.; Stoyanchev, T.; Nikolova, T.; Penchev, I. Effect of addition of dry distilled rose petals in the diet on the meat quality in entire male pigs. J. Cent. Eur. Agric. 2021, 22, 678–691. [Google Scholar] [CrossRef]
- Vlahova-Vangelova, D.B.; Balev, D.K.; Kolev, N.D.; Popova, T.L.; Dragoev, S.G. Quality changes of Longissimus dorsi and Semimembranosus muscles and perirenal adipose tissue during frozen storage of lambs fed dihydroquercetin or dry distilled rose petals supplemented diet. Food Sci. Appl. Biotechnol. 2022, 5, 240–255. [Google Scholar] [CrossRef]
- Vlahova-Vangelova, D.B.; Balev, D.K.; Dragoev, S.G.; Dinkova, R.H. Reduction of nitrites addition in cooked sausages from phytonutrient supplemented pork. Carpathian J. Food Sci. Technol. 2020, 12, 60–68. [Google Scholar]
- Vlahova-Vangelova, D.; Kolev, N.; Balev, D.; Stancheva, N.; Nakev, J.; Dragoev, S. Effect of the antioxidant type phytonutrients diet supplementation on lamb quality. BIO Web Conf. 2022, 45, 01016. [Google Scholar] [CrossRef]
- Kolev, N.D.; Vlahova-Vangelova, D.B.; Balev, D.K.; Dragoev, S.G. Stabilization of oxidative processes in cooked sausages by optimization of incorporated biologically active substances. Carpathian J. Food Sci. Technol. 2022, 14, 180–188. [Google Scholar]
- Kolev, N.D.; Vlahova-Vangelova, D.B.; Balev, D.K.; Dragoev, S.G. Effect of three-component antioxidant blend on oxidative stability and nitrite reduction of cooked sausages. Acta Sci. Pol. Technol. Aliment. 2022, 21, 205–212. [Google Scholar]
- Kolev, N.D.; Baleva, L.D. Possibilities for Reducing Nitrites in Cooked Sausages Via Biologically Active Substances. J. Mt. Agric. Balk. 2022, 25, 94–112. [Google Scholar]
- Balev, D.; Vlahova-Vangelova, D.; Dragoev, S.; Baleva, L.; Dimitrova, M.; Kolev, N. Antioxidative effect of dry distilled rose petals extract in traditional Bulgarian dry fermented sausages with reduced nitrate content. Food Sci. Appl. Biotechnol. 2022, 5, 173–180. [Google Scholar] [CrossRef]
- Konteles, S.J.; Stavropoulou, N.A.; Thanou, I.V.; Mouka, E.; Kousiaris, V.; Stoforos, G.N.; Gogou, E.; Giannakourou, M.C. Enriching Cured Meat Products with Bioactive Compounds Recovered from Rosa damascena and Rosmarinus officinalis L. Distillation By-Products: The Pursuit of Natural Antimicrobials to Reduce the Use of Nitrites. Appl. Sci. 2023, 13, 13085. [Google Scholar] [CrossRef]
- Gajarmal, A.A.; Baheti, S.; Mane, S.; Rath, S. A comprehensive review of herbs utilized in milk products of dairy industry: Insights from Ayurveda. Pharmacol. Res.-Nat. Prod. 2024, 4, 100074. [Google Scholar] [CrossRef]
- Edrees, M.; Harfosh, M. New dairy product fortified with rose water: Evaluation chemical and anti-microbial properties (study the possibility of using damascene roses/Rosa damascena/in dairy products). World J. Adv. Healthc. Res. 2023, 7, 1–5. [Google Scholar]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Barreira, J.C.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Rose Petals as a Source of Anthocyanins to Develop Dairy Products with New Sensorial and Bioactive Characteristic. In Proceedings of the XXIV Encontro Luso-Galego de Química, Porto, Portugal, 22–24 November 2023; ISBN 978-989-8124-24-1. [Google Scholar]
- Al-Musawi, A.T.; Karm, I.F.A.; Abu-Almaaly, R.A. Effect of Rose demascena extracts in prolonging the duration of the preservation of yoghurt. Indian J. Public Health Dev. 2018, 9, 957–965. [Google Scholar]
- Qiu, L.; Zhang, M.; Mujumdar, A.S.; Chang, L. Effect of edible rose (Rosa rugosa cv. Plena) flower extract addition on the physicochemical, rheological, functional and sensory properties of set-type yogurt. Food Biosci. 2021, 43, 101249. [Google Scholar] [CrossRef]
- Vlaseva, R.M.; Perifanova-Nemska, P.; Denev Ivanova, M. Proceedings of the International Conference for Renewable Resources and Plant Biotechnology 18th Conference, Magdeburg, Germany, 4–5 June 2012; NAROSSA: Magdeburg, Germany, 2012. [Google Scholar]
- Zaushintsena, A.V.; Bruhachev, E.N.; Belashova, O.V.; Asyakina, L.K.; Kurbanova, M.G.; Vesnina, A.D. Extracts of Rhodiola rosea L. and Scutellaria galericulata L. in functional dairy products. Foods Raw Mater. 2020, 8, 163–170. [Google Scholar] [CrossRef]
- Ivanov, G.; Dimitrova-Dicheva, M.; Mihalev, K.; Ivanova, I. Viability of lactic acid bacteria in polyphenol-enriched fermented milks. BIO Web Conf. 2023, 58, 01001. [Google Scholar] [CrossRef]
- Tumbarski, Y.; Petkova, N.; Ivanov, I.; Todorova, M.; Ivanova, P.; Nikolov, L.; Grozeva, N.; Nikolova, K. Design of functional yogurts with microencapsulated biologically active compounds. Nat. Life Sci. Commun. 2024, 23, e2024011. [Google Scholar] [CrossRef]
Product | Treatment | Storage | Evaluated Parameters |
---|---|---|---|
Cultured sea bass (Dicentrarchus labrax) fillets | Immersion into rose waste water/osmotic solution | 20 days (5 °C) | Phenolic impregnation, water loss, caW, NaCl concentration, instrumental color, microbial growth, TBA value [4] |
Cooked beef/pork—50/50 sausages | RPE—0.05 and 0.1% + partial nitrite reduction | 6 days (0–4 °C) | AV, TBARS, FAN, and protein carbonyls [55] |
FDRPE—0.05 and 0.1 g/kg; dihydroquercetin—0.05 and 0.1 g/kg; sodium L-ascorbate—0.05 and 0.1 g/kg | 7 days (0–4 °C) | pH, PV, microbiological statusy, and sensory profile [57] | |
DPPH, FRAP, instrumental color, TBARS, protein carbonyls [58] | |||
Three-component antioxidant blend–FDRPE—0.1 g/kg; dihydroquercetin—0.09 g/kg and sodium L-ascorbate—0.1 g/kg + partial nitrite reduction | 7 days (0–4 °C) | Residual nitrites, DPPH, FRAP, AV, PV, TBARS, FAN, and protein carbonyls [58] | |
pH, instrumental color, microbiological status, and sensory profile [59] | |||
Dry fermented beef/pork—60/40 sausages | DDRPE—1.140 and 2.280 g/kg + partial nitrite reduction | 18 days of processing (10–12 °C) | Instrumental color, pH, AV, PV, TBARS, and sensory profile [60] |
Bacon pork | 90 mg phenolic compounds/kg raw meat | 49 days (5,10,15 °C) | Microbiological analysis, TBARS, color change, sensory attributes of raw meat samples, microbial growth modeling [61] |
Product | Treatment | Storage | Evaluated Parameters |
---|---|---|---|
Fresh dairy mixtures | Mix of full-fat powdered milk, caw butter, powdered white sugar, soy-lecithin, rose water (16%, 25%, and 40%) | 14 days (0–4 °C) | Chemical composition, microbiological tests, and organoleptic parameters [63] |
Lactic acid beverage | Rose (Rosa damascena Mill.) extract (30 µL/L) | 14 days (4 ± 2 °C) | Organoleptic and physicochemical parameters, dynamic of coagulation [67] |
Whey-based drink | Whey (50 mL), apple juice (20 mL), rose root concentrate (0.1 mL), sugar (3 g), apple pectin (0.5 g), 0.4 g of citric acid (0.4 g), ionized water (30 mL) | 4 ± 2 °C | Sensory, physicochemical, and microbiological characteristics and composition of biologically-active compounds [68] |
Yoghurt | Milk, rose petals water extract | 7 days (0–4 °C) | Proximate composition, free sugars, fatty acids, and anthocyanins [64] |
Milk, rose water extract (2%, 4%, and 6%) or oil extract (2%, 4%, and 6%) | 14 days (0–4 °C) | Chemical composition, bacteriological tests, and sensory evaluation [65] | |
Reconstituted skim milk, freeze dried Rosa rugosa cv. Plena extract (0.1%, 0.3%, and 0.5%) | 21 days (0–4 °C) | Physicochemical properties, functional attributes, sensory properties, and storage stability [66] | |
Rose (Rosa damascena Mill.) petals polyphenol extract (0.39 mg/100 g) | 15 days (4 ± 2 °C) | Microbiological and physicochemical characteristics [69] | |
Rose petals (Rosa damascena and Rosa gallica) (%) | 21 days (4 ± 2 °C) | Organoleptic, microbiological, physicochemical analysis, antimicrobial activity, and minimum inhibitory concentration [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolev, N.; Ivanova, M.; Balabanov, A.; Vlahova-Vangelova, D.; Kišová, A.; Vizzarri, F. Utilization of Agro-Industrial Residues from the Rosa damascena Mill. Oil Industry: A Literature Review on Biomass Potential for Food and Feed Ingredients. Processes 2025, 13, 1945. https://doi.org/10.3390/pr13061945
Kolev N, Ivanova M, Balabanov A, Vlahova-Vangelova D, Kišová A, Vizzarri F. Utilization of Agro-Industrial Residues from the Rosa damascena Mill. Oil Industry: A Literature Review on Biomass Potential for Food and Feed Ingredients. Processes. 2025; 13(6):1945. https://doi.org/10.3390/pr13061945
Chicago/Turabian StyleKolev, Nikolay, Mihaela Ivanova, Alexandar Balabanov, Desislava Vlahova-Vangelova, Aneta Kišová, and Francesco Vizzarri. 2025. "Utilization of Agro-Industrial Residues from the Rosa damascena Mill. Oil Industry: A Literature Review on Biomass Potential for Food and Feed Ingredients" Processes 13, no. 6: 1945. https://doi.org/10.3390/pr13061945
APA StyleKolev, N., Ivanova, M., Balabanov, A., Vlahova-Vangelova, D., Kišová, A., & Vizzarri, F. (2025). Utilization of Agro-Industrial Residues from the Rosa damascena Mill. Oil Industry: A Literature Review on Biomass Potential for Food and Feed Ingredients. Processes, 13(6), 1945. https://doi.org/10.3390/pr13061945