A Study on the Enhancement of Storage Stability in Formulated Gac Fruit Oil and Its Encapsulated Form
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Gac Aril Oil Extraction
2.4. Hard Capsule, Soft Capsule, and PTP Packaging Manufacturing
2.5. Acid Value (AV)
2.6. Peroxide Value (PV)
2.7. High-Performance Liquid Chromatography (HPLC) Analysis of Lycopene and β-Carotene
2.8. Statistical Analysis
3. Results
3.1. Effects of Capsule Types on the Acid Value and Peroxide Value
3.2. Effects of Capsule Types on Lycopene and β-Carotene Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tuyen, C.K.; Nguyen, M.H.; Roach, P.D.; Stathopoulos, C.E. A storage study of encapsulated gac (Momordica cochinchinensis) oil powder and its fortification into foods. Food Bioprod. Process. 2015, 96, 113–125. [Google Scholar]
- Ghadage, S.; Mane, K.; Agrawal, R.; Pawar, V. Tomato lycopene: Potential health benefits. Pharma Innov. J. 2019, 8, 1245–1248. [Google Scholar]
- Khan, U.M.; Sevindik, M.; Zarrabi, A.; Nami, M.; Ozdemir, B.; Kaplan, D.N.; Selamoglu, Z.; Hasan, M.; Kumar, M.; Alshehri, M.M. Lycopene: Food sources, biological activities, and human health benefits. Oxidative Med. Cell. Longev. 2021, 2021, 2713511. [Google Scholar] [CrossRef]
- Sullivan, E.M.; Pennington, E.R.; Green, W.D.; Beck, M.A.; Brown, D.A.; Shaikh, S.R. Mechanisms by which dietary fatty acids regulate mitochondrial structure-function in health and disease. Adv. Nutr. 2018, 9, 247–262. [Google Scholar] [CrossRef]
- Chen, H.; Deng, G.; Zhou, Q.; Chu, X.; Su, M.; Wei, Y.; Li, L.; Zhang, Z. Effects of eicosapentaenoic acid and docosahexaenoic acid versus α-linolenic acid supplementation on cardiometabolic risk factors: A meta-analysis of randomized controlled trials. Food Funct. 2020, 11, 1919–1932. [Google Scholar] [CrossRef]
- Nhu Quynh, N.; Hai, T.; Man, P.; Thanh, L. Effect of wall material on the property of Gac oil spray-dried power. J. Nutr. Food Sci. 2016, 6, 1–4. [Google Scholar] [CrossRef]
- Saini, R.K.; Assefa, A.D.; Keum, Y.-S. Fatty acid and carotenoid composition of bitter melon (Momordica charantia L.) seed arils: A potentially valuable source of lycopene. J. Food Meas. Charact. 2017, 11, 1266–1273. [Google Scholar] [CrossRef]
- Wang, S.; Fang, Y.; Xu, Y.; Zhu, B.; Piao, J.; Zhu, L.; Yao, L.; Liu, K.; Wang, S.; Zhang, Q. The effects of different extraction methods on physicochemical, functional and physiological properties of soluble and insoluble dietary fiber from Rubus chingii Hu. fruits. J. Funct. Foods 2022, 93, 105081. [Google Scholar] [CrossRef]
- Nguyen, T.Q.N.; Tran, V.N.; Anh, L.T.H.; Bui, H.N.; Tran, D.D.; Cizkova, H. A New Approach for Stabilization of Gac Oil by Natural Antioxidants. Curr. Appl. Sci. Technol. 2021, 21, 431–444. [Google Scholar]
- Ninčević Grassino, A.; Rimac Brnčić, S.; Badanjak Sabolović, M.; Šic Žlabur, J.; Marović, R.; Brnčić, M. Carotenoid Content and Profiles of Pumpkin Products and By-Products. Molecules 2023, 28, 858. [Google Scholar] [CrossRef]
- Abbassi, A.E.; Khalid, N.; Zbakh, H.; Ahmad, A. Characteristics, Nutritional Properties, and Health Benefits of Argan Oil: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1401–1414. [Google Scholar] [CrossRef] [PubMed]
- Maszewska, M.; Florowska, A.; Dłużewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Żbikowska, A. Oxidative stability of selected edible oils. Molecules 2018, 23, 1746. [Google Scholar] [CrossRef]
- El Bernoussi, S.; Boujemaa, I.; Harhar, H.; Belmaghraoui, W.; Matthäus, B.; Tabyaoui, M. Evaluation of oxidative stability of sweet and bitter almond oils under accelerated storage conditions. J. Stored Prod. Res. 2020, 88, 101662. [Google Scholar] [CrossRef]
- Xu, W.; Yao, J.; Yi, Y.; Wang, H.-X.; Wang, L.-M. Effects of storage condition on the physicochemical characteristics of sunflower seed oil. RSC Adv. 2019, 9, 42262–42271. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Yusta, A.; Guillén, M.D. Enrichment of sunflower oil with γ-tocopherol. Study by 1H NMR of its effect under accelerated storage conditions. Eur. J. Lipid Sci. Technol. 2019, 121, 1800457. [Google Scholar] [CrossRef]
- Li, Y.; Ma, W.-J.; Qi, B.-K.; Rokayya, S.; Li, D.; Wang, J.; Feng, H.-X.; Sui, X.-N.; Jiang, L.-Z. Blending of soybean oil with selected vegetable oils: Impact on oxidative stability and radical scavenging activity. Asian Pac. J. Cancer Prev. 2014, 15, 2583–2589. [Google Scholar] [CrossRef]
- Begum, S.G.; Hasmitha, Y.; Reddy, U.G.; Deepa, M.; Reddy, K.S.; Susmitha, R. A review on manufacturing and evaluation of capsules. World J. Pharm. Sci. 2018, 6, 65–126. [Google Scholar]
- Kathpalia, H.; Sharma, K.; Doshi, G. Recent trends in Hard Gelatin capsule delivery System. J. Adv. Pharm. Educ. Res. 2014, 4, 165–177. [Google Scholar]
- Almukainzi, M.; Salehi, M.; Chacra, N.A.; Löbenberg, R. Comparison of the rupture and disintegration tests for soft-shell capsules. Dissolut. Technol. 2011, 18, 21–25. [Google Scholar] [CrossRef]
- Koehl, N.J.; Shah, S.; Tenekam, I.D.; Khamiakova, T.; Sauwen, N.; Vingerhoets, S.; Coppenolle, H.; Holm, R. Lipid Based Formulations in Hard Gelatin and HPMC Capsules: A Physical Compatibility Study. Pharm. Res. 2021, 38, 1439–1454. [Google Scholar] [CrossRef]
- Ciotea, D.; Popa, M.E. Trends on pharmaceutical packaging materials. Sci. Bull. Ser. F Biotechnol. 2019, 23, 137–142. [Google Scholar]
- Kubola, J.; Siriamornpun, S. Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chem. 2011, 127, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Akkarachaneeyakorn, S.; Boonrattanakom, A.; Pukpin, P.; Rattanawaraha, S.; Khantaphant, S. Optimization of Oil Extraction from Gac (Momordica cochinchinensis Spreng) Aril Using a Screw Press. Chiang Mai Univ. J. Nat. Sci. 2015, 14, 257–268. [Google Scholar] [CrossRef]
- Chen, W.-A.; Chiu, C.P.; Cheng, W.-C.; Hsu, C.-K.; Kuo, M.-I. Total polar compounds and acid values of repeatedly used frying oils measured by standard and rapid methods. J. Food Drug Anal. 2013, 21, 58–65. [Google Scholar]
- OSI AOCS. AOCS Official Method Cd 8b-90: Peroxide Value Acetic Acid-Isooctane Method, Official Methods and Recommended Practices of the AOCS; American Oil Chemists Society Press: Champaign, IL, USA, 2011. [Google Scholar]
- Karami, H.; Rasekh, M.; Mirzaee–Ghaleh, E. Comparison of chemometrics and AOCS official methods for predicting the shelf life of edible oil. Chemom. Intell. Lab. Syst. 2020, 206, 104165. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, S.; Shen, M.; Xie, J.; Yang, J. Evaluation of trans fatty acids, carbonyl compounds and bioactive minor components in commercial linseed oils. Food Chem. 2022, 369, 130930. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Han, L.; Wang, D.; Sun, Y.; Huang, J.; Shahidi, F. Stability and stabilization of omega-3 oils: A review. Trends Food Sci. Technol. 2021, 118, 17–35. [Google Scholar] [CrossRef]
- Al-Tabakha, M.M.; Arida, A.I.; Fahelelbom, K.M.; Sadek, B.; Saeed, D.A.; Abu Jarad, R.A.; Jawadi, J. Influence of capsule shell composition on the performance indicators of hypromellose capsule in comparison to hard gelatin capsules. Drug Dev. Ind. Pharm. 2015, 41, 1726–1737. [Google Scholar] [CrossRef]
- Ock, S.Y.; Lim, W.S.; Park, G.D.; Lee, M.H.; Park, H.J. Physical and mechanical properties of plant-derived soft-shell capsules formulated with hydroxypropyl starches from different botanical sources. Polym. Test. 2020, 91, 106871. [Google Scholar] [CrossRef]
- Kamal-Eldin, A. Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur. J. Lipid Sci. Technol. 2006, 108, 1051–1061. [Google Scholar] [CrossRef]
- Yanishlieva, N.; Raneva, V.; Marinova, E. β-carotene in sunflower oil oxidation. Grasas Y Aceites 2001, 52, 10–16. [Google Scholar] [CrossRef]
- Kwon, H.J.; Yun, H.C.; Lee, J.Y.; Jeong, E.J.; Cho, H.N.; Kim, D.Y.; Park, S.A.; Lee, S.J.; Kang, J.M. Oxidative stability of omega-3 dietary supplements according to product characteristics. Anal. Sci. Technol. 2020, 33, 215–223. [Google Scholar]
- Jolayemi, O.S.; Muritala, Y. Confirmatory assessments of putative quality and nutritional properties of branded and unbranded commercial edible oils. Meas. Food 2022, 7, 100055. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Wen, S.; Sun, Y.; Chen, J.; Gao, Y.; Sagymbek, A.; Yu, X. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chem. 2021, 358, 129834. [Google Scholar] [CrossRef]
- Elouafy, Y.; El Idrissi, Z.L.; El Yadini, A.; Harhar, H.; Alshahrani, M.M.; Al Awadh, A.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A.; Tabyaoui, M. Variations in Antioxidant Capacity, Oxidative Stability, and Physicochemical Quality Parameters of Walnut (Juglans regia) Oil with Roasting and Accelerated Storage Conditions. Molecules 2022, 27, 7693. [Google Scholar] [CrossRef] [PubMed]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D.; Parks, S.E.; Stathopoulos, C. Gac fruit: Nutrient and phytochemical composition, and options for processing. Food Rev. Int. 2013, 29, 92–106. [Google Scholar] [CrossRef]
- Finley, J.W.; Shahidi, F. The chemistry, processing, and health benefits of highly unsaturated fatty acids: An overview. In Omega-3 Fatty Acids; ACS Publications: Washington, DC, USA, 2001; Chapter 1; pp. 2–11. [Google Scholar] [CrossRef]
- Kolanowski, W. Omega-3 LC PUFA contents and oxidative stability of encapsulated fish oil dietary supplements. Int. J. Food Prop. 2010, 13, 498–511. [Google Scholar] [CrossRef]
- Ozyurt, G.; Ekmen, D.; Durmuş, M.; Ucar, Y. Assessment of the safety of dietary fish oil supplements in terms of content and quality. Environ. Sci. Pollut. Res. 2022, 29, 25006–25019. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Laukagalis, V.; Paulauskienė, A.; Baltušnikienė, A.; Meškinytė, E. Quality Changes of Cold-Pressed Black Cumin (Nigella sativa L.), Safflower (Carthamus tinctorius L.), and Milk Thistle (Silybum marianum L.) Seed Oils during Storage. Plants 2023, 12, 1351. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Viana da Silva, M.; Santos, M.R.C.; Alves Silva, I.R.; Macedo Viana, E.B.; Dos Anjos, D.A.; Santos, I.A.; Barbosa de Lima, N.G.; Wobeto, C.; Jorge, N.; Lannes, S.C.D.S. Synthetic and natural antioxidants used in the oxidative stability of edible oils: An overview. Food Rev. Int. 2022, 38, 349–372. [Google Scholar] [CrossRef]
- Wroniak, M.; Raczyk, M.; Kruszewski, B.; Symoniuk, E.; Dach, D. Effect of Deep Frying of Potatoes and Tofu on Thermo-Oxidative Changes of Cold Pressed Rapeseed Oil, Cold Pressed High Oleic Rapeseed Oil and Palm Olein. Antioxidants 2021, 10, 1637. [Google Scholar] [CrossRef]
- Huang, X.; Gao, W.; Yun, X.; Qing, Z.; Zeng, J. Effect of natural antioxidants from marigolds (Tagetes erecta L.) on the oxidative stability of soybean oil. Molecules 2022, 27, 2865. [Google Scholar] [CrossRef] [PubMed]
- Méndez, A.I.; Falqué, E. Effect of storage time and container type on the quality of extra-virgin olive oil. Food Control 2007, 18, 521–529. [Google Scholar] [CrossRef]
- Morsy, M.K.; Sami, R.; Algarni, E.; Al-Mushhin, A.A.; Benajiba, N.; Almasoudi, A.G.; Mekawi, E. Phytochemical Profile and Antioxidant Activity of Sesame Seed (Sesamum indicum) By-Products for Stability and Shelf Life Improvement of Refined Olive Oil. Antioxidants 2022, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.-E.; Prasad, K.N.; Kong, K.-W.; Jiang, Y.; Ismail, A. Carotenoids and their isomers: Color pigments in fruits and vegetables. Molecules 2011, 16, 1710–1738. [Google Scholar] [CrossRef]
- Ishida, B.K.; Turner, C.; Chapman, M.H.; McKeon, T.A. Fatty acid and carotenoid composition of gac (Momordica cochinchinensis Spreng) fruit. J. Agric. Food Chem. 2004, 52, 274–279. [Google Scholar] [CrossRef]
- Xianquan, S.; Shi, J.; Kakuda, Y.; Yueming, J. Stability of lycopene during food processing and storage. J. Med. Food 2005, 8, 413–422. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Z.; Hu, L. Recent technological strategies for enhancing the stability of lycopene in processing and production. Food Chem. 2022, 405, 134799. [Google Scholar] [CrossRef]
- Rehman, A.; Tong, Q.; Jafari, S.M.; Assadpour, E.; Shehzad, Q.; Aadil, R.M.; Iqbal, M.W.; Rashed, M.M.; Mushtaq, B.S.; Ashraf, W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv. Colloid Interface Sci. 2020, 275, 102048. [Google Scholar] [CrossRef]
- Anese, M.; Bot, F.; Panozzo, A.; Mirolo, G.; Lippe, G. Effect of ultrasound treatment, oil addition and storage time on lycopene stability and in vitro bioaccessibility of tomato pulp. Food Chem. 2015, 172, 685–691. [Google Scholar] [CrossRef]
- El Yamani, M.; Boussakouran, A.; Rharrabti, Y. Effect of storage time and conditions on the quality characteristics of ‘Moroccan Picholine’olive oil. Biocatal. Agric. Biotechnol. 2022, 39, 102244. [Google Scholar] [CrossRef]
- Aliyu, R.S.; Lawal, A.M.; Chasta, P.; Sharma, G.K. Capsules: Types, manufacturing, formulation, quality control tests and, packaging and storage-A comprehensive review. World J. Pharm. Life Sci. WJPLS 2020, 6, 8. [Google Scholar]
- Boonlao, N.; Ruktanonchai, U.R.; Anal, A.K. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids Surf. B Biointerfaces 2022, 209, 112211. [Google Scholar] [CrossRef]
- Fatima, K.; Masood, N.; Luqman, S. Quenching of singlet oxygen by natural and synthetic antioxidants and assessment of electronic UV/Visible absorption spectra for alleviating or enhancing the efficacy of photodynamic therapy. Biomed. Res. Ther. 2016, 3, 8. [Google Scholar] [CrossRef]
- Mousavi, S.; Mariotti, R.; Stanzione, V.; Pandolfi, S.; Mastio, V.; Baldoni, L.; Cultrera, N.G. Evolution of extra virgin olive oil quality under different storage conditions. Foods 2021, 10, 1945. [Google Scholar] [CrossRef]
- Tuyen, C.K.; Nguyen, M.H.; Roach, P.D.; Stathopoulos, C.E. Microencapsulation of gac oil by spray drying: Optimization of wall material concentration and oil load using response surface methodology. Dry. Technol. 2014, 32, 385–397. [Google Scholar]
- Colle, I.J.; Lemmens, L.; Knockaert, G.; Van Loey, A.; Hendrickx, M. Carotene degradation and isomerization during thermal processing: A review on the kinetic aspects. Crit. Rev. Food Sci. Nutr. 2016, 56, 1844–1855. [Google Scholar] [CrossRef]
- Smyk, B. Singlet oxygen autoxidation of vegetable oils: Evidences for lack of synergy between β-carotene and tocopherols. Food Chem. 2015, 182, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Lavelli, V.; Sereikaitė, J. Kinetic study of encapsulated β-carotene degradation in aqueous environments: A review. Foods 2022, 11, 317. [Google Scholar] [CrossRef] [PubMed]
- Daberte, I.; Barene, I.; Rubens, J.; Daugavietis, M.; Sazhenova, N. Stability of Soft Gelatin Capsules Containing Thick Extract of Pine Needled. Medicina 2011, 47, 71–77. [Google Scholar]
- Galdeano, M.C.; dos Santos Gomes, F.; Chávez, D.W.H.; Almeida, E.L.; Moulin, L.C.; Tonon, R.V. Lycopene-rich watermelon concentrate used as a natural food colorant: Stability during processing and storage. Food Res. Int. 2022, 160, 111691. [Google Scholar] [CrossRef] [PubMed]
Carotenoid | Content (ppm) |
---|---|
β-carotene | 6047.52 ± 16.15 |
Lycopene | 3192.82 ± 20.21 |
Capsules | Hard Capsules | Soft Capsules |
---|---|---|
Element | HPMC, potassium chloride, and distilled water | HPMC and carrageenan |
Manufacturer | Yu Luen Biotech Scientific Co., Ltd., Taiwan | B. M. Bio. International Company, Taiwan |
Packaging | Capsule | Day 0 | Day 24 |
---|---|---|---|
Press through packaging | Hard capsule | ||
Soft capsule | |||
Naked particles | Hard capsule | ||
Soft capsule |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.-H.; Lin, C.-Y.; Wu, M.-C.; Liu, S.-L.; Wu, S.-J.; Hsieh, C.-W. A Study on the Enhancement of Storage Stability in Formulated Gac Fruit Oil and Its Encapsulated Form. Processes 2025, 13, 1913. https://doi.org/10.3390/pr13061913
Wu P-H, Lin C-Y, Wu M-C, Liu S-L, Wu S-J, Hsieh C-W. A Study on the Enhancement of Storage Stability in Formulated Gac Fruit Oil and Its Encapsulated Form. Processes. 2025; 13(6):1913. https://doi.org/10.3390/pr13061913
Chicago/Turabian StyleWu, Po-Hua, Chia-Yu Lin, Ming-Chang Wu, Shih-Lun Liu, Sz-Jie Wu, and Chang-Wei Hsieh. 2025. "A Study on the Enhancement of Storage Stability in Formulated Gac Fruit Oil and Its Encapsulated Form" Processes 13, no. 6: 1913. https://doi.org/10.3390/pr13061913
APA StyleWu, P.-H., Lin, C.-Y., Wu, M.-C., Liu, S.-L., Wu, S.-J., & Hsieh, C.-W. (2025). A Study on the Enhancement of Storage Stability in Formulated Gac Fruit Oil and Its Encapsulated Form. Processes, 13(6), 1913. https://doi.org/10.3390/pr13061913