Influence of Organic Solvent on the Physicochemical Characteristics of Calcium Citrate Prepared from Mussel Shell Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CaCO3 from Mussel Shells
2.2. Synthesis of Calcium Citrate
2.3. Material Characterizations
3. Results and Discussion
3.1. Production Results
3.2. Vibrational Spectroscopy
3.3. Structural and Phase Characteristics
3.4. Chemical Composition
3.5. Thermal Decomposition Behavior
- CC-AC (Figure 3a)
- CC-Et (Figure 3b)
- CC-IPA (Figure 3c)
3.6. Morphological Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, H.; Liu, Y.; Peng, H.; Li, K.; Li, C.; Jiang, S.; Chen, M.; Han, D.; Gong, J. Improving calcium citrate food functions through spherulitic growth in reactive crystallization and a mechanism study. Food Chem. 2023, 404, 134550. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.-Y.; Kim, H.-J.; Han, J.-S. Anti-inflammatory effects of calcium citrate in RAW 264.7 cells via suppression of NF-κB activation. Environ. Toxicol. Pharmacol. 2015, 39, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Hany, M.; Wuyts, S.; Abouelnasr, A.A.; Zidan, A.; Demerdash, H.M.; Hussein, H.A.S.M.; Arida, R.E.; Elsharkawi, S.M.; Kramers, C.; Torensma, B. Comparison of calcium citrate and calcium carbonate absorption in patients with a Roux-en-Y gastric bypass, sleeve gastrectomy, and one-anastomosis gastric bypass: A double-blind, randomized cross-over trial. Surg. Obes. Relat. Dis. 2025, 21, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Boonen, S.; Vanderschueren, D.; Haentjens, P.; Lips, P. Calcium and vitamin D in the prevention and treatment of osteoporosis–a clinical update. J. Intern. Med. 2006, 259, 539–552. [Google Scholar] [CrossRef]
- Zhong, L.; Li, J.; Gao, Y.; Cao, W.; Zhang, P.; Lai, X. Preparation and characterisation of calcium citrate wires. Micro Nano Lett. 2015, 10, 419–421. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Gao, Y.; Zhong, L.; Zou, Q.; Lai, X. Preparation and properties of calcium citrate nanosheets for bone graft substitute. Bioengineered 2016, 7, 376–381. [Google Scholar] [CrossRef]
- Wang, L.-m.; Wang, W.; Li, X.-C.; Peng, L.; Lin, Z.-Q. Calcium citrate: A new biomaterial that can enhance bone formation in situ. Chin. J. Traumatol. 2012, 15, 291–296. [Google Scholar]
- Zhang, W.; Wang, W.; Chen, Q.-Y.; Lin, Z.-Q.; Cheng, S.-W.; Kou, D.-Q.; Ying, X.-Z.; Shen, Y.; Cheng, X.-J.; Nie, P.-F. Effect of calcium citrate on bone integration in a rabbit femur defect model. Asian Pac. J. Trop. Med. 2012, 5, 310–314. [Google Scholar] [CrossRef]
- Rovinaru, C.; Pasarin, D.; Matei, C. Optimization of conditions for production of calcium citrate from egg shells. Proceedings 2020, 57, 18. [Google Scholar] [CrossRef]
- Herdtweck, E.; Kornprobst, T.; Sieber, R.; Straver, L.; Plank, J. Crystal structure, synthesis, and properties of tri-calcium di-citrate tetra-hydrate [Ca3(C6H5O7)2(H2O)2]·2H2O. Z. Für Anorg. Und Allg. Chem. 2011, 637, 655–659. [Google Scholar] [CrossRef]
- Wei, S.; Sun, M. Transformation of calcite (CaCO3) into earlandite [Ca3(C6H5O7)2·4H2O] by the fungus Trichoderma asperellum BDH65. Int. Biodeterior. Biodegrad. 2021, 163, 105278. [Google Scholar] [CrossRef]
- Han, Y.; Yang, B.; Meng, L.-Y.; Cho, H.-K.; Lin, R.; Wang, X.-Y. Optimization of the life cycle environmental impact of shell powder and slag concrete using response surface methodology. Process Saf. Environ. Prot. 2025, 194, 272–288. [Google Scholar] [CrossRef]
- Choi, S.H.; Lee, J.-H.; Yoo, J.; Park, J.H.; Bae, J.-S.; Park, C.Y. Toward transformation of bivalve shell wastes into high value-added and sustainable products in South Korea: A review. J. Ind. Eng. Chem. 2024, 129, 38–52. [Google Scholar] [CrossRef]
- Srichanachaichok, W.; Pissuwan, D. Micro/nano structural investigation and characterization of mussel shell waste in Thailand as a feasible bioresource of CaO. Materials 2023, 16, 805. [Google Scholar] [CrossRef]
- Khosa, A.A.; Rehman, H.U.; Han, X.; Pan, J. In-depth review of CaCO3/CaO TCES system with the perspective of cyclic stability, reactors and its integration with CSPs. J. Energy Storage 2025, 106, 114820. [Google Scholar] [CrossRef]
- Huo, Y.; Lu, D.; Han, X.; Hu, S.; Sun, H.; Zhang, C.; Chen, Z.; Huang, J.; Yang, Y. The role of admixed CaO in a sulphoaluminate cement system under winter environments. J. Build. Eng. 2023, 78, 107638. [Google Scholar] [CrossRef]
- Amal, R.; Usman, M. A review of breakthroughs in biodiesel production with transition and non-transition metal-doped CaO nano-catalysts. Biomass Bioenergy 2024, 184, 107158. [Google Scholar] [CrossRef]
- Natsir, T.A.; Iknawati, A.M.; Wanadri, I.D.; Siswanta, D.; Lusiana, R.A.; Cahyaningrum, S.E. Environmentally friendly membrane based on chitosan, citric acid, and calcium for slow-release fertilizer. Heliyon 2025, 11, e41378. [Google Scholar] [CrossRef]
- Kao, C.-Y.; Huang, Y.-C.; Chiu, S.-Y.; Kuo, K.-L.; Hwang, P.-A. Bacteriostatic effect of a calcined waste clamshell-activated plastic film for food packaging. Materials 2018, 11, 1370. [Google Scholar] [CrossRef]
- Watanabe, T.; Fujimoto, R.; Sawai, J.; Kikuchi, M.; Yahata, S.; Satoh, S. Antibacterial characteristics of heated scallop-shell nano-particles. Biocontrol Sci. 2014, 19, 93–97. [Google Scholar] [CrossRef]
- Xing, R.; Qin, Y.; Guan, X.; Liu, S.; Yu, H.; Li, P. Comparison of antifungal activities of scallop shell, oyster shell and their pyrolyzed products. Egypt. J. Aquat. Res. 2013, 39, 83–90. [Google Scholar] [CrossRef]
- Topić Popović, N.; Lorencin, V.; Strunjak-Perović, I.; Čož-Rakovac, R. Shell waste management and utilization: Mitigating organic pollution and enhancing sustainability. Appl. Sci. 2023, 13, 623. [Google Scholar] [CrossRef]
- Durak, H.; Aysu, T. Thermochemical liquefaction of algae for bio-oil production in supercritical acetone/ethanol/isopropanol. J. Supercrit. Fluids 2016, 111, 179–198. [Google Scholar] [CrossRef]
- Welton, T. Solvents and sustainable chemistry. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2015, 471, 20150502. [Google Scholar] [CrossRef]
- Chanwetprasat, P.; Seangarun, C.; Seesanong, S.; Boonchom, B.; Laohavisuti, N.; Boonmee, W.; Rungrojchaipon, P. Effect of Citric Acid Concentration on the Transformation of Aragonite CaCO3 to Calcium Citrate Using Cockle Shells as a Green Calcium Source. Materials 2025, 18, 2003. [Google Scholar] [CrossRef]
- Prihanto, A.; Muryanto, S.; Ismail, R.; Jamari, J.; Bayuseno, A. Utilization of green mussel shell waste for calcium carbonate synthesis through the carbonation method with temperature variation. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Semarang, Indonesia, 1 September 2022; p. 012022. [Google Scholar]
- Boey, P.-l.; Maniam, G.P.; Abd Hamid, S.; Ali, D.M.H. Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: Optimization using response surface methodology. Fuel 2011, 90, 2353–2358. [Google Scholar] [CrossRef]
- Ruslan, H.N.; Muthusamy, K.; Jaafar, M.; Zamri, N.A.; Jaya, R.P. Mechanical properties of mortar with Anadara granosa waste as partial sand replacement. Open Civ. Eng. J. 2023, 17, e187414952303280. [Google Scholar] [CrossRef]
- Seesanong, S.; Wongchompoo, Y.; Boonchom, B.; Sronsri, C.; Laohavisuti, N.; Chaiseeda, K.; Boonmee, W. Economical and environmentally friendly track of biowaste recycling of scallop shells to calcium lactate. ACS Omega 2022, 7, 14756–14764. [Google Scholar] [CrossRef]
- Jang, W.Y.; Pyun, J.C.; Chang, J.H. Comparative In Vitro dissolution assessment of calcined and uncalcined hydroxyapatite using differences in bioresorbability and biomineralization. Int. J. Mol. Sci. 2024, 25, 621. [Google Scholar] [CrossRef]
- Rimsueb, N.; Cherdchom, S.; Aksornkitti, V.; Khotavivattana, T.; Sereemaspun, A.; Rojanathanes, R. Feeding cells with a novel “trojan” carrier: Citrate nanoparticles. Acs Omega 2020, 5, 7418–7423. [Google Scholar] [CrossRef]
- Groarke, R.; Vijayaraghavan, R.K.; Powell, D.; Rennie, A.; Brabazon, D. Powder characterization—Methods, standards, and state of the art. Fundam. Laser Powder Bed Fusion. Met. 2021, 491–527. [Google Scholar] [CrossRef]
- Khan, M.M. X-ray Fluorescence Spectroscopy. In Photocatalysts: Synthesis and Characterization Methods; Elsevier: Amsterdam, The Netherlands, 2025; pp. 225–237. [Google Scholar]
- Sronsri, C.; Boonchom, B. Thermal kinetic analysis of a complex process from a solid-state reaction by deconvolution procedure from a new calculation method and related thermodynamic functions of Mn0.90Co0.05Mg0.05HPO4·3H2O. Trans. Nonferrous Met. Soc. China 2018, 28, 1887–1902. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, L.; Yu, P.; Tang, N.; Liu, L.; Wang, W.; Wang, P.; Yang, Q.; Guo, S.; Li, J. Comparison and development of scanning electron microscope techniques for delicate plant tissues. Plant Sci. 2024, 340, 111963. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Green, W.H. Computing kinetic solvent effects and liquid phase rate constants using quantum chemistry and COSMO-RS methods. J. Phys. Chem. A 2023, 127, 5637–5651. [Google Scholar] [CrossRef]
- Varghese, J.J.; Mushrif, S.H. Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: A review. React. Chem. Eng. 2019, 4, 165–206. [Google Scholar] [CrossRef]
- Schwaller, P.; Vaucher, A.C.; Laino, T.; Reymond, J.-L. Prediction of chemical reaction yields using deep learning. Mach. Learn. Sci. Technol. 2021, 2, 015016. [Google Scholar] [CrossRef]
- Chandrajith, V.; Marapana, R. Physicochemical characters of bark exudates of Lannea coromandelica and its application as a natural fruit coating. J. Pharmacogn. Phytochem. 2018, 7, 1798–1802. [Google Scholar]
- Fakheri, H.; Tayyari, S.F.; Heravi, M.M.; Morsali, A. Low frequency vibrational spectra and the nature of metal-oxygen bond of alkaline earth metal acetylacetonates. J. Mol. Struct. 2017, 1150, 340–348. [Google Scholar] [CrossRef]
- Xiao, H.; Hu, C.; Chen, C.; Tao, C.; Wu, Y.; Jiang, J. The advantage of alcohol–calcium method on the formation and the stability of vaterite against ethanol–water binary solvent method. J. Mater. Res. 2020, 35, 289–298. [Google Scholar] [CrossRef]
- Mahmood, S.K.; Zakaria, M.Z.A.B.; Razak, I.S.B.A.; Yusof, L.M.; Jaji, A.Z.; Tijani, I.; Hammadi, N.I. Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Biochem. Biophys. Rep. 2017, 10, 237–251. [Google Scholar] [CrossRef]
- Kaduk, J.A. Crystal structures of tricalcium citrates. Powder Diffr. 2018, 33, 98–107. [Google Scholar] [CrossRef]
- Mansour, S.A. Thermal decomposition of calcium citrate tetrahydrate. Thermochim. Acta 1994, 233, 243–256. [Google Scholar] [CrossRef]
- Hussain, M.H.; Abu Bakar, N.F.; Mustapa, A.N.; Low, K.-F.; Othman, N.H.; Adam, F. Synthesis of various size gold nanoparticles by chemical reduction method with different solvent polarity. Nanoscale Res. Lett. 2020, 15, 140. [Google Scholar] [CrossRef] [PubMed]
- Zobel, M.; Neder, R.B.; Kimber, S.A. Universal solvent restructuring induced by colloidal nanoparticles. Science 2015, 347, 292–294. [Google Scholar] [CrossRef]
- Palermo, A.; Naciu, A.M.; Tabacco, G.; Manfrini, S.; Trimboli, P.; Vescini, F.; Falchett, A. Calcium citrate: From biochemistry and physiology to clinical applications. Rev. Endocr. Metab. Disord. 2019, 20, 353–364. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, C.; Su, M.; Zhou, D.; Tao, Z.; Wu, S.; Xiao, L.; Li, Y. Development of citric acid-based biomaterials for biomedical applications. J. Mater. Chem. B 2024, 12, 11611–11635. [Google Scholar] [CrossRef]
Samples | Media | Reaction Temperatures (°C) | Reaction Time (min) | Reaction pH | Yields (%) | CC Product Cost (USD/kg) |
---|---|---|---|---|---|---|
CC-AC | Acetone | 30.1 | 37.69 | ~3.0–3.5 | 77.30 ± 1.22 | 2.54 |
CC-Et | Ethanol | 28.4 | 39.26 | ~3.0–3.5 | 77.87 ± 1.43 | 1.84 |
CC-IPA | Isopropanol | 27.3 | 34.77 | ~2.5–3.0 | 70.99 ± 1.09 | 2.23 |
Samples | Chemical Compositions (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | Si | Fe | Sr | Al | S | K | P | Cl | Mg | |
CC-AC | 97.7 | 0.570 | 0.594 | 0.550 | 0.136 | 0.153 | 0.097 | 0.084 | 0.095 | - |
CC-Et | 97.2 | 0.940 | 0.676 | 0.464 | 0.192 | 0.170 | 0.130 | 0.107 | 0.087 | - |
CC-IPA | 97.2 | 0.776 | 0.694 | 0.571 | 0.201 | 0.163 | 0.127 | 0.094 | 0.099 | 0.054 |
Samples | Temperatures (°C) (TG Range, Step, DTG Peak) | |||||
---|---|---|---|---|---|---|
Dehydration | Decomposition of Citrate | Decarbonization | ||||
CC-AC | 30–95 (1st) 78 | 95–146 (2nd) 124 | 146–286 (3rd) 212 | 286–393 (4th) 324 | 393–574 (5th) 507 | 574–758 (6th) 736 |
CC-Et | 30–134 (1st) 90 | 134–343 (2nd) 183 | 343–548 (3rd) 407 | 548–752 (4th) 672 | ||
CC-IPA | 30–105 (1st) 94 | 105–157 (2nd) 126 | 157–395 (3rd) 351 | 395–592 (4th) 462 | 592–761 (5th) 738 |
Samples | Weight Losses (wt%) | ||
---|---|---|---|
Dehydration (Weight Loss of 4H2O) | Decomposition of Citrate (the Remaining Weight of 3CaCO3) | Decarbonization (the Remaining Weight of 3CaO) | |
CC-AC | 5.05 | 50.18 | 31.56 |
CC-Et | 13.43 | 50.83 | 36.66 |
CC-IPA | 8.88 | 57.32 | 36.80 |
Theory | 12.60 | 52.30 | 30.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punthipayanon, S.; Chanwetprasat, P.; Seesanong, S.; Boonchom, B.; Rungrojchaipon, P.; Laohavisuti, N.; Boonmee, W. Influence of Organic Solvent on the Physicochemical Characteristics of Calcium Citrate Prepared from Mussel Shell Waste. Processes 2025, 13, 1866. https://doi.org/10.3390/pr13061866
Punthipayanon S, Chanwetprasat P, Seesanong S, Boonchom B, Rungrojchaipon P, Laohavisuti N, Boonmee W. Influence of Organic Solvent on the Physicochemical Characteristics of Calcium Citrate Prepared from Mussel Shell Waste. Processes. 2025; 13(6):1866. https://doi.org/10.3390/pr13061866
Chicago/Turabian StylePunthipayanon, Sirichet, Pantita Chanwetprasat, Somkiat Seesanong, Banjong Boonchom, Pesak Rungrojchaipon, Nongnuch Laohavisuti, and Wimonmat Boonmee. 2025. "Influence of Organic Solvent on the Physicochemical Characteristics of Calcium Citrate Prepared from Mussel Shell Waste" Processes 13, no. 6: 1866. https://doi.org/10.3390/pr13061866
APA StylePunthipayanon, S., Chanwetprasat, P., Seesanong, S., Boonchom, B., Rungrojchaipon, P., Laohavisuti, N., & Boonmee, W. (2025). Influence of Organic Solvent on the Physicochemical Characteristics of Calcium Citrate Prepared from Mussel Shell Waste. Processes, 13(6), 1866. https://doi.org/10.3390/pr13061866