Exploring Cactus Mucilage for Sustainable Food Packaging: A Bibliometric Review of a Decade of Research
Abstract
1. Introduction
2. Database and Methods
3. Results and Discussions of Bibliometric Analysis
4. Main Natural Polymers Combined with Cactus Mucilage to Form Biodegradable Films
5. Trends and Future Perspectives on the Application of Cactus Mucilage Films (Opuntia ficus-indica) in Foods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saratale, R.G.; Cho, S.-K.; Saratale, G.D.; Kadam, A.A.; Ghodake, G.S.; Kumar, M.; Bharagava, R.N.; Kumar, G.; Kim, D.S.; Mulla, S.I.; et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresour. Technol. 2021, 325, 124685. [Google Scholar]
- Chen, L.; Qing, T.; Chen, X.; Ren, W.; Zhang, H. Fabrication and evaluation of biodegradable multi-cross-linked mulch film based on waste gelatina. Chem. Eng. J. 2021, 419, 129639. [Google Scholar] [CrossRef]
- Menossi, M.; Mario, C.; Vera, A.; Claudia, C. Current and emerging biodegradable mulch films based on polysaccharide bio-composites. A review. Agron. Sustain. Dev. 2021, 41, 41–53. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Q.; Man, L. Bamboo-derived carboxymethyl cellulose for liquid film as renewable and biodegradable agriculture mulching. Int. J. Biol. Macromol. 2021, 192, 611–617. [Google Scholar] [CrossRef]
- Sid, S.; Mor, R.S.; Kishore, A.; Sharanagat, V.S. Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci. Technol. 2021, 111, 87–104. [Google Scholar] [CrossRef]
- Makhloufi, N.; Chougui, N.; Rezgui, F.; Benramdane, E.; Silvestre, A.J.D.; Freire, C.S.R.; Vilela, C. Polysaccharide-based films of cactus mucilage and agar with antioxidant properties for active food packaging. Polym. Bull. 2022, 79, 11369–11388. [Google Scholar] [CrossRef]
- Gheribi, R.; Puchot, L.; Verge, P.; Jaoued-Grayaa, N.; Mohamed, M.; Habibi, Y.; Khaoula, K. Development of plasticized edible flms from Opuntia fícus indica mucilage: A comparative study of various. Carbohydr. Polym. 2018, 190, 204–211. [Google Scholar] [CrossRef]
- Contreras-Padilha, M.; Rodríguez-García, M.E.; Gutiérrezcortez, E.; Valderrama-Bravo, M.C.; Rojas-Molina, J.I.; Riveramunoz, E.M. Physicochemical and rheological characterization of Opuntia fícus mucilage at three diferente maturity stages of cladode. Eur. Polym. J. 2016, 78, 226–234. [Google Scholar] [CrossRef]
- Taheri, A.; Jafari, S.M. Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Adv. Colloid Interface Sci. 2019, 269, 277–295. [Google Scholar] [CrossRef]
- Biswak, A.K.; Chakraborty, S.; Saha, J.; Panda, P.K.; Pradhan, S.K.; Behera, P.K.; Misra, P.K. Process Optimization, Fabrication, and Characterization of a Starch-Based Biodegradable Film Derived from an Underutilized Crop. ACS Food Sci. Technol. 2024, 8, 1844–1863. [Google Scholar] [CrossRef]
- Gheribi, R.; Gharbi, M.A.; Ouni, M.E.; Khwakdia, K. Enhancement of the physical, mechanical and thermal properties of cactus mucilage films by blending with polyvinyl alcohol. Food Packag. Shelf Life 2019, 22, 100386. [Google Scholar] [CrossRef]
- Kumar, L.; Deshmukh, R.K.; Gaikwad, K.K. Antimicrobial packaging film from cactus (Cylindropuntia fulgida) mucilage and gelatine. Int. J. Biol. Macromol. 2022, 251, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Mannai, F.; Mechi, L.; Alimi, F.; Alsukaibi, A.K.D.; Belgacem, M.N.; Moussaoui, Y. Biodegradable composite films based on mucilage from Opuntia ficus-indica (Cactaceae): Microstructural, functional and thermal properties. Int. J. Biol. Macromol. 2023, 252, 126456. [Google Scholar] [CrossRef] [PubMed]
- Zegbe, J.A.; Mena-Covarrubias, J.; Domínguez-Canales, V.S.I. Cactus mucilage as a coating film to enhance shelf life of unprocessed guavas (Psidium guajava L.). Acta Hortic. 2015, 1067, 423–427. [Google Scholar] [CrossRef]
- Vieira, E.A.; Cordeiro, A.M.T.M. Bioprospecting and potential of cactus mucilages: A bibliometric review. Food Chem. 2023, 401, 134121. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Wang, Y.; Brian, D. Research progress and hotspot analysis for reactive nitrogen flows in macroscopic systems based on a CiteSpace analysis. Ecol. Model. 2021, 443, 109456. [Google Scholar] [CrossRef]
- Liu, L.; Zou, G.; Zou, Q.; Li, S.; Bao, Z.; Jin, T.; Liu, D.; Du, L. It is still too early to promote biodegradable mulch film on a large scale: A bibliometric analysis. Environ. Technol. Innov. 2022, 27, 102487. [Google Scholar] [CrossRef]
- Ribeiro, N.G.; Xavier-Santos, D.; Campelo, P.H.; Guimarães, J.T.; Pimentel, T.C.; Duarte, M.C.K.H.; Freitas, M.Q.; Esmerino, E.A.; Silva, M.C.; Cruz, A.G. Dairy foods and novel thermal and non-thermal processing: A bibliometric analysis. Innov. Food Sci. Emerg. Technol. 2022, 76, 102934. [Google Scholar] [CrossRef]
- Prabakusuma, A.S.; Wardono, B.; Fahlevi, M.; Zulham, A.; Sunarno, M.T.D.; Syukur, M.; Aljuaid, M.; Saniuk, S.; Apriliani, T.; Pramoda, R. A bibliometric approach to understanding the recent development of self-sufficient fish feed production utilizing agri-food wastes and by-products towards sustainable aquaculture. Heliyon 2023, 9, e17573. [Google Scholar] [CrossRef]
- Eck, N.J.V.; Waltman, L. Visualizing Bibliometric Networks. Meas. Sch. Impact 2014, 3, 285–320. [Google Scholar]
- Dirpan, A.; Ainani, A.F.; Djalal, M. A bibliometrics visualization analysis of active packaging system for food packaging. Heliyon 2023, 9, e18457. [Google Scholar] [CrossRef] [PubMed]
- Carpinteyro-Urban, S.; Vaca, M.; Torres, L.G. Can Vegetal Biopolymers Work as Coagulant–Flocculant Aids in the Treatment of High-Load Cosmetic Industrial Wastewaters? Water Air Soil Pollut. 2012, 223, 4925–4936. [Google Scholar] [CrossRef]
- Felkai-Haddache, L.; Dahmoune, F.; Remini, H.; Lefsih, K.; Mouni, L.; Madani, K. Microwave optimization of mucilage extraction from Opuntia ficus indica Cladodes. Int. J. Biol. Macromol. 2016, 84, 24–30. [Google Scholar] [CrossRef]
- Dominguez-Martinez, B.M.; Martínez-Flores, H.E.; Berrios, J.D.J.; Otoni, C.G.; Wood, D.F.; Velazquez, G. Physical Characterization of Biodegradable Films Based on Chitosan, Polyvinyl Alcohol and Opuntia Mucilage. J. Polym. Environ. 2017, 25, 683–691. [Google Scholar] [CrossRef]
- Zoghlami, N.; Chrita, I.; Bouamama, B.; Gargouri, M.; Zemni, H.; Ghorbel, A.; Mliki, A. Molecular based assessment of genetic diversity within Barbary fig (Opuntia ficus indica (L.) Mill.) in Tunisia. Sci. Hortic. 2007, 13, 134–141. [Google Scholar] [CrossRef]
- Amani, E.; Marwa, L.; Hichem, B.S.; Amel, S.-H.; Ghada, B. Morphological variability of prickly pear cultivars (Opuntia spp.) established in ex-situ collection in Tunisia. Sci. Hortic. 2019, 248, 163–175. [Google Scholar] [CrossRef]
- Campo, C.; Dick, M.; Santos, P.P.; Costa, T.M.H.; Paese, K.; Guterres, S.S.; Rios, A.O.; Flôres, S.H. Zeaxanthin nanoencapsulation with Opuntia monacantha mucilage as structuring material: Characterization and stability evaluation under different temperatures. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 410–421. [Google Scholar] [CrossRef]
- Araújo, C.G.S.; Sardinha, A. H-index of cited articles: A contribution to the evaluation of the scientific production of researchers. Braz. J. Sports Med. 2011, 17, 358–362. [Google Scholar]
- Barbosa Júnior, L.G.; Almeida, F.L.C.; Luna, L.C.; Castro, M.P.J.; Almeida, E.C. Cotton oil and flour: A bibliometric study. Holos 2021, 2, 1–17. [Google Scholar]
- Manhivi, V.E.; Venter, S.; Amonsou, E.O.; Kudanga, T. Composition, thermal and rheological properties of polysaccharides from amadumbe (Colocasia esculenta) and cactus (Opuntia spp.). Carbohydr. Polym. 2018, 195, 163–169. [Google Scholar] [CrossRef]
- Fox, D.I.; Stebbins, D.M.; Alcantar, N.A. Combining Ferric Salt and Cactus Mucilage for Arsenic Removal from Water. Environ. Sci. Technol. 2016, 50, 2507–2513. [Google Scholar] [CrossRef] [PubMed]
- Beikzadeh, S.; Khezerlou, A.; Jafari, S.M.; Pilevar, Z.; Mortazavian, A.M. Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Adv. Colloid Interface Sci. 2020, 280, 102164. [Google Scholar] [CrossRef] [PubMed]
- Carmona, J.C.; Robert, P.; Vergara, C.; Sáenz, C. Microparticles of yellow-orange cactus pear pulp (Opuntia ficus-indica) with cladode mucilage and maltodextrin as a food coloring in yogurt. LWT 2020, 138, 110672. [Google Scholar] [CrossRef]
- Otálora, M.C.; Gómez-Castaño, J.A.; Wilches-Torres, A. Preparation, study and characterization of complex coacervates formed between gelatin and cactus mucilage extracted from cladodes of Opuntia ficus-indica. LWT 2019, 112, 108234. [Google Scholar] [CrossRef]
- Todhanakasem, T.; Boonchuai, P.; Ayutthaya, P.I.; Suwapanich, R.; Hararak, B.; Wu, B.; Young, B.M. Development of Bioactive Opuntia ficus-indica Edible Films Containing Probiotics as a Coating for Fresh-Cut Fruit. Polymers 2022, 14, 5018. [Google Scholar] [CrossRef]
- Otálora, M.C.; Carriazo, J.G.; Iturriaga, L.; Nazareno, M.A.; Osorio, C. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem. 2015, 187, 174–181. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Silipo, A.; Molinaro, A.; Parrilli, M.; Schiraldi, C.; D’Agostino, A.; Izzo, E.; Rizza, L.; Bonina, A.; Bonina, F.; et al. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties. Carbohydr. Polym. 2017, 157, 128–136. [Google Scholar] [CrossRef]
- Rodríguez-González, S.; Martínez-Flores, H.E.; Chávez-Moreno, C.K.; Macías-Rodríguez, L.I.; Zavala-Mendoza, E.; Garnica-Romo, M.G.; Chacón-García, L. Extraction and Characterization of Mucilage From Wild Species of Opuntia. J. Food Process. Eng. 2014, 37, 285–292. [Google Scholar] [CrossRef]
- Delia, S.-C.; Chávez, G.M.; León-Martínez, F.M.; Araceli, S.-G.P.; Irais, A.-L.; Franco, A.-A. Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage. Food Chem. 2019, 272, 715–722. [Google Scholar] [CrossRef]
- Gheribi, R.; Khwaldia, K. Cactus Mucilage for Food Packaging Applications. Coatings 2019, 9, 655. [Google Scholar] [CrossRef]
- Dick, M.; Dal Magro, L.; Rodrigues, R.C.; Rios, A.; De, O.; Flôres, S.H. Valorization of Opuntia monacantha (Willd.) Haw. cladodes to obtain a mucilage with hydrocolloid features: Physicochemical and functional performance. Int. J. Biol. Macromol. 2019, 123, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Madera-Santana, T.J.; Vargas-Rodríguez, L.; Núñez-Colín, C.A.; González-García, G.; Peña-CaballerO, V.; Núñez-Gastélum, J.A.; Gallegos-Vázquez, C.; Rodríguez-Núñez, J.R. Mucilage from cladodes of Opuntia spinulifera Salm-Dyck: Chemical, morphological, structural and thermal characterization. CyTA-J. Food 2018, 16, 650–657. [Google Scholar] [CrossRef]
- Messina, C.M.; Arena, R.; Morghese, M.; Santulli, A.; Liguori, G.; Inglese, P. Seasonal characterization of nutritional and antioxidant properties of Opuntia ficus-indica [(L.) Mill.] mucilage. Food Hydrocoll. 2021, 111, 106398. [Google Scholar] [CrossRef]
- Morais, M.A.S.; Fonseca, K.S.; Viégas, E.K.D.; Almeida, S.L.; Maia, R.K.M.; Silva, V.N.S.; Simões, A.N. Mucilage of spineless cactus in the composition of an edible coating for minimally processed yam (Dioscorea spp.). J. Food Meas. Charact. 2019, 3, 2000–2008. [Google Scholar] [CrossRef]
- Liguori, G.; Gaglio, R.; Settanni, L.; Inglese, P.; D’anna, F.; Miceli, A. Effect of Opuntia ficus-indica Mucilage Edible Coating in Combination with Ascorbic Acid, on Strawberry Fruit Quality during Cold Storage. J. Food Qual. 2021, 1, 9976052. [Google Scholar] [CrossRef]
- Caballero, L.R.C.; Wilches-Torres, A.; Cárdenas-Chaparro, A.; Gómez Castaño, J.A.; Otálora, M.C. Preparation and Physicochemical Characterization of Softgels Cross-Linked with Cactus Mucilage Extracted from Cladodes of Opuntia ficus-indica. Molecules 2019, 24, 2531. [Google Scholar] [CrossRef]
- Scognamiglio, F.; Gattia, D.M.; Roselli, G.; Persia, F.; Angelis, U.; Santulli, C. Thermoplastic Starch (TPS) Films Added with Mucilage from Opuntia Ficus Indica: Mechanical, Microstructural and Thermal Characterization. Materials 2020, 13, 1000. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, Q.; Liu, C.; Ao, Q.; Tian, X.; Fan, J.; Tong, H.; Wang, X. Natural polymers for organ 3D bioprinting. Polymers 2018, 10, 1278. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, Y.; Xia, X.; Yang, L.; Fan, M.; LI, Y.; Wang, L.I.; Qian, H. Effects of β-amylase treatment conditions on the gelatinization and retrogradation characteristics of wheat starch. Food Hydrocoll. 2022, 124, 107286. [Google Scholar] [CrossRef]
- Torres, F.G.; De- La- Torre, G.E. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int. J. Biol. Macromol. 2022, 194, 289–305. [Google Scholar] [CrossRef]
- Li, X.; Sha, X.-M.; Yang, H.-S.; Ren, Z.-Y.; Tu, Z.-C. Ultrasonic treatment regulates the properties of gelatin emulsion to obtain high-quality gelatin film. Food Chem. 2023, 18, 100673. [Google Scholar] [CrossRef] [PubMed]
- Tavares, W.S.; Barreto, G.A.V.; Pinto, E.P.; Silva, P.G.B.; Sousa, F.O. Influence of gelatin on the functional characteristics and wound healing potential of chitosan/zein films loaded with ellagic acid nanoparticles. J. Drug Deliv. Sci. Technol. 2023, 88, 104942. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Gómez-Guillén, M.C. A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: Special emphasis on nanotechnology-based approaches. Trends Food Sci. Technol. 2018, 79, 125–135. [Google Scholar] [CrossRef]
- Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial—A review on recent modifications and applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [Google Scholar] [CrossRef]
- Cazón, P.; Várquez, M. Mechanical and barrier properties of chitosan combined with other components as food packaging film. Environ. Chem. Lett. 2020, 18, 257–267. [Google Scholar] [CrossRef]
- Flórez, E.; Guerra-Rodríguez, P.; Cazón, M.; Vázquez. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll. 2022, 124, 107328. [Google Scholar] [CrossRef]
- Hosseini, S.; Parastouei, K.; Khodaiyan, F. Simultaneous extraction optimization and characterization of pectin and phenolics from sour cherry pomace. Int. J. Biol. Macromol. 2020, 158, 911–921. [Google Scholar] [CrossRef]
- Rahmani, Z.; Khodaiyan, F.; Kazemi, M.; Sharifan, A. Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. Int. J. Biol. Macromol. 2020, 147, 1107–1115. [Google Scholar] [CrossRef]
- Gupta, R.K.; Guha, P.; Srivastav, P.P. Natural polymers in bio-degradable/edible film: A review on environmental concerns, cold plasma technology and nanotechnology application on food packaging- A recent trends. Food Chem. Adv. 2022, 1, 100135. [Google Scholar] [CrossRef]
- Mostafavi, F.S.; Zaeim, D. Agar-based edible films for food packaging applications—A review. Int. J. Biol. Macromol. 2020, 59, 1165–1176. [Google Scholar] [CrossRef]
- Xiao, Q.; Weng, H.; Ni, H.; Hong, Q.; Lin, K.; Xiao, A. Physicochemical and gel properties of agar extracted by enzyme and enzyme-assisted methods. Food Hydrocoll. 2019, 87, 530–540. [Google Scholar] [CrossRef]
- Ranjbar, M.; Tabrizzad, M.H.A.; Asadi, G.; Ahari, H. Investigating the microbial properties of sodium alginate/chitosan edible film containing red beetroot anthocyanin extract for smart packaging in chicken fillet as a pH indicator. Heliyon 2023, 9, e18879. [Google Scholar] [CrossRef]
- Gheorghita, R.; Gutt, G.; Amariei, S. The use of edible films based on sodium alginate in meat product packaging: An eco-friendly alternative to conventional plastic materials. Coatings 2020, 10, 166. [Google Scholar] [CrossRef]
- Mahcene, Z.; Khelil, A.; Hasni, S.; Akman, P.K.; Bozkurt, F.; Birech, K.; Goudjil, M.B.; Tornuk, F. Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. Int. J. Biol. Macromol. 2020, 15, 124–132. [Google Scholar] [CrossRef]
- Huang, H.-D.; Ren, P.-G.; Zhong, G.-J.; Olah, A.; Li, Z.-M.; Baer, E.; Zhu, L. Promising strategies and new opportunities for high barrier polymer packaging films. Prog. Polym. Sci. 2023, 144, 101722. [Google Scholar] [CrossRef]
- Kamel, S.M. Utilization of Cactus Dear Peels Mucilage as an Edible Coating of Chicken Meat to Prolong its Shelf Life. Food Sci. Qual. Manag. 2014, 18, 71–77. [Google Scholar]
- Lira-Vargas, A.A.; Corrales-Garcia, J.J.E.; Valle-Guadarrama, S.; Pena-Valdivia, C.B.; Trejo-Marquez, M.A. Biopolymeric films based on cactus (Opuntia ficus-indica) mucilage incorporated with gelatin and beeswax. J. Prof. Assoc. Cactus Dev. 2014, 16, 51–70. [Google Scholar]
- Sandoval, D.C.G.; Sosa, B.L.; Martínez-Ávila, G.C.G.; Fuentes, H.R.; Abarca, V.H.A.; Rojas, R. Formulation and Characterization of Edible Films Based on Organic Mucilage from Mexican Opuntia ficus-indica. Coatings 2019, 9, 506. [Google Scholar] [CrossRef]
- Olicón-Hernández, D.R.; Acosta-Sánchez, A.; Monterrubio-López, R.; Guerra-Sánchez, G. Chitosan and Opuntia ficus-indica mucilage as the base of a polymeric edible film for the protection of tomatoes against Rhizopus stolonifera. Spec. J. Ciên Quím-Bióg. 2019, 22, 1–9. [Google Scholar]
- Dhall, R.K. Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Cakmak, H.; Ilyasoglu-Buyukkestelli, H.; Sogut, E.; Ozyurt, V.H.; Gumus-Bonacina, C.E.; Simsek, S. A review on recent advances of plant mucilages and their applications in food industry: Extraction, functional properties and health benefits. Food Hydrocoll. Health 2023, 3, 100131. [Google Scholar] [CrossRef]
Journal | Country | Citations | Publications | Impact Factor * | CiteScore |
---|---|---|---|---|---|
Carbohydrate Polymers | United Kingdom | 148 | 2 | 11.20 | 18.90 |
Environmental Science & Technology | United States | 93 | 2 | 11.40 | 16.70 |
LWT- Food Science and Technology | Switzerland | 73 | 3 | 6.00 | 6.70 |
Separation and Purification Technology | Netherlands | 70 | 2 | 8.60 | 12.70 |
Food Chemistry | United Kingdom | 58 | 3 | 8.80 | 14.90 |
Coatings | Switzerland | 40 | 1 | 3.40 | 4.70 |
Journal of Electroanalytical Chemistry | Netherlands | 31 | 1 | 4.50 | 7.50 |
Colloids and Surfaces B: Biointerfaces | Netherlands | 31 | 1 | 5.80 | 11.00 |
Water Science and Technology | United Kingdom | 31 | 1 | 2.70 | 3.40 |
Saudi Pharmaceutical Journal | Saudi Arabia | 31 | 1 | 4.56 | 5.70 |
International Journal of Biological Macromolecules | Netherlands | 28 | 2 | 8.20 | 14.50 |
Journal of the Taiwan Institute of Chemical Engineers | Taiwan | 24 | 1 | 5.70 | 9.60 |
Food Packaging and Shelf Life | Netherlands | 17 | 1 | 8.00 | 12.90 |
Journal of Food Measurement and Characterization | United States | 13 | 2 | 3.06 | 3.00 |
Molecules | Switzerland | 11 | 1 | 4.60 | 6.70 |
International J. of Environmental Analytical Chemistry | United Kingdom | 8 | 1 | 2.73 | 5.45 |
Saudi Journal of Biological Sciences | Saudi Arabia | 5 | 1 | 4.05 | 5.30 |
Polymers | Switzerland | 4 | 1 | 5.00 | 6.60 |
Publication | Year | NC | Journal | Reference |
---|---|---|---|---|
Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents | 2015 | 133 | Food Chemistry | Otalora et al. [36] |
Development of plasticized edible films from Opuntia ficus-indica mucilage: A comparative study of various polyol plasticizers | 2018 | 108 | Carbohydrate Polymers | Gheribi et al. [7] |
The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties | 2017 | 54 | Carbohydrate Polymers | Di Lorenzo et al. [37] |
Extraction and characterization of mucilage from wild species of Opuntia | 2014 | 51 | Journal of Food Process Engineering | Rodríguez-González et al. [38] |
Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage | 2019 | 43 | Food Chemistry | Delia et al. [39] |
Cactus Mucilage for Food Packaging Applications | 2019 | 41 | Coatings | Gheribi; Khwaldia, [40] |
Valorization of Opuntia monacantha (Willd.) Haw. cladodes to obtain a mucilage with hydrocolloid features: Physicochemical and functional performance | 2019 | 37 | International Journal of Biological Macromolecules | Dick et al. [41] |
Zeaxanthin nanoencapsulation with Opuntia monacantha mucilage as structuring material: Characterization and stability evaluation under different temperatures | 2018 | 32 | Colloids and Surfaces A-Physicochemical and Engineering Aspects | Campo et al. [27] |
Physical Characterization of Biodegradable Films Based on Chitosan, Polyvinyl Alcohol and Opuntia Mucilage | 2017 | 29 | Journal of Polymers and the Environment | Dominguez-Martinez et al. [24] |
Mucilage from cladodes of Opuntia spinulifera Salm-Dyck: chemical, morphological, structural and thermal characterization | 2018 | 22 | Cyta-Journal of Food | Madera-Santana et al. [42] |
Microwave optimization of mucilage extraction from Opuntia ficus indica Cladodes | 2016 | 20 | International Journal of Biological Macromolecules | Felkai-Haddache et al. [23] |
Enhancement of the physical, mechanical and thermal properties of cactus mucilage films by blending with polyvinyl alcohol | 2019 | 17 | Food Packaging and Shelf Life | Gheribi et al. [11] |
Preparation, study and characterization of complex coacervates formed between gelatin and cactus mucilage extracted from cladodes of Opuntia ficus-indica | 2019 | 17 | LWT- Food Science and Technology | Otalora et al. [34] |
Seasonal characterization of nutritional and antioxidant properties of Opuntia ficus-indica [(L.) Mill.] mucilage | 2021 | 14 | Food Hydrocolloids | Messina et al. [43] |
Mucilage of spineless cactus in the composition of an edible coating for minimally processed yam (Dioscorea spp.) | 2019 | 13 | Journal of Food Measurement and Characterization | Morais et al. [44] |
Effect of Opuntia ficus-indica Mucilage Edible Coating in Combination with Ascorbic Acid, on Strawberry Fruit Quality during Cold Storage | 2021 | 11 | Journal of Food Quality | Liguori et al. [45] |
Preparation and physicochemical characterization of softgels Cross-Linked with cactus mucilage extracted from cladodes of Opuntia ficus-indica | 2019 | 11 | Molecules | Caballero et al. [46] |
Cactus Mucilage as a Coating Film to Enhance Shelf Life of Unprocessed Guavas (Psidium guajava L.) | 2015 | 10 | Acta Horticulturae | Zegbe et al. [14] |
Development of Bioactive Opuntia ficus-indica Edible Films Containing Probiotics as a Coating for Fresh-Cut Fruit | 2022 | 4 | Polymers | Todhanakasem et al. [35] |
Thermoplastic Starch (TPS) Films Added with Mucilage from Opuntia Ficus Indica: Mechanical, Microstructural and Thermal Characterization | 2020 | 4 | Materials | Scognamiglio et al. [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, R.d.N.; Cavalcanti, M.T.; Pereira, E.M.; Gomes, J.P.; Silva, W.P.d.; Gonçalves, M.C. Exploring Cactus Mucilage for Sustainable Food Packaging: A Bibliometric Review of a Decade of Research. Processes 2025, 13, 1830. https://doi.org/10.3390/pr13061830
Alves RdN, Cavalcanti MT, Pereira EM, Gomes JP, Silva WPd, Gonçalves MC. Exploring Cactus Mucilage for Sustainable Food Packaging: A Bibliometric Review of a Decade of Research. Processes. 2025; 13(6):1830. https://doi.org/10.3390/pr13061830
Chicago/Turabian StyleAlves, Rerisson do Nascimento, Mônica Tejo Cavalcanti, Emmanuel Moreira Pereira, Josivanda Palmeira Gomes, Wilton Pereira da Silva, and Mônica Correia Gonçalves. 2025. "Exploring Cactus Mucilage for Sustainable Food Packaging: A Bibliometric Review of a Decade of Research" Processes 13, no. 6: 1830. https://doi.org/10.3390/pr13061830
APA StyleAlves, R. d. N., Cavalcanti, M. T., Pereira, E. M., Gomes, J. P., Silva, W. P. d., & Gonçalves, M. C. (2025). Exploring Cactus Mucilage for Sustainable Food Packaging: A Bibliometric Review of a Decade of Research. Processes, 13(6), 1830. https://doi.org/10.3390/pr13061830