Advanced Biomaterial Design: Optimizing Porous Titanium with Hydroxyapatite Coating for Improved Joint Prosthesis Performance and Bone Integration
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication and Characterization of Porous Titanium
2.1.1. Raw Materials and Sintering Process
2.1.2. Characterization of the Microstructure
2.1.3. Evaluation of Mechanical Properties
2.2. Application of the Coating by Atmospheric Plasma Spraying
2.3. Cell Viability
3. Results and Discussion
3.1. Porous Titanium
3.2. Hydroxyapatite Coating
3.3. Cell Viability and Biocompatibility Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | additive manufacturing |
APS | atmospheric plasma spraying |
DMLS | direct metal laser sintering |
DMSO | dimethyl sulfoxide |
EDS | energy-dispersive X-ray spectroscopy |
FBS | fetal bovine serum |
FCC | face-centered cubic |
HA | hydroxyapatite |
HCP | hexagonal close-packed |
ICP | inductively coupled plasma emission spectrometry |
MTT | 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide |
PS | press and sintering |
SEM | scanning electron microscopy |
TCP | tricalcium phosphate |
XRD | X-ray diffraction |
References
- Zhao, Q.; Sun, Q.; Xin, S.; Chen, Y.; Wu, C.; Wang, H.; Xu, J.; Wan, M.; Zeng, W.; Zhao, Y. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Amigo, V.; Romero, F.; Salvador, M.; Busquets, D. Matrix-reinforcement reactivity in P/M titanium matrix composites. Rev. De Metal. 2007, 43, 434–447. [Google Scholar]
- Abd-Elaziem, W.; Darwish, M.A.; Hamada, A.; Daoush, W.M. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Mater. Des. 2024, 241, 112850. [Google Scholar] [CrossRef]
- Campanelli, L.C. A review on the recent advances concerning the fatigue performance of titanium alloys for orthopedic applications. J. Mater. Res. 2021, 36, 151–165. [Google Scholar] [CrossRef]
- Fellah, M.; Hezil, N.; Leila, D.; Samad, M.A.; Djellabi, R.; Kosman, S.; Montagne, A.; Iost, A.; Obrosov, A.; Weiss, S. Effect of sintering temperature on structure and tribological properties of nanostructured Ti–15Mo alloy for biomedical applications. Trans. Nonferrous Met. Soc. China 2019, 29, 2310–2320. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A. Biomedical applications of titanium alloys: A comprehensive review. Materials 2023, 17, 114. [Google Scholar] [CrossRef] [PubMed]
- Yokoya, S.; Harada, Y.; Sumimoto, Y.; Kikugawa, K.; Natsu, K.; Nakamura, Y.; Nagata, Y.; Negi, H.; Watanabe, C.; Adachi, N. Factors affecting stress shielding and osteolysis after reverse shoulder arthroplasty: A multicenter study in a Japanese population. J. Orthop. Sci. 2024, 29, 521–528. [Google Scholar] [CrossRef]
- Shahzamanian, M.; Banerjee, R.; Dahotre, N.B.; Srinivasa, A.R.; Reddy, J. Analysis of stress shielding reduction in bone fracture fixation implant using functionally graded materials. Compos. Struct. 2023, 321, 117262. [Google Scholar] [CrossRef]
- Yamako, G.; Chosa, E.; Totoribe, K.; Hanada, S.; Masahashi, N.; Yamada, N.; Itoi, E. In-vitro biomechanical evaluation of stress shielding and initial stability of a low-modulus hip stem made of β type Ti-33.6 Nb-4Sn alloy. Med. Eng. Phys. 2014, 36, 1665–1671. [Google Scholar] [CrossRef]
- Wei, P.; Fang, J.; Fang, L.; Wang, K.; Lu, X.; Ren, F. Novel niobium and silver toughened hydroxyapatite nanocomposites with enhanced mechanical and biological properties for load-bearing bone implants. Appl. Mater. Today 2019, 15, 531–542. [Google Scholar] [CrossRef]
- Fujii, T.; Murakami, R.; Kobayashi, N.; Tohgo, K.; Shimamura, Y. Uniform porous and functionally graded porous titanium fabricated via space holder technique with spark plasma sintering for biomedical applications. Adv. Powder Technol. 2022, 33, 103598. [Google Scholar] [CrossRef]
- Takata, N.; Uematsu, K.; Kobashi, M. Compressive properties of porous Ti–Al alloys fabricated by reaction synthesis using a space holder powder. Mater. Sci. Eng. A 2017, 697, 66–70. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, J.; Meng, Z.; He, Z.; Zhang, Y.; Jiang, Y.; Zhou, R. Low elastic modulus Ti-Ag/Ti radial gradient porous composite with high strength and large plasticity prepared by spark plasma sintering. Mater. Sci. Eng. A 2017, 688, 330–337. [Google Scholar] [CrossRef]
- Bari, K.; Arjunan, A. Extra low interstitial titanium based fully porous morphological bone scaffolds manufactured using selective laser melting. J. Mech. Behav. Biomed. Mater. 2019, 95, 1–12. [Google Scholar] [CrossRef]
- Zettel, D.; Breitkopf, P.; Cauvin, L.; Nicolay, P.; Willmann, R. Multi-scale mechanical properties of Al–Mg–Zr–Sc alloys fabricated by direct metal laser sintering: Towards single-material composites. J. Mater. Res. Technol. 2025, 35, 2887–2913. [Google Scholar] [CrossRef]
- Ishfaq, K.; Abdullah, M.; Mahmood, M.A. A state-of-the-art direct metal laser sintering of Ti6Al4V and AlSi10Mg alloys: Surface roughness, tensile strength, fatigue strength and microstructure. Opt. Laser Technol. 2021, 143, 107366. [Google Scholar] [CrossRef]
- Rodriguez-Contreras, A.; Punset, M.; Calero, J.A.; Gil, F.J.; Ruperez, E.; Manero, J.M. Powder metallurgy with space holder for porous titanium implants: A review. J. Mater. Sci. Technol. 2021, 76, 129–149. [Google Scholar] [CrossRef]
- Nuswantoro, N.F.; Manjas, M.; Suharti, N.; Juliadmi, D.; Kasuma, N.; Yusuf, Y.; Sari, Y.W.; Niinomi, M.; Akahori, T. Effect of hydroxyapatite coating thickness on inflammation and osseointegration of Ti–29Nb–13Ta-4.6 Zr (TNTZ) implants. J. Mater. Res. Technol. 2024, 30, 6210–6217. [Google Scholar] [CrossRef]
- Muñoz-Sanchez, E.; Arrieta-Gonzalez, C.; Quinto-Hernandez, A.; Garcia-Hernandez, E.; Porcayo-Calderon, J. Synthesis of hydroxyapatite from eggshell and its electrochemical characterization as a coating on titanium. Int. J. Electrochem. Sci. 2023, 18, 100204. [Google Scholar] [CrossRef]
- Graziani, G.; Boi, M.; Bianchi, M. A Review on Ionic Substitutions in Hydroxyapatite Thin Films: Towards Complete Biomimetism. Coatings 2018, 8, 269. [Google Scholar] [CrossRef]
- Rau, J.V.; Cacciotti, I.; Laureti, S.; Fosca, M.; Varvaro, G.; Latini, A. Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Nevarez-Rascón, A.; Hurtado-Macías, A.; Esparza-Ponce, H.E.; Nevarez-Rascón, M.M.; González-Hernández, J.; Yacamán, M.J. Nano-structured hydroxyapatite and titanium dioxide enriching PENTA /UDMA adhesive as aesthetic coating for tooth enamel. Dent. Mater. 2021, 37, e290–e299. [Google Scholar] [CrossRef]
- Mohammad, N.F.; Ahmad, R.N.; Rosli, N.L.M.; Manan, M.S.A.; Marzuki, M.; Wahi, A. Sol gel deposited hydroxyapatite-based coating technique on porous titanium niobium for biomedical applications: A mini review. Mater. Today Proc. 2021, 41, 127–135. [Google Scholar] [CrossRef]
- Lu, M.; Chen, H.; Yuan, B.; Zhou, Y.; Min, L.; Xiao, Z.; Zhu, X.; Tu, C.; Zhang, X. Electrochemical Deposition of Nanostructured Hydroxyapatite Coating on Titanium with Enhanced Early Stage Osteogenic Activity and Osseointegration. Int. J. Nanomed. 2020, 15, 6605–6618. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, T.; Liao, Z.; Wei, Y.; Hang, R.; Huang, D. Engineered functional doped hydroxyapatite coating on titanium implants for osseointegration. J. Mater. Res. Technol. 2023, 27, 122–152. [Google Scholar] [CrossRef]
- Henkel, J.; Woodruff, M.A.; Epari, D.R.; Steck, R.; Glatt, V.; Dickinson, I.C.; Choong, P.F.; Schuetz, M.A.; Hutmacher, D.W. Bone Regeneration Based on Tissue Engineering Conceptions—A 21st Century Perspective. Bone Res. 2013, 1, 216–248. [Google Scholar] [CrossRef]
- Tejeda-Ochoa, A.; Rivera-Vicuña, K.G.; Ledezma-Sillas, J.E.; Herrera-Ramírez, J.M.; Carreño-Gallardo, C. The Effect of Space Holder Size on the Mechanical Properties of Porous Titanium. Microsc. Microanal. 2023, 29, 1459–1460. [Google Scholar] [CrossRef]
- ASTM B962; Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM E9; Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. ASTM International: West Conshohocken, PA, USA, 2025.
- Dias Corpa Tardelli, J.; Lima da Costa Valente, M.; Theodoro de Oliveira, T.; Cândido dos Reis, A. Influence of chemical composition on cell viability on titanium surfaces: A systematic review. J. Prosthet. Dent. 2020, 125, 421–425. [Google Scholar] [CrossRef]
- Arencibia, D.F.; Fernández, L.A.R.; Sánchez, D.L.C. Principal assays that to determine the citotoxicity of a substance, some considerations and their utility. Rev. De Toxicol. En Línea 2009, 42–52. [Google Scholar]
- Escobar M., L.; Rivera, A.; Aristizábal, F.A. Estudio comparativo de los métodos de resazurina y MTT en estudios de citotoxicidad en líneas celulares tumorales humanas. Vitae 2010, 17, 67–74. [Google Scholar] [CrossRef]
- Martel-Estrada, S.A.; Rodríguez-Espinoza, B.; Santos-Rodríguez, E.; Jiménez-Vega, F.; García-Casillas, P.E.; Martínez-Pérez, C.A.; Armendáriz, I.O. Biocompatibility of chitosan/Mimosa tenuiflora scaffolds for tissue engineering. J. Alloys Compd. 2015, 643, S119–S123. [Google Scholar] [CrossRef]
- Hudomalj, U.; Sichani, E.F.; Weiss, L.; Nabavi, M.; Wegener, K. Effect of particle size distribution width on repeatability of coating characteristics in atmospheric plasma spraying. Procedia CIRP 2022, 113, 530–535. [Google Scholar] [CrossRef]
- Lin, W.H.; Tsao, S.Y.; Cheng, T.C.; Shieh, J.; Yang, J.Y. Effect of Morphologies of Hydroxyapatite Powders on Thermal Sprayed Hydroxyapatite Coatings. Surf. Interfaces 2025, 60, 105948. [Google Scholar] [CrossRef]
- Sotiropoulou, P.; Fountos, G.; Martini, N.; Koukou, V.; Michail, C.; Kandarakis, I.; Nikiforidis, G. Bone calcium/phosphorus ratio determination using dual energy X-ray method. Phys. Med. 2015, 31, 307–313. [Google Scholar] [CrossRef] [PubMed]
- da Fonseca, S.C.; Freitas, R.B.; Sotiles, A.R.; Schemczssen-Graeff, Z.; De Almeida Miranda, I.M.; Biscaia, S.M.P.; Wypych, F.; da Silva Trindade, E.; Leão, M.P.; Zielak, J.C.; et al. 3D scaffold of hydroxyapatite/β tricalcium phosphate from mussel shells: Synthesis, characterization and cytotoxicity. Heliyon 2025, 11, e41585. [Google Scholar] [CrossRef]
- Jha, N.; Mondal, D.; Majumdar, J.D.; Badkul, A.; Jha, A.; Khare, A. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route. Mater. Des. 2013, 47, 810–819. [Google Scholar] [CrossRef]
- Torres, Y.; Pavón, J.; Rodríguez, J. Processing and characterization of porous titanium for implants by using NaCl as space holder. J. Mater. Process. Technol. 2012, 212, 1061–1069. [Google Scholar] [CrossRef]
- Vahabzadeh, S.; Roy, M.; Bandyopadhyay, A.; Bose, S. Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater. 2015, 17, 47–55. [Google Scholar] [CrossRef]
- ISO 10993-5; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Foroutan, R.; Mohammadzadeh, A.; Javanbakht, S.; Mohammadi, R.; Ghorbani, M. Alginate/magnetic hydroxyapatite bio-nanocomposite hydrogel bead as a pH-responsive oral drug carrier for potential colon cancer therapy. Results Chem. 2025, 15, 102177. [Google Scholar] [CrossRef]
- Fatimah, I.; Hidayat, H.; Citradewi, P.W.; Tamyiz, M.; Doong, R.-A.; Sagadevan, S. Hydrothermally synthesized titanium/hydroxyapatite as photoactive and antibacterial biomaterial. Heliyon 2023, 9, e14434. [Google Scholar] [CrossRef]
- Busuioc, C.; Voicu, G.; Jinga, S.-I.; Mitran, V.; Cimpean, A. The influence of barium titanate on the biological properties of collagen-hydroxiapatite composite scaffolds. Mater. Lett. 2019, 253, 317–322. [Google Scholar] [CrossRef]
Composition | Sample |
---|---|
20% NaCl–80% Ti | Ti80 |
25% NaCl–75% Ti | Ti75 |
30% NaCl–70% Ti | Ti70 |
35% NaCl–65% Ti | Ti65 |
Parameter | Value |
---|---|
Main air flow | 1.03 MPa |
Auxiliary gas flow | 0.17 MPa |
Carrier Gas Flow | 0.62 MPa |
Current | 900 A |
Voltage | 75 V |
Powder feed rate | 0.91 kg/h |
Spray distance | 76.2 mm |
Sample | Porosity (%) |
---|---|
Ti65 | 29.55 ± 0.50 |
Ti70 | 27.55 ± 0.23 |
Ti75 | 23.11 ± 0.10 |
Ti80 | 19.55 ± 0.43 |
Composition | Yield Stress (MPa) | Maximum Stress (MPa) |
---|---|---|
Ti65 | 255.78 | 524.32 |
Ti70 | 299.42 | 589.52 |
Ti75 | 370.47 | 726.42 |
Ti80 | 441.57 | 860.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Vicuña, K.; Tejeda-Ochoa, A.; Castañeda-Balderas, R.; Herrera-Ramirez, J.M.; Ledezma-Sillas, J.E.; Orozco-Carmona, V.M.; Olivas-Armendariz, I.; Carreño-Gallardo, C. Advanced Biomaterial Design: Optimizing Porous Titanium with Hydroxyapatite Coating for Improved Joint Prosthesis Performance and Bone Integration. Processes 2025, 13, 1768. https://doi.org/10.3390/pr13061768
Rivera-Vicuña K, Tejeda-Ochoa A, Castañeda-Balderas R, Herrera-Ramirez JM, Ledezma-Sillas JE, Orozco-Carmona VM, Olivas-Armendariz I, Carreño-Gallardo C. Advanced Biomaterial Design: Optimizing Porous Titanium with Hydroxyapatite Coating for Improved Joint Prosthesis Performance and Bone Integration. Processes. 2025; 13(6):1768. https://doi.org/10.3390/pr13061768
Chicago/Turabian StyleRivera-Vicuña, Katia, Armando Tejeda-Ochoa, Ruben Castañeda-Balderas, Jose Martin Herrera-Ramirez, Jose Ernesto Ledezma-Sillas, Víctor Manuel Orozco-Carmona, Imelda Olivas-Armendariz, and Caleb Carreño-Gallardo. 2025. "Advanced Biomaterial Design: Optimizing Porous Titanium with Hydroxyapatite Coating for Improved Joint Prosthesis Performance and Bone Integration" Processes 13, no. 6: 1768. https://doi.org/10.3390/pr13061768
APA StyleRivera-Vicuña, K., Tejeda-Ochoa, A., Castañeda-Balderas, R., Herrera-Ramirez, J. M., Ledezma-Sillas, J. E., Orozco-Carmona, V. M., Olivas-Armendariz, I., & Carreño-Gallardo, C. (2025). Advanced Biomaterial Design: Optimizing Porous Titanium with Hydroxyapatite Coating for Improved Joint Prosthesis Performance and Bone Integration. Processes, 13(6), 1768. https://doi.org/10.3390/pr13061768