Carotenoid Degradation in Annatto Dye Wastewater Using an O3/H2O2 Advanced Oxidation Process
Abstract
:1. Introduction
1.1. Carotenoids and Their Reactive Oxygen Species (ROS)
1.2. Application of O3 and H2O2 to Remediation Processes
2. Materials and Methods
2.1. Raw Wastewater
2.2. Experimental Setup and O3/H2O2 Process
2.3. Experimental Design and Statistical Analysis
2.4. Carotenoid Quantification
2.5. Performance Parameters
3. Results and Discussion
3.1. Carotenoid Degradation
3.2. Pseudo-First-Order Kinetic Constant (k)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROS | Reactive oxygen species |
Car | Carotenoids |
Neutral carotenoid radical | |
Acyl carotenoid radical | |
Carotenoid radical cation | |
E0 | Oxidation potential |
pKa | Antilogarithm of the acid dissociation constant |
k | Pseudo-first-order kinetic constant |
ANOVA | Analysis of variance |
C/C0 | Carotenoid normalized concentration |
SHE | Standard hydrogen electrode |
UV | Ultraviolet electromagnetic radiation (wavelengths shorter than 400 nm) |
Vis | Visible electromagnetic radiation (~400 nm to ~700 nm) |
ITO | Tin oxide electrode |
References
- Polyakov, N.E.; Leshina, T.V. Certain aspects of the reactivity of carotenoids. Redox processes and complexation. Russ. Chem. Rev. 2006, 75, 1049–1064. [Google Scholar] [CrossRef]
- Farooq, U.; Hassan, A.; Kumar, R.; Wang, L.; Wang, X. The role of cobalt-based catalysts in activating peracetic acid for environmental pollutants degradation: A mini review. Chem. Eng. J. 2025, 507, 160649. [Google Scholar] [CrossRef]
- Gao, Y.; Shinopoulos, K.E.; Tracewell, C.A.; Focsan, A.L.; Brudvig, G.W.; Kispert, L.D. Formation of Carotenoid Neutral Radicals in Photosystem II. J. Phys. Chem. B 2009, 113, 9901–9908. [Google Scholar] [CrossRef] [PubMed]
- Kispert, L.D.; Konovalova, T.; Gao, Y. Carotenoid radical cations and dications: EPR, optical, and electrochemical studies. Arch. Biochem. Biophys. 2004, 430, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Konovalova, T. EPR spin trapping detection of carbon-centered carotenoid and Î2-ionone radicals. Free Radic. Biol. Med. 2000, 28, 1030–1038. [Google Scholar] [CrossRef]
- Pituco, M.M.; Marrocos, P.H.; Méndez, S.; Montes, R.; Rodil, R.; Moreira, F.C.; Vilar, V.J.P. Ozone injection system based on NETmix technology for quaternary treatment of urban wastewater. J. Environ. Chem. Eng. 2025, 13, 115465. [Google Scholar] [CrossRef]
- Zhao, R. A review on the catalytic ozonation of pollutants in wastewater by heteroelements-doped biochar: Internal and external doping strategies. Alex. Eng. J. 2025, 119, 35–44. [Google Scholar] [CrossRef]
- Hübner, U.; Spahr, S.; Lutze, H.; Wieland, A.; Rüting, S.; Gernjak, W.; Wenk, J. Advanced oxidation processes for water and wastewater treatment—Guidance for systematic future research. Heliyon 2024, 10, e30402. [Google Scholar] [CrossRef]
- PubChem. Hydrogen Peroxide. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hydrogen-Peroxide (accessed on 17 February 2025).
- Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33–50. [Google Scholar] [CrossRef]
- Silva, B.S.; De Castro Peixoto, A.L. Amoxicillin Degradation by Reactive Oxygen Species on H2O2-Alone Process. Braz. J. Chem. Eng. 2024, 41, 149–161. [Google Scholar] [CrossRef]
- Xue, F.; Kang, S.; Pan, Z.; Li, L.; Hu, Z.; Sheng, X.; Li, B.; Lu, W.; Wang, L.; Nie, M. Mo-based MXenes as highly selective two-electron oxygen reduction catalysts for H2O2 production. Electrochim. Acta 2024, 491, 144356. [Google Scholar] [CrossRef]
- Barbaccia, P.; Lipocelli, L.; Moschetti, G.; Francesca, N.; De Martino, S.; Arrigo, V.; Gaglio, R.; Settanni, L. Application of Hydrogen Peroxide to Improve the Microbiological Stability of Food Ice Produced in Industrial Facilities. Appl. Sci. 2021, 12, 210. [Google Scholar] [CrossRef]
- Tomičić, R.; Tomičić, Z.; Nićetin, M.; Knežević, V.; Kocić-Tanackov, S.; Raspor, P. Food grade disinfectants based on hydrogen peroxide/peracetic acid and sodium hypochlorite interfere with the adhesion of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to stainless steel of differing surface roughness. Biofouling 2023, 39, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.A.D.O.; Peruchi, V.; Fernandes, L.D.O.; Anselmi, C.; Soares, I.P.M.; Hebling, J.; Costa, C.A.D.S. the influence of violet LED application time on the esthetic efficacy and cytotoxicity of a 35% H2O2 bleaching gel. Photodiagnosis Photodyn. Ther. 2022, 40, 103069. [Google Scholar] [CrossRef]
- Becker, L.C.; Cherian, P.A.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Hydrogen Peroxide as Used in Cosmetics. Int. J. Toxicol. 2024, 43, 5S–63S. [Google Scholar] [CrossRef]
- Hill, C.N. A Vertical Empire: The History of the UK Rocket and Space Programme, 1950–1971; Imperial College Press: London, UK, 2001. [Google Scholar]
- Lee, W.; Choi, S.; Kim, H.; Lee, W.; Lee, M.; Son, H.; Lee, C.; Cho, M.; Lee, Y. Efficiency of ozonation and O3/H2O2 as enhanced wastewater treatment processes for micropollutant abatement and disinfection with minimized byproduct formation. J. Hazard. Mater. 2023, 454, 131436. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.-S.; Bai, C.-W.; Huang, X.-T.; Sun, Y.-J.; Chen, X.-J. Ozone meets peroxides: A symphony of hybrid techniques in wastewater treatment. Chem. Eng. J. 2024, 483, 149129. [Google Scholar] [CrossRef]
- Rosa, B.F.; Salazar, R.F.S.; Esperança, M.N.; De Castro Peixoto, A.L. Adsorption of Carotenoids, Chloride, and Sulfate from Annatto Dye Agro-Industrial Effluent. Glob. NEST J. 2024, 26, 06047. [Google Scholar] [CrossRef]
- Reith, J.F.; Gielen, J.W. Properties of Bixin and Norbixinand the Composition of Annatto Extracts. J. Food Sci. 1971, 36, 861–864. [Google Scholar] [CrossRef]
- Gunjević, V.; Musa, M.M.; Zurak, D.; Svečnjak, Z.; Duvnjak, M.; Grbeša, D.; Kljak, K. Carotenoid degradation rate in milled grain of dent maize hybrids and its relationship with the grain physicochemical properties. Food Res. Int. 2024, 177, 113909. [Google Scholar] [CrossRef]
- Mortensen, A.; Skibsted, L.H.; Sampson, J.; Rice-Evans, C.; Everett, S.A. Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett. 1997, 418, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Semitsoglou-Tsiapou, S.; Meador, T.B.; Peng, B.; Aluwihare, L. Photochemical (UV–vis/H2O2) degradation of carotenoids: Kinetics and molecular end products. Chemosphere 2022, 286, 131697. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, W.; Li, D.; Song, J.; Liu, C.; Wei, Q.; Zhang, M.; Yang, Q. Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system. Food Chem. 2018, 239, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Tay-Agbozo, S.; Street, S.; Kispert, L. The carotenoid Bixin found to exhibit the highest measured carotenoid oxidation potential to date consistent with its practical protective use in cosmetics, drugs and food. J. Photochem. Photobiol. B Biol. 2018, 186, 1–8. [Google Scholar] [CrossRef]
- Burke, M.; Edge, R.; Land, E.J.; McGarvey, D.J.; Truscott, T.G. One-electron reduction potentials of dietary carotenoid radical cations in aqueous micellar environments. FEBS Lett. 2001, 500, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Čižmek, L.; Komorsky-Lovrić, Š. Study of Electrochemical Behaviour of Carotenoids in Aqueous Media. Electroanalysis 2019, 31, 83–90. [Google Scholar] [CrossRef]
- Fontinele, L.P.; De Sousa, R.C.; Viana, V.G.F.; Farias, E.A.D.O.; Queiroz, E.L.; Eiras, C. Norbixin extracted from urucum (Bixa orellana L.) for the formation of conductive composites with potential applications in electrochemical sensors. Surf. Interfaces 2018, 13, 92–100. [Google Scholar] [CrossRef]
- Galdeano, M.C.; Wilhelm, A.E.; Goulart, I.B.; Tonon, R.V.; Freitas-Silva, O.; Germani, R.; Chávez, D.W.H. Effect of water temperature and pH on the concentration and time of ozone saturation. Braz. J. Food Technol. 2018, 21, e2017156. [Google Scholar] [CrossRef]
- Gardoni, D.; Vailati, A.; Canziani, R. Decay of Ozone in Water: A Review. Ozone Sci. Eng. 2012, 34, 233–242. [Google Scholar] [CrossRef]
- Laue, T.; Plagens, A. Named Organic Reactions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2005. [Google Scholar]
- Benevides, C.M.D.J.; Veloso, M.C.D.C.; De Paula Pereira, P.A.; Andrade, J.B.D. A chemical study of β-carotene oxidation by ozone in an organic model system and the identification of the resulting products. Food Chem. 2011, 126, 927–934. [Google Scholar] [CrossRef]
- Henry, K.L.; Puspitasari-Nienaber, N.L.; Jarén-Galán, M.; Van Breemen, R.B.; Catignani, G.L.; Schwartz, S.J. Effects of Ozone and Oxygen on the Degradation of Carotenoids in an Aqueous Model System. J. Agric. Food Chem. 2000, 48, 5008–5013. [Google Scholar] [CrossRef] [PubMed]
Variable | Code | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
pH | x1 | 2.5 | 4.0 | 5.5 |
O3 (mg min−1) | x2 | 8.0 | 12.0 | 18.0 |
H2O2 (g L−1) | x3 | 1.572 | 3.144 | 4.716 |
Assay | pH | O3 | H2O2 | Carotenoid Degradation (%) |
---|---|---|---|---|
1 | −1 | −1 | −1 | 87.4 |
2 | 1 | −1 | −1 | 84.0 |
3 | −1 | 1 | −1 | 96.6 |
4 | 1 | 1 | −1 | 90.4 |
5 | −1 | −1 | 1 | 92.2 |
6 | 1 | −1 | 1 | 86.0 |
7 | −1 | 1 | 1 | 97.4 |
8 | 1 | 1 | 1 | 94.5 |
9 (C) | 0 | 0 | 0 | 94.8 |
10 (C) | 0 | 0 | 0 | 95.6 |
11 (C) | 0 | 0 | 0 | 95.8 |
Assay | pH | O3 | H2O2 | k (min−1) |
---|---|---|---|---|
1 | −1 | −1 | −1 | 0.0354 |
2 | 1 | −1 | −1 | 0.0310 |
3 | −1 | 1 | −1 | 0.0586 |
4 | 1 | 1 | −1 | 0.0379 |
5 | −1 | −1 | 1 | 0.0426 |
6 | 1 | −1 | 1 | 0.0338 |
7 | −1 | 1 | 1 | 0.0805 |
8 | 1 | 1 | 1 | 0.0485 |
9 (C) | 0 | 0 | 0 | 0.0492 |
10 (C) | 0 | 0 | 0 | 0.0513 |
11 (C) | 0 | 0 | 0 | 0.0497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, P.C.; Esperança, M.N.; Turquetti, J.R.; de Castro Peixoto, A.L. Carotenoid Degradation in Annatto Dye Wastewater Using an O3/H2O2 Advanced Oxidation Process. Processes 2025, 13, 824. https://doi.org/10.3390/pr13030824
Garcia PC, Esperança MN, Turquetti JR, de Castro Peixoto AL. Carotenoid Degradation in Annatto Dye Wastewater Using an O3/H2O2 Advanced Oxidation Process. Processes. 2025; 13(3):824. https://doi.org/10.3390/pr13030824
Chicago/Turabian StyleGarcia, Priscila Carriel, Mateus Nordi Esperança, José Ricardo Turquetti, and André Luís de Castro Peixoto. 2025. "Carotenoid Degradation in Annatto Dye Wastewater Using an O3/H2O2 Advanced Oxidation Process" Processes 13, no. 3: 824. https://doi.org/10.3390/pr13030824
APA StyleGarcia, P. C., Esperança, M. N., Turquetti, J. R., & de Castro Peixoto, A. L. (2025). Carotenoid Degradation in Annatto Dye Wastewater Using an O3/H2O2 Advanced Oxidation Process. Processes, 13(3), 824. https://doi.org/10.3390/pr13030824