Effect of Peanut Straw Biochar on the Co-Digestion Process of Cattle Manure with Corn Stover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Setup
2.3. Analytical Methods
2.3.1. Methods for the Measurement of Conventional Indicators
2.3.2. Microbial Analysis
2.3.3. Data Analysis
2.3.4. Biochar Characterization
3. Results and Discussion
3.1. Characterization of Biochar
3.1.1. BET and SEM of Biochar
3.1.2. FTIR of Biochar
3.2. Co-Digestive Methanogenic Properties
3.2.1. Cumulative Methane Production and Daily Methane Production
3.2.2. Modified Gompertz Kinetics of Methane Production
3.3. Changes in the Composition of VFAs
3.4. pH Change
3.5. Changes in Dissolved Organic Matter Concentrations
3.6. Microbial Community Analysis
3.6.1. Alpha Diversity Analysis
3.6.2. Microbial Population Abundance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kadam, R.; Jo, S.; Lee, J.; Khanthong, K.; Jang, H.; Park, J. A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management. Energies 2024, 17, 546. [Google Scholar] [CrossRef]
- Li, K.; Liu, R.; Sun, C. A review of methane production from agricultural residues in China. Renew. Sustain. Energy Rev. 2016, 54, 857–865. [Google Scholar] [CrossRef]
- Ma, Y.; Shen, Y.; Liu, Y. State of the art of straw treatment technology: Challenges and solutions forward. Bioresour. Technol. 2020, 313, 123656. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Du, X.; Gao, T.; Cheng, Z.; Fu, W.; Wang, S. Ammonia inhibition in anaerobic digestion of organic waste: A review. Int. J. Environ. Sci. Technol. 2025, 22, 3927–3942. [Google Scholar] [CrossRef]
- Akshaya, K.; Selvasembian, R. Insights into the recent advances of chemical pretreatment of waste activated sludge to enhance biomethane production. J. Environ. Chem. Eng. 2024, 12, 113999. [Google Scholar] [CrossRef]
- Aklilu, E.G.; Waday, Y.A. Optimizing the process parameters to maximize biogas yield from anaerobic co-digestion of alkali-treated corn stover and poultry manure using artificial neural network and response surface methodology. Biomass Convers. Biorefin. 2023, 13, 12527–12540. [Google Scholar] [CrossRef]
- Guan, S.; He, C.; Li, P.; Li, P.; Hou, T.; Gao, Z.; Li, G.; Jiao, Y. Enhancement of Anaerobic Digestion of Corn Straw: Effect of Biological Pretreatment and Heating with Bio-Heat Recovery from Pretreatment. Fermentation 2024, 10, 160. [Google Scholar] [CrossRef]
- Liu, M.R.; Wei, Y.Q.; Leng, X.Y. Improving biogas production using additives in anaerobic digestion: A review. J. Clean. Prod. 2021, 297, 126666. [Google Scholar] [CrossRef]
- Bhujbal, S.K.; Ghosh, P.; Vijay, V.K.; Kumar, M. Ruminal content biochar supplementation for enhanced biomethanation of rice straw: Focusing on biochar characterization and dose optimization. Sci. Total Environ. 2023, 905, 167250. [Google Scholar] [CrossRef]
- Chen, B.; Zeng, H.; Yang, F.; Yang, Y.F.; Qiao, Z.; Zhao, X.L.; Wang, L.; Wu, F.C. Functional biochar as sustainable precursors to boost the anaerobic digestion of waste activated sludge from a circular economy perspective: A review. Biochar 2024, 6, 60. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Gao, X.; Wang, X.C. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresour. Technol. 2018, 250, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Sadani, M.; Shahsavani, A.; Bakhshoodeh, R.; Alavi, N. Enhancing anaerobic digestion of automotive paint sludge through biochar addition. Heliyon 2023, 9, e17640. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hao, X.; Liu, Z.; Guo, Z.; Zhu, L.; Xiong, B.; Jiang, D.; Shen, L.; Li, M.; Kang, B.; et al. Biochar improves heavy metal passivation during wet anaerobic digestion of pig manure. Environ. Sci. Pollut. Res. 2021, 28, 635–644. [Google Scholar] [CrossRef]
- He, Z.W.; Li, A.H.; Tang, C.C.; Zhou, A.J.; Liu, W.Z.; Ren, Y.X.; Li, Z.; Wang, A.J. Biochar regulates anaerobic digestion: Insights to the roles of pore size. Chem. Eng. J. 2024, 480, 148219. [Google Scholar] [CrossRef]
- Xiao, F.; Cheng, J.; Cao, W.; Yang, C.; Chen, J.; Luo, Z. Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars. J. Colloid Interface Sci. 2019, 540, 579–584. [Google Scholar] [CrossRef]
- Dong, X.; Chu, Y.; Tong, Z.; Sun, M.; Meng, D.; Yi, X.; Gao, T.; Wang, M.; Duan, J. Mechanisms of adsorption and functionalization of biochar for pesticides: A review. Ecotoxicol. Environ. Saf. 2024, 272, 116019. [Google Scholar] [CrossRef]
- Novais, S.V.; Zenero, M.D.O.; Tronto, J.; Conz, R.F.; Cerri, C.E.P. Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption. J. Environ. Manag. 2018, 214, 36–44. [Google Scholar] [CrossRef]
- Cao, Y.; Jing, Y.; Hao, H.; Wang, X. Changes in the physicochemical characteristics of peanut straw biochar after freeze-thaw and dry-wet aging treatments of the biomass. BioResources 2019, 14, 4329–4343. [Google Scholar] [CrossRef]
- Shi, R.-Y.; Hong, Z.-N.; Li, J.-Y.; Jiang, J.; Kamran, M.A.; Xu, R.-K.; Qian, W. Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. J. Environ. Manag. 2018, 210, 171–179. [Google Scholar] [CrossRef]
- Pan, J.-J.; Jiang, J.; Xu, R.-K. Removal of Cr (VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar. Chemosphere. 2014, 101, 71–76. [Google Scholar] [CrossRef]
- Zhang, W.L.; Wang, X.; Xing, W.L.; Li, R.D.; Yang, T.H.; Yao, N.; Lv, D. Links between synergistic effects and microbial community characteristics of anaerobic co-digestion of food waste, cattle manure and corn straw. Bioresour. Technol. 2021, 329, 124919. [Google Scholar] [CrossRef] [PubMed]
- Joseph, G.; Zhang, B.; Rahman, Q.M.; Wang, L.J.; Shahbazi, A. Two-stage thermophilic anaerobic co-digestion of corn stover and cattle manure to enhance biomethane production. J. Environ. Sci. Health Part A 2019, 54, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Chaher, N.E.H.; Nassour, A.; Hamdi, M.; Nelles, M. Monitoring of Food Waste Anaerobic Digestion Performance: Conventional Co-Substrates vs. Unmarketable Biochar Additions. Foods 2021, 10, 2353. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Zang, S.Y.; Xu, J.L.; Sheng, L.X. Dynamic simulation analysis of city tail water treatment by constructed wetland with biochar substrate. Environ. Sci. Pollut. Res. 2023, 30, 108582–108595. [Google Scholar] [CrossRef]
- Liang, X.F.; Zhou, W.L.; Yang, R.; Zhang, D.D.; Wang, H.; Li, Q.Z.; Li, Y.; Lin, W. Microbial mechanism of biochar addition to reduce N2O emissions from soilless substrate systems. J. Environ. Manag. 2023, 348, 119326. [Google Scholar] [CrossRef]
- Vayena, G.; Ghofrani-Isfahani, P.; Ziomas, A.; Grimalt-Alemany, A.; Lin, M.; Ravenni, G.; Angelidaki, I. Impact of biochar on anaerobic digestion process and microbiome composition; focusing on pyrolysis conditions for biochar formation. Renew. Energy 2024, 237, 121569. [Google Scholar] [CrossRef]
- Han, Y.H.; Li, C.; Wang, J.L.; Liu, L.N.; Ma, X.J.; Deng, Y.F. Assessing environmental impacts and carbon emissions of promising electrochemical and traditional methods of COD detection. J. Water Process Eng. 2025, 72, 107596. [Google Scholar] [CrossRef]
- Boshagh, F. Measurement methods of carbohydrates in dark fermentative hydrogen production- A review. Int. J. Hydrogen Energy 2021, 46, 24028–24050. [Google Scholar] [CrossRef]
- Li, J.B.; Lu, S.Y.; Wu, S.Q.; Zhang, W.M.; Hua, M.; Pan, B.C. The breakdown of protein hydrogen bonding networks facilitates biotransformation of protein wastewaters during anaerobic digestion methanogenesis: Focus on protein structure and conformation. Environ. Res. 2022, 208, 112735. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Fan, X.; Sangeetha, T.; Pan, K.L.; Bi, X.J.; Liu, W.; Lin, X.; Wang, X.; Wang, A.; et al. The dual role of potassium ferrate in promoting primary sludge hydrolysis and acidogenesis in anaerobic fermentation. Chem. Eng. J. 2023, 477, 147023. [Google Scholar] [CrossRef]
- Liu, X.L.; Liu, H.; Chen, Y.Y.; Dul, G.C.; Chen, J. Effects of organic matter and initial carbon-nitrogen ratio on the bioconversion of volatile fatty acids from sewage sludge. J. Chem. Technol. Biotechnol. 2008, 83, 1049–1055. [Google Scholar] [CrossRef]
- Lebrun, M.; Nandillon, R.; Miard, F.; Bourgerie, S.; Visser, R.; Morabito, D. Biochar application modifies soil properties of a former mine technosol: SEM/EDS study to investigate Pb and As speciation. Biomass Convers. Biorefin. 2024, 14, 5877–5887. [Google Scholar] [CrossRef]
- Shahrashoub, M.; Bakhtiari, S. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater. 2021, 311, 110692. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Danhassan, U.A.; Zhang, X.; Qi, R.; Ali, M.M.; Sheng, K.; Lin, H. Insight into synthesis and catalytic performance of mesoporous electroactive biochar for aqueous sulfide adsorptive oxidation. J. Environ. Chem. Eng. 2023, 11, 110619. [Google Scholar] [CrossRef]
- Tarimo, D.J.; Oyedotun, K.O.; Sylla, N.F.; Mirghni, A.A.; Ndiaye, N.M.; Manyala, N. Waste chicken bone-derived porous carbon materials as high performance electrode for supercapacitor applications. J. Energy Storage 2022, 51, 104378. [Google Scholar] [CrossRef]
- Saif, I.; Alsaiari, M.; Jalalah, M.; Harraz, F.A.; Su, S.C.; Salama, E.; Li, X.K. Magnetic chicken bone biochar mediated anaerobic co-digestion of lignocellulosic biomass for energy enhancement and microbial synergism. Fuel 2024, 362, 130794. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Li, Z.; Feng, R.; Zhang, Y. Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresour. Technol. 2014, 170, 76–82. [Google Scholar] [CrossRef]
- Guo, X.; Li, C.; Zhu, Q.; Huang, T.; Cai, Y.; Li, N.; Liu, J.; Tan, X. Characterization of dissolved organic matter from biogas residue composting using spectroscopic techniques. Waste Manag. 2018, 78, 301–309. [Google Scholar] [CrossRef]
- Huang, H.-J.; Yang, T.; Lai, F.-Y.; Wu, G.-Q. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J. Anal. Appl. Pyrolysis 2017, 125, 61–68. [Google Scholar] [CrossRef]
- Carvalho, J.; Araujo, J.; Castro, F. Alternative Low-cost Adsorbent for Water and Wastewater Decontamination Derived from Eggshell Waste: An Overview. Waste Biomass Valorization 2011, 2, 157–167. [Google Scholar] [CrossRef]
- Choong, Y.Y.; Norli, I.; Abdullah, A.Z.; Yhaya, M.F. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresour. Technol. 2016, 209, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Jing, Y.; Feng, J.; Luo, J.; Yu, J.; Zhao, L. Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities. Bioresour. Technol. 2020, 296, 122354. [Google Scholar] [CrossRef]
- Cimon, C.; Kadota, P.; Eskicioglu, C. Effect of biochar and wood ash amendment on biochemical methane production of wastewater sludge from a temperature phase anaerobic digestion process. Bioresour. Technol. 2020, 297, 122440. [Google Scholar] [CrossRef]
- Başar, İ.A.; Eskicioglu, C.; Perendeci, N.A. Biochar and wood ash amended anaerobic digestion of hydrothermally pretreated lignocellulosic biomass for biorefinery applications. Waste Manag. 2022, 154, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Cao, H.; Luo, H.; Chen, W.; Chen, J. Enhanced MFC sensor performances and extracellular electron transport efficiency mediated by biochar and underlying biochemical mechanisms. J. Environ. Manag. 2023, 332, 117282. [Google Scholar] [CrossRef]
- Xu, F.; Mu, L.; Wang, Y.; Peng, H.; Tao, J.; Chen, G. Pretreatment with rumen fluid improves methane production in the anaerobic digestion of corn straw. Fuel 2024, 363, 130831. [Google Scholar] [CrossRef]
- Liu, Y.C.; Whitman, W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. In Incredible Anaerobes: From Physiology to Genomics to Fuels; Wiegel, J., Maier, R.J., Adams, M.W.W., Eds.; New York Academy of Sciences: New York, NY, USA, 2008; Volume 1125, pp. 171–189. [Google Scholar]
- Conrad, R. Microbial Ecology of Methanogens and Methanotrophs. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2007; Volume 96, pp. 1–63. [Google Scholar]
- Pan, X.F.; Zhao, L.; Li, C.X.; Angelidaki, I.; Lv, N.; Ning, J.; Cai, G.; Zhu, G.F. Deep insights into the network of acetate metabolism in anaerobic digestion: Focusing on syntrophic acetate oxidation and homoacetogenesis. Water Res. 2021, 190, 116774. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, N.; Liu, X.; Dong, X. Methanogenesis from Methanol at Low Temperatures by a Novel Psychrophilic Methanogen, “Methanolobus psychrophilus” sp. nov.; Prevalent in Zoige Wetland of the Tibetan Plateau. Appl. Environ. Microbiol. 2008, 74, 6114–6120. [Google Scholar] [CrossRef]
- Duan, X.; Chen, Y.; Feng, L.; Zhou, Q. Metagenomic analysis reveals nonylphenol-shaped acidification and methanogenesis during sludge anaerobic digestion. Water Res. 2021, 196, 117004. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Dai, X.; Yang, D. Abiotic and biotic roles of metals in the anaerobic digestion of sewage sludge: A review. Sci. Total Environ. 2024, 912, 169313. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, Y.; Sima, J.; Zhao, L.; Mašek, O.; Cao, X. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresour. Technol. 2017, 241, 887–899. [Google Scholar] [CrossRef]
- Codignole Luz, F.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Biochar characteristics and early applications in anaerobic digestion-a review. J. Environ. Chem. Eng. 2018, 6, 2892–2909. [Google Scholar] [CrossRef]
- Zhou, W.N.; Mazarji, M.; Li, M.T.; Li, A.H.; Wang, Y.J.; Yang, Y.D.; Lee, J.T.E.; Rene, E.R.; Yuan, X.; Pan, J.T. Exploring magnetic nanomaterials with a focus on magnetic biochar in anaerobic digestion: From synthesis to application. Biochar 2024, 6, 63. [Google Scholar] [CrossRef]
- Cao, J.S.; Zhang, Q.; Wu, S.; Luo, J.Y.; Wu, Y.; Zhang, L.L.; Feng, Q.; Fang, F.; Xue, Z.X. Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation. Sci. Total Environ. 2019, 669, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Iino, T.; Mori, K.; Suzuki, K. Methanospirillum lacunae sp. nov.; a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int. J. Syst. Evol. Microbiol. 2010, 60, 2563–2566. [Google Scholar] [CrossRef]
- Yashiro, Y.; Sakai, S.; Ehara, M.; Miyazaki, M.; Yamaguchi, T.; Imachi, H. Methanoregula formicica sp. nov.; a methane-producing archaeon isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 2011, 61, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, T.; Yin, J.; Shen, D. Effect of nano-magnetite on the propionic acid degradation in anaerobic digestion system with acclimated sludge. Bioresour. Technol. 2021, 334, 125143. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, J.; Yuan, X.; Wang, X.; Zhu, W.; Yang, F.; Cui, Z. Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion. Appl. Energy 2015, 151, 249–257. [Google Scholar] [CrossRef]
- Qi, Y.; Evans, P.N.; Li, Y.; Rao, Y.; Qu, Y.; Tan, S.; Jiao, J.; Chen, Y.; Hedlund, B.P.; Shu, W.; et al. Comparative Genomics Reveals Thermal Adaptation and a High Metabolic Diversity in “Candidatus Bathyarchaeia”. mSystems 2021, 6, e0025221. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Z.; Yang, Y.; Zhang, Y. Dual roles of zero-valent iron in dry anaerobic digestion: Enhancing interspecies hydrogen transfer and direct interspecies electron transfer. Waste Manag. 2020, 118, 481–490. [Google Scholar] [CrossRef] [PubMed]
- De Vrieze, J.; Hennebel, T.; Boon, N.; Verstraete, W. Methanosarcina: The rediscovered methanogen for heavy duty biomethanation. Bioresour. Technol. 2012, 112, 1–9. [Google Scholar] [CrossRef] [PubMed]
Items | Cattle Manure (Cm) | Corn Stover (Cs) | Inoculate Sludge | Peanut Straw |
---|---|---|---|---|
TS (%) | 92.41 ± 0.29 a | 93.3 ± 0.12 a | 8.6 ± 0.03 b | - |
VS (%) | 58 ± 0.12 a | 72.8 ± 0.18 a | 65.6 ± 0.08 b | - |
TC (%) | 37.32 ± 0.21 a | 47.6 ± 0.41 a | 18.81 ± 0.38 b | - |
TN (%) | 2.3 ± 0.03 a | 1.72 ± 0.02 a | 2.68 ± 0.05 b | - |
C/N a | 16.2 a | 27.67 a | 7.01 b | - |
pH | 7.86 a | 7.12 a | 6.9 b | - |
Cellulose (%) | - | 32.68 ± 0.43 a | - | 14.52 ± 0.21 a |
Hemicellulose (%) | - | 27.73 ± 0.59 a | - | 13.63 ± 0.45 a |
Lignin (%) | - | 14.52 ± 0.21 a | - | 22.89 ± 0.16 a |
Items | Pm | Rm | λ | R2 | P(t) | Difference |
---|---|---|---|---|---|---|
Control | 826.43 | 55.33 | 1.50 | 0.9986 | 832.23 | 0.70% |
PS1 | 847.68 | 57.78 | 1.29 | 0.9945 | 855.88 | 0.97% |
PS2 | 904.09 | 59.49 | 1.15 | 0.9934 | 909.93 | 0.64% |
PS3 | 975.50 | 71.04 | 1.22 | 0.9993 | 984.52 | 0.92% |
PS4 | 984.96 | 75.23 | 1.19 | 0.9991 | 991.19 | 0.63% |
PS5 | 948.16 | 63.19 | 0.89 | 0.9987 | 956.77 | 0.9% |
Sample | OUT Number | Shannon Index | Simpson Index | Coverage Index |
---|---|---|---|---|
Control | 29910 | 6.61 | 0.079 | 0.9988 |
PS1 | 30035 | 6.65 | 0.075 | 0.9994 |
PS2 | 30173 | 6.62 | 0.074 | 0.9989 |
PS3 | 30152 | 6.62 | 0.074 | 0.9997 |
PS4 | 29699 | 6.65 | 0.077 | 0.9984 |
PS5 | 30241 | 6.63 | 0.075 | 0.9986 |
Sample | OUT Number | Shannon Index | Simpson Index | Coverage Index |
---|---|---|---|---|
Control | 5959 | 0.27 | 0.86 | 0.9993 |
PS1 | 5834 | 0.25 | 0.87 | 0.9986 |
PS2 | 5696 | 0.25 | 0.86 | 0.9989 |
PS3 | 5717 | 0.26 | 0.87 | 0.9987 |
PS4 | 6170 | 0.25 | 0.87 | 0.9994 |
PS5 | 5628 | 0.25 | 0.87 | 0.9989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Xu, Y.; Yang, H.; Wang, Z.; Xu, W.; Kang, X.; Liu, H.; Liu, C. Effect of Peanut Straw Biochar on the Co-Digestion Process of Cattle Manure with Corn Stover. Processes 2025, 13, 1516. https://doi.org/10.3390/pr13051516
Han J, Xu Y, Yang H, Wang Z, Xu W, Kang X, Liu H, Liu C. Effect of Peanut Straw Biochar on the Co-Digestion Process of Cattle Manure with Corn Stover. Processes. 2025; 13(5):1516. https://doi.org/10.3390/pr13051516
Chicago/Turabian StyleHan, Jize, Yuxing Xu, Haorui Yang, Zhoulin Wang, Wenxuan Xu, Xingsheng Kang, Hao Liu, and Changqing Liu. 2025. "Effect of Peanut Straw Biochar on the Co-Digestion Process of Cattle Manure with Corn Stover" Processes 13, no. 5: 1516. https://doi.org/10.3390/pr13051516
APA StyleHan, J., Xu, Y., Yang, H., Wang, Z., Xu, W., Kang, X., Liu, H., & Liu, C. (2025). Effect of Peanut Straw Biochar on the Co-Digestion Process of Cattle Manure with Corn Stover. Processes, 13(5), 1516. https://doi.org/10.3390/pr13051516