Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion
Abstract
:1. Introduction
2. Methods
2.1. GNN Surrogate Model
- The state is iteratively updated for rounds according to Equation (1) until it approaches the fixed-point solution of Equation (3) at time . At this point, the obtained will be close to the fixed-point solution ≈ .
- The gradient of the weights is calculated from the function.
- The weights are updated using the gradient calculated in step 2.
2.2. Development of the Surrogate Model
2.3. History Matching Workflow Based on the Hybrid Algorithm of DEPSO
Algorithm 1. The optimization process of the DEPSO algorithm |
1: Randomly generate initial position matrix , randomly generate initial velocity matrix 2: Initialize individual optimal values , calculate fitness values, initialize global optimal values 3: for = 1 to : 4: for = 1 to : 5: Randomly select three different individuals x_r1, x_r2, x_r3 (where r1, r2, r3 ≠ i) from the current population 6: v_n = x_r1 + × (x_r2–x_r3) 7: Generate a trial vector u_n whose elements are obtained by crossing the elements of v_n and x_n with a probability CR. 8: Evaluate the fitness of u_n and , update if the fitness of u_n is better 9: calculate speed variable 10: calculate position variable 11: Evaluate the fitness of and, update if the fitness of is better 12: Evaluate the fitness of and , update if the fitness of is better 13: End for 14: End for |
2.4. History Matching Framework
3. Case Study
3.1. CASE1: Conceptual Reservoir Case
3.2. CASE2: Complex Reservoir Case
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Hu, Y.; Rao, X.; Zhao, H.; Zhong, X.; Peng, X.; Zhan, W.; Sheng, G.; Liu, D. A fractal physics-based data-driven model for water-flooding reservoir (FlowNet-fractal). J. Pet. Sci. Eng. 2022, 210, 109960. [Google Scholar] [CrossRef]
- Chai, Z.; Yan, B.; Killough, J.E.; Wang, Y. An efficient method for fractured shale reservoir history matching: The embedded discrete fracture multi-continuum approach. J. Pet. Sci. Eng. 2018, 160, 170–181. [Google Scholar] [CrossRef]
- Oliver, D.S.; Reynolds, A.C.; Liu, N. Inverse Theory for Petroleum Reservoir Characterization and History Matching; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Chang, H.; Zhang, D. History matching of stimulated reservoir volume of shale-gas reservoirs using an iterative ensemble smoother. Spe J. 2018, 23, 346–366. [Google Scholar] [CrossRef]
- Chakra, N.C.C.; Saraf, D.N. History matching of petroleum reservoirs employing adaptive genetic algorithm. J. Pet. Explor. Prod. Technol. 2016, 6, 653–674. [Google Scholar] [CrossRef]
- Maschio, C.; Schiozer, D.J. Integration of geostatistical realizations in data assimilation and reduction of uncertainty process using genetic algorithm combined with multi-start simulated annealing. Oil Gas Sci. Technol. Rev. D’ifp Energ. Nouv. 2019, 74, 73. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Cai, H.; Gao, Y.; Jiang, R. The numerical simulation study on the dynamic variation of residual oil with water drive velocity in water flooding reservoir. Front. Energy Res. 2023, 10, 977109. [Google Scholar] [CrossRef]
- Kazemi, A.; Stephen, K.D. Schemes for automatic history matching of reservoir modeling: A case of Nelson oilfield in UK. Pet. Explor. Dev. 2012, 39, 349–361. [Google Scholar] [CrossRef]
- Li, B.; Bhark, E.W.; Billiter, T.C.; Dehghani, K. Best practices of assisted history matching using design of experiments. SPE J. 2019, 24, 1435–1451. [Google Scholar] [CrossRef]
- Forouzanfar, F.; Wu, X.-H. Constrained iterative ensemble smoother for multi solution search assisted history matching. Comput. Geosci. 2021, 25, 1593–1604. [Google Scholar] [CrossRef]
- Avansi, G.D.; Maschio, C.; Schiozer, D.J. Simultaneous history-matching approach by use of reservoir-characterization and reservoir-simulation studies. SPE Reserv. Eval. Eng. 2016, 19, 694–712. [Google Scholar] [CrossRef]
- Xu, W. Generalising History Matching for Enhanced Calibration of Computer Models; University of Exeter: Exeter, UK, 2021. [Google Scholar]
- Ma, X.; Zhang, K.; Zhang, J.; Wang, Y.; Zhang, L.; Liu, P.; Yang, Y.; Wang, J. A novel hybrid recurrent convolutional network for surrogate modeling of history matching and uncertainty quantification. J. Pet. Sci. Eng. 2022, 210, 110109. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Y.; Durlofsky, L.J. A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems. J. Comput. Phys. 2020, 413, 109456. [Google Scholar] [CrossRef]
- Xue, L.; Gu, S.; Mi, L.; Zhao, L.; Liu, Y.; Liao, Q. An automated data-driven pressure transient analysis of water-drive gas reservoir through the coupled machine learning and ensemble Kalman filter method. J. Pet. Sci. Eng. 2022, 208, 109492. [Google Scholar] [CrossRef]
- Saad, G.; Ghanem, R. Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter. Water Resour. Res. 2009, 45, W04417. [Google Scholar] [CrossRef]
- Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res. 2012, 48, W07401. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Hoteit, I.; Wheeler, M.F. Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates. Comput. Methods Appl. Mech. Eng. 2014, 269, 515–537. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Y.; Luo, X.; Adenutsi, C.D.; Zhao, G.; Lai, F. A critical review on intelligent optimization algorithms and surrogate models for conventional and unconventional reservoir production optimization. Fuel 2023, 350, 128826. [Google Scholar] [CrossRef]
- Li, W.; Lin, G. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions. J. Comput. Phys. 2015, 294, 173–190. [Google Scholar] [CrossRef]
- Zhang, J.; Man, J.; Lin, G.; Wu, L.; Zeng, L. Inverse modeling of hydrologic systems with adaptive multifidelity Markov chain Monte Carlo simulations. Water Resour. Res. 2018, 54, 4867–4886. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, K.; Zhang, L.; Yao, C.; Yao, J.; Wang, H.; Jian, W.; Yan, Y. Data-driven niching differential evolution with adaptive parameters control for history matching and uncertainty quantification. Spe J. 2021, 26, 993–1010. [Google Scholar] [CrossRef]
- Qiao, P.; Wu, Y.; Ding, J.; Zhang, Q. A new sequential sampling method of surrogate models for design and optimization of dynamic systems. Mech. Mach. Theory 2021, 158, 104248. [Google Scholar] [CrossRef]
- Janatian, N. Real-Time Optimization and Control for Oil Production Under Uncertainty. Ph.D. Thesis, University of South-Eastern Norway, Notodden, Norway, 2024. [Google Scholar]
- Canchumuni, S.W.A.; Emerick, A.A.; Pacheco, M.A.C. History matching geological facies models based on ensemble smoother and deep generative models. J. Pet. Sci. Eng. 2019, 177, 941–958. [Google Scholar] [CrossRef]
- Qin, Z.; Jiang, A.; Faulder, D.; Cladouhos, T.T.; Jafarpour, B. Efficient optimization of energy recovery from geothermal reservoirs with recurrent neural network predictive models. Water Resour. Res. 2023, 59, e2022WR032653. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.D.; Gu, J. Forecasting oil production using ensemble empirical model decomposition based Long Short-Term Memory neural network. J. Pet. Sci. Eng. 2020, 189, 107013. [Google Scholar] [CrossRef]
- Aghayev, Z.; Voulanas, D.; Gildin, E.; Beykal, B. Surrogate-Assisted Optimization of Highly Constrained Oil Recovery Processes Using Classification-Based Constraint Modeling. Ind. Eng. Chem. Res. 2025, 64, 7619–7940. [Google Scholar] [CrossRef]
- Khormali, A.; Ahmadi, S. Synergistic effect between oleic imidazoline and 2-mercaptobenzimidazole for increasing the corrosion inhibition performance in carbon steel samples. Iran. J. Chem. Chem. Eng. Res. 2023, 42, 321–336. [Google Scholar]
- Liu, W.; Pyrcz, M.J. Physics-informed graph neural network for spatial-temporal production forecasting. Geoenergy Sci. Eng. 2023, 223, 211486. [Google Scholar] [CrossRef]
- Huang, Z.-Q.; Wang, Z.-X.; Hu, H.-F.; Zhang, S.-M.; Liang, Y.-X.; Guo, Q.; Yao, J. Dynamic interwell connectivity analysis of multi-layer waterflooding reservoirs based on an improved graph neural network. Pet. Sci. 2024, 21, 1062–1080. [Google Scholar] [CrossRef]
- Wang, H.; Han, J.; Zhang, K.; Yao, C.; Ma, X.; Zhang, L.; Yang, Y.; Zhang, H.; Yao, J. An interpretable interflow simulated graph neural network for reservoir connectivity analysis. SPE J. 2021, 26, 1636–1651. [Google Scholar] [CrossRef]
- Lu, G.; Zeng, L.; Dong, S.; Huang, L.; Liu, G.; Ostadhassan, M.; He, W.; Du, X.; Bao, C. Lithology identification using graph neural network in continental shale oil reservoirs: A case study in Mahu Sag, Junggar Basin, Western China. Mar. Pet. Geol. 2023, 150, 106168. [Google Scholar] [CrossRef]
- Huang, H.; Gong, B.; Sun, W. A deep-learning-based graph neural network-long-short-term memory model for reservoir simulation and optimization with varying well controls. SPE J. 2023, 28, 2898–2916. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Gao, M.; Wei, C.; Zhao, X.; Huang, R.; Li, B.; Yang, J.; Gao, Y.; Liu, S.; Xiong, L. Intelligent optimization of gas flooding based on multi-objective approach for efficient reservoir management. Processes 2023, 11, 2226. [Google Scholar] [CrossRef]
- Yousef, A.A.; Gentil, P.; Jensen, J.L.; Lake, L.W. A capacitance model to infer interwell connectivity from production-and injection-rate fluctuations. SPE Reserv. Eval. Eng. 2006, 9, 630–646. [Google Scholar] [CrossRef]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [Google Scholar] [CrossRef]
- Pei, Y.; Huang, T.; Van Ipenburg, W.; Pechenizkiy, M. ResGCN: Attention-based deep residual modeling for anomaly detection on attributed networks. Mach. Learn. 2022, 111, 519–541. [Google Scholar] [CrossRef]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Ibiam, E.; Geiger, S.; Demyanov, V.; Arnold, D. Optimization of polymer flooding in a heterogeneous reservoir considering geological and history matching uncertainties. SPE Reserv. Eval. Eng. 2021, 24, 19–36. [Google Scholar] [CrossRef]
- Santhosh, E.C.; Sangwai, J.S. A hybrid differential evolution algorithm approach towards assisted history matching and uncertainty quantification for reservoir models. J. Pet. Sci. Eng. 2016, 142, 21–35. [Google Scholar] [CrossRef]
- Lin, A.; Liu, D.; Li, Z.; Hasanien, H.M.; Shi, Y. Heterogeneous differential evolution particle swarm optimization with local search. Complex Intell. Syst. 2023, 9, 6905–6925. [Google Scholar] [CrossRef]
Experimental Environment | Configuration Parameters |
---|---|
System | Windows11 |
Processor | Intel(R) Core(TM) i7-14650HX |
GPU | NVIDIA GeForce RTX 4060 Laptop GPU |
Memory | 16 GB |
Storage | 1 TB |
Python Environment | Python 3.11.11 |
Deep Learning Framework | PyTorch 2.6.0 |
KUDA 12.6 | |
Computing and Visualization Library | Matplotlib 3.10.1 |
Pandas 2.2.3 | |
NumPy 2.0.1 |
Well-to-Well | True TRANS 1 | DEPSO TRANS | Well-to-Well | True TRANS | DEPSO TRANS |
---|---|---|---|---|---|
W1_W5 | 6.1038 | 6.0926 | W4_P3 | 2.4666 | 2.5149 |
W1_P1 | 7.4978 | 7.5041 | W4_P4 | 4.7212 | 4.7236 |
W1_P2 | 9.792 | 9.803 | W5_P1 | 6.675 | 7.069 |
W2_W5 | 3.1198 | 3.1209 | W5_P2 | 8.9656 | 8.7752 |
W2_P1 | 3.9288 | 4.0125 | W5_P3 | 5.2819 | 4.9918 |
W2_P4 | 4.5231 | 4.5514 | W5_P4 | 7.412 | 7.409 |
W3_W5 | 5.3616 | 4.9031 | P1_P2 | 5.4383 | 5.4329 |
W3_P2 | 8.5035 | 8.0215 | P1_P4 | 4.4864 | 4.4749 |
I3_P3 | 5.6316 | 5.5299 | P2_P3 | 4.846 | 4.795 |
I4_I5 | 3.2043 | 3.0152 | P3_P4 | 3.8263 | 3.8513 |
Well-to-Well | True CTRPV 1 | DEPSO CTRPV | Well-to-Well | True CTRPV | DEPSO CTRPV |
---|---|---|---|---|---|
W1_W5 | 43.3708 | 43.3815 | W4_P3 | 29.9029 | 30.0106 |
W1_P1 | 25.4362 | 24.9918 | W4_P4 | 26.5812 | 26.5905 |
W1_P2 | 27.6316 | 27.6329 | W5_P1 | 27.1935 | 27.1915 |
W2_W5 | 40.8897 | 41.0155 | W5_P2 | 29.3889 | 29.3906 |
W2_P1 | 23.6818 | 23.6915 | W5_P3 | 31.5579 | 31.4529 |
W2_P4 | 24.7245 | 24.7319 | W5_P4 | 28.2362 | 28.2418 |
W3_W5 | 38.5443 | 38.1212 | P1_P2 | 34.1635 | 34.1394 |
W3_P2 | 24.2187 | 24.7189 | P1_P4 | 32.5334 | 32.5316 |
I3_P3 | 26.3878 | 25.8861 | P2_P3 | 40.3358 | 40.3246 |
I4_I5 | 43.5154 | 43.0195 | P3_P4 | 38.7057 | 38.7162 |
Well Name | WWCT Fitting Rate | Well Name | WWCT Fitting Rate | Well Name | WWCT Fitting Rate |
---|---|---|---|---|---|
A1 | 88% | A6 | 88% | A11 | 90% |
A2 | 86% | A7 | 91% | A12 | 88% |
A3 | 84% | A8 | 91% | A13 | 92% |
A4 | 85% | A9 | 83% | ||
A5 | 90% | A10 | 86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Xu, T.; Xu, Y.; Zhao, H.; Li, B. Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion. Processes 2025, 13, 1386. https://doi.org/10.3390/pr13051386
Liu B, Xu T, Xu Y, Zhao H, Li B. Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion. Processes. 2025; 13(5):1386. https://doi.org/10.3390/pr13051386
Chicago/Turabian StyleLiu, Botao, Tengbo Xu, Yunfeng Xu, Hui Zhao, and Bo Li. 2025. "Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion" Processes 13, no. 5: 1386. https://doi.org/10.3390/pr13051386
APA StyleLiu, B., Xu, T., Xu, Y., Zhao, H., & Li, B. (2025). Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion. Processes, 13(5), 1386. https://doi.org/10.3390/pr13051386