Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion
Abstract
1. Introduction
2. Methods
2.1. GNN Surrogate Model
- The state is iteratively updated for rounds according to Equation (1) until it approaches the fixed-point solution of Equation (3) at time . At this point, the obtained will be close to the fixed-point solution ≈ .
- The gradient of the weights is calculated from the function.
- The weights are updated using the gradient calculated in step 2.
2.2. Development of the Surrogate Model
2.3. History Matching Workflow Based on the Hybrid Algorithm of DEPSO
| Algorithm 1. The optimization process of the DEPSO algorithm |
| 1: Randomly generate initial position matrix , randomly generate initial velocity matrix 2: Initialize individual optimal values , calculate fitness values, initialize global optimal values 3: for = 1 to : 4: for = 1 to : 5: Randomly select three different individuals x_r1, x_r2, x_r3 (where r1, r2, r3 ≠ i) from the current population 6: v_n = x_r1 + × (x_r2–x_r3) 7: Generate a trial vector u_n whose elements are obtained by crossing the elements of v_n and x_n with a probability CR. 8: Evaluate the fitness of u_n and , update if the fitness of u_n is better 9: calculate speed variable 10: calculate position variable 11: Evaluate the fitness of and, update if the fitness of is better 12: Evaluate the fitness of and , update if the fitness of is better 13: End for 14: End for |
2.4. History Matching Framework
3. Case Study
3.1. CASE1: Conceptual Reservoir Case
3.2. CASE2: Complex Reservoir Case
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Hu, Y.; Rao, X.; Zhao, H.; Zhong, X.; Peng, X.; Zhan, W.; Sheng, G.; Liu, D. A fractal physics-based data-driven model for water-flooding reservoir (FlowNet-fractal). J. Pet. Sci. Eng. 2022, 210, 109960. [Google Scholar] [CrossRef]
- Chai, Z.; Yan, B.; Killough, J.E.; Wang, Y. An efficient method for fractured shale reservoir history matching: The embedded discrete fracture multi-continuum approach. J. Pet. Sci. Eng. 2018, 160, 170–181. [Google Scholar] [CrossRef]
- Oliver, D.S.; Reynolds, A.C.; Liu, N. Inverse Theory for Petroleum Reservoir Characterization and History Matching; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Chang, H.; Zhang, D. History matching of stimulated reservoir volume of shale-gas reservoirs using an iterative ensemble smoother. Spe J. 2018, 23, 346–366. [Google Scholar] [CrossRef]
- Chakra, N.C.C.; Saraf, D.N. History matching of petroleum reservoirs employing adaptive genetic algorithm. J. Pet. Explor. Prod. Technol. 2016, 6, 653–674. [Google Scholar] [CrossRef]
- Maschio, C.; Schiozer, D.J. Integration of geostatistical realizations in data assimilation and reduction of uncertainty process using genetic algorithm combined with multi-start simulated annealing. Oil Gas Sci. Technol. Rev. D’ifp Energ. Nouv. 2019, 74, 73. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Cai, H.; Gao, Y.; Jiang, R. The numerical simulation study on the dynamic variation of residual oil with water drive velocity in water flooding reservoir. Front. Energy Res. 2023, 10, 977109. [Google Scholar] [CrossRef]
- Kazemi, A.; Stephen, K.D. Schemes for automatic history matching of reservoir modeling: A case of Nelson oilfield in UK. Pet. Explor. Dev. 2012, 39, 349–361. [Google Scholar] [CrossRef]
- Li, B.; Bhark, E.W.; Billiter, T.C.; Dehghani, K. Best practices of assisted history matching using design of experiments. SPE J. 2019, 24, 1435–1451. [Google Scholar] [CrossRef]
- Forouzanfar, F.; Wu, X.-H. Constrained iterative ensemble smoother for multi solution search assisted history matching. Comput. Geosci. 2021, 25, 1593–1604. [Google Scholar] [CrossRef]
- Avansi, G.D.; Maschio, C.; Schiozer, D.J. Simultaneous history-matching approach by use of reservoir-characterization and reservoir-simulation studies. SPE Reserv. Eval. Eng. 2016, 19, 694–712. [Google Scholar] [CrossRef]
- Xu, W. Generalising History Matching for Enhanced Calibration of Computer Models; University of Exeter: Exeter, UK, 2021. [Google Scholar]
- Ma, X.; Zhang, K.; Zhang, J.; Wang, Y.; Zhang, L.; Liu, P.; Yang, Y.; Wang, J. A novel hybrid recurrent convolutional network for surrogate modeling of history matching and uncertainty quantification. J. Pet. Sci. Eng. 2022, 210, 110109. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Y.; Durlofsky, L.J. A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems. J. Comput. Phys. 2020, 413, 109456. [Google Scholar] [CrossRef]
- Xue, L.; Gu, S.; Mi, L.; Zhao, L.; Liu, Y.; Liao, Q. An automated data-driven pressure transient analysis of water-drive gas reservoir through the coupled machine learning and ensemble Kalman filter method. J. Pet. Sci. Eng. 2022, 208, 109492. [Google Scholar] [CrossRef]
- Saad, G.; Ghanem, R. Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter. Water Resour. Res. 2009, 45, W04417. [Google Scholar] [CrossRef]
- Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res. 2012, 48, W07401. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Hoteit, I.; Wheeler, M.F. Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates. Comput. Methods Appl. Mech. Eng. 2014, 269, 515–537. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Y.; Luo, X.; Adenutsi, C.D.; Zhao, G.; Lai, F. A critical review on intelligent optimization algorithms and surrogate models for conventional and unconventional reservoir production optimization. Fuel 2023, 350, 128826. [Google Scholar] [CrossRef]
- Li, W.; Lin, G. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions. J. Comput. Phys. 2015, 294, 173–190. [Google Scholar] [CrossRef]
- Zhang, J.; Man, J.; Lin, G.; Wu, L.; Zeng, L. Inverse modeling of hydrologic systems with adaptive multifidelity Markov chain Monte Carlo simulations. Water Resour. Res. 2018, 54, 4867–4886. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, K.; Zhang, L.; Yao, C.; Yao, J.; Wang, H.; Jian, W.; Yan, Y. Data-driven niching differential evolution with adaptive parameters control for history matching and uncertainty quantification. Spe J. 2021, 26, 993–1010. [Google Scholar] [CrossRef]
- Qiao, P.; Wu, Y.; Ding, J.; Zhang, Q. A new sequential sampling method of surrogate models for design and optimization of dynamic systems. Mech. Mach. Theory 2021, 158, 104248. [Google Scholar] [CrossRef]
- Janatian, N. Real-Time Optimization and Control for Oil Production Under Uncertainty. Ph.D. Thesis, University of South-Eastern Norway, Notodden, Norway, 2024. [Google Scholar]
- Canchumuni, S.W.A.; Emerick, A.A.; Pacheco, M.A.C. History matching geological facies models based on ensemble smoother and deep generative models. J. Pet. Sci. Eng. 2019, 177, 941–958. [Google Scholar] [CrossRef]
- Qin, Z.; Jiang, A.; Faulder, D.; Cladouhos, T.T.; Jafarpour, B. Efficient optimization of energy recovery from geothermal reservoirs with recurrent neural network predictive models. Water Resour. Res. 2023, 59, e2022WR032653. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.D.; Gu, J. Forecasting oil production using ensemble empirical model decomposition based Long Short-Term Memory neural network. J. Pet. Sci. Eng. 2020, 189, 107013. [Google Scholar] [CrossRef]
- Aghayev, Z.; Voulanas, D.; Gildin, E.; Beykal, B. Surrogate-Assisted Optimization of Highly Constrained Oil Recovery Processes Using Classification-Based Constraint Modeling. Ind. Eng. Chem. Res. 2025, 64, 7619–7940. [Google Scholar] [CrossRef]
- Khormali, A.; Ahmadi, S. Synergistic effect between oleic imidazoline and 2-mercaptobenzimidazole for increasing the corrosion inhibition performance in carbon steel samples. Iran. J. Chem. Chem. Eng. Res. 2023, 42, 321–336. [Google Scholar]
- Liu, W.; Pyrcz, M.J. Physics-informed graph neural network for spatial-temporal production forecasting. Geoenergy Sci. Eng. 2023, 223, 211486. [Google Scholar] [CrossRef]
- Huang, Z.-Q.; Wang, Z.-X.; Hu, H.-F.; Zhang, S.-M.; Liang, Y.-X.; Guo, Q.; Yao, J. Dynamic interwell connectivity analysis of multi-layer waterflooding reservoirs based on an improved graph neural network. Pet. Sci. 2024, 21, 1062–1080. [Google Scholar] [CrossRef]
- Wang, H.; Han, J.; Zhang, K.; Yao, C.; Ma, X.; Zhang, L.; Yang, Y.; Zhang, H.; Yao, J. An interpretable interflow simulated graph neural network for reservoir connectivity analysis. SPE J. 2021, 26, 1636–1651. [Google Scholar] [CrossRef]
- Lu, G.; Zeng, L.; Dong, S.; Huang, L.; Liu, G.; Ostadhassan, M.; He, W.; Du, X.; Bao, C. Lithology identification using graph neural network in continental shale oil reservoirs: A case study in Mahu Sag, Junggar Basin, Western China. Mar. Pet. Geol. 2023, 150, 106168. [Google Scholar] [CrossRef]
- Huang, H.; Gong, B.; Sun, W. A deep-learning-based graph neural network-long-short-term memory model for reservoir simulation and optimization with varying well controls. SPE J. 2023, 28, 2898–2916. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Gao, M.; Wei, C.; Zhao, X.; Huang, R.; Li, B.; Yang, J.; Gao, Y.; Liu, S.; Xiong, L. Intelligent optimization of gas flooding based on multi-objective approach for efficient reservoir management. Processes 2023, 11, 2226. [Google Scholar] [CrossRef]
- Yousef, A.A.; Gentil, P.; Jensen, J.L.; Lake, L.W. A capacitance model to infer interwell connectivity from production-and injection-rate fluctuations. SPE Reserv. Eval. Eng. 2006, 9, 630–646. [Google Scholar] [CrossRef]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [Google Scholar] [CrossRef]
- Pei, Y.; Huang, T.; Van Ipenburg, W.; Pechenizkiy, M. ResGCN: Attention-based deep residual modeling for anomaly detection on attributed networks. Mach. Learn. 2022, 111, 519–541. [Google Scholar] [CrossRef]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Ibiam, E.; Geiger, S.; Demyanov, V.; Arnold, D. Optimization of polymer flooding in a heterogeneous reservoir considering geological and history matching uncertainties. SPE Reserv. Eval. Eng. 2021, 24, 19–36. [Google Scholar] [CrossRef]
- Santhosh, E.C.; Sangwai, J.S. A hybrid differential evolution algorithm approach towards assisted history matching and uncertainty quantification for reservoir models. J. Pet. Sci. Eng. 2016, 142, 21–35. [Google Scholar] [CrossRef]
- Lin, A.; Liu, D.; Li, Z.; Hasanien, H.M.; Shi, Y. Heterogeneous differential evolution particle swarm optimization with local search. Complex Intell. Syst. 2023, 9, 6905–6925. [Google Scholar] [CrossRef]


















| Experimental Environment | Configuration Parameters |
|---|---|
| System | Windows11 |
| Processor | Intel(R) Core(TM) i7-14650HX |
| GPU | NVIDIA GeForce RTX 4060 Laptop GPU |
| Memory | 16 GB |
| Storage | 1 TB |
| Python Environment | Python 3.11.11 |
| Deep Learning Framework | PyTorch 2.6.0 |
| KUDA 12.6 | |
| Computing and Visualization Library | Matplotlib 3.10.1 |
| Pandas 2.2.3 | |
| NumPy 2.0.1 |
| Well-to-Well | True TRANS 1 | DEPSO TRANS | Well-to-Well | True TRANS | DEPSO TRANS |
|---|---|---|---|---|---|
| W1_W5 | 6.1038 | 6.0926 | W4_P3 | 2.4666 | 2.5149 |
| W1_P1 | 7.4978 | 7.5041 | W4_P4 | 4.7212 | 4.7236 |
| W1_P2 | 9.792 | 9.803 | W5_P1 | 6.675 | 7.069 |
| W2_W5 | 3.1198 | 3.1209 | W5_P2 | 8.9656 | 8.7752 |
| W2_P1 | 3.9288 | 4.0125 | W5_P3 | 5.2819 | 4.9918 |
| W2_P4 | 4.5231 | 4.5514 | W5_P4 | 7.412 | 7.409 |
| W3_W5 | 5.3616 | 4.9031 | P1_P2 | 5.4383 | 5.4329 |
| W3_P2 | 8.5035 | 8.0215 | P1_P4 | 4.4864 | 4.4749 |
| I3_P3 | 5.6316 | 5.5299 | P2_P3 | 4.846 | 4.795 |
| I4_I5 | 3.2043 | 3.0152 | P3_P4 | 3.8263 | 3.8513 |
| Well-to-Well | True CTRPV 1 | DEPSO CTRPV | Well-to-Well | True CTRPV | DEPSO CTRPV |
|---|---|---|---|---|---|
| W1_W5 | 43.3708 | 43.3815 | W4_P3 | 29.9029 | 30.0106 |
| W1_P1 | 25.4362 | 24.9918 | W4_P4 | 26.5812 | 26.5905 |
| W1_P2 | 27.6316 | 27.6329 | W5_P1 | 27.1935 | 27.1915 |
| W2_W5 | 40.8897 | 41.0155 | W5_P2 | 29.3889 | 29.3906 |
| W2_P1 | 23.6818 | 23.6915 | W5_P3 | 31.5579 | 31.4529 |
| W2_P4 | 24.7245 | 24.7319 | W5_P4 | 28.2362 | 28.2418 |
| W3_W5 | 38.5443 | 38.1212 | P1_P2 | 34.1635 | 34.1394 |
| W3_P2 | 24.2187 | 24.7189 | P1_P4 | 32.5334 | 32.5316 |
| I3_P3 | 26.3878 | 25.8861 | P2_P3 | 40.3358 | 40.3246 |
| I4_I5 | 43.5154 | 43.0195 | P3_P4 | 38.7057 | 38.7162 |
| Well Name | WWCT Fitting Rate | Well Name | WWCT Fitting Rate | Well Name | WWCT Fitting Rate |
|---|---|---|---|---|---|
| A1 | 88% | A6 | 88% | A11 | 90% |
| A2 | 86% | A7 | 91% | A12 | 88% |
| A3 | 84% | A8 | 91% | A13 | 92% |
| A4 | 85% | A9 | 83% | ||
| A5 | 90% | A10 | 86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Xu, T.; Xu, Y.; Zhao, H.; Li, B. Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion. Processes 2025, 13, 1386. https://doi.org/10.3390/pr13051386
Liu B, Xu T, Xu Y, Zhao H, Li B. Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion. Processes. 2025; 13(5):1386. https://doi.org/10.3390/pr13051386
Chicago/Turabian StyleLiu, Botao, Tengbo Xu, Yunfeng Xu, Hui Zhao, and Bo Li. 2025. "Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion" Processes 13, no. 5: 1386. https://doi.org/10.3390/pr13051386
APA StyleLiu, B., Xu, T., Xu, Y., Zhao, H., & Li, B. (2025). Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion. Processes, 13(5), 1386. https://doi.org/10.3390/pr13051386
