Achieving High-Efficiency Wastewater Treatment with Sequencing Batch Reactor Grundfos Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Technological Approaches in Sequencing Batch Reactors for Enhanced Landfill Leachate Treatment
2.2. Chemical Analysis in Technological Approaches in Sequencing Batch Reactors
2.3. Statistical Analysis and Computational Fluid Dynamics
3. Results
3.1. Analysis of Wastewater Treatment Parameters and Efficiency
3.2. The Simulation Results Visualized Using Streamline Plots
4. Discussion
4.1. Optimizing Flow Patterns in Waste Treatment and Technology
4.2. Variations and Chemical Dynamics During Wastewater Treatment
4.3. Limitation of the Studied Technology and Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhanorkar, R.J.; Mohanty, S.; Gupta, V.K. Synthesis of functionalized styrene butadiene rubber and its applications in SBR–silica composites for high-performance tire applications. Ind. Eng. Chem. Res. 2021, 60, 4517–4535. [Google Scholar] [CrossRef]
- Remmas, N.; Manfe, N.; Raga, R.; Akratos, C. Activated sludge microbial communities and hydrolytic potential in a full-scale SBR system treating landfill leachate. J. Environ. Sci. Health Part A 2022, 57, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Kitanou, S.; Ayyoub, H.; Touir, J.; Zdeg, A.; Benabdallah, S.; Taky, M.; Elmidaoui, A. A comparative examination of MBR and SBR performance for municipal wastewater treatment. Water Pract. Technol. 2021, 16, 582–591. [Google Scholar] [CrossRef]
- Kowalik, R.; Latosińska, J.; Metryka-Telka, M.; Porowski, R.; Gawdzik, J. Comparison of the possibilities of environmental usage of sewage sludge from treatment plants operating with MBR and SBR technology. Membranes 2021, 11, 722. [Google Scholar] [CrossRef] [PubMed]
- Struk-Sokołowska, J.; Kotowska, U.; Piekutin, J.; Laskowski, P.; Mielcarek, A. Analysis of 1H-benzotriazole removal efficiency from wastewater in individual process phases of a sequencing batch reactor SBR. Water Resour. Ind. 2022, 28, 100182. [Google Scholar] [CrossRef]
- Ali, S.I.; Moustafa, M.H.; Nwery, M.S.; Farahat, N.S.; Samhan, F. Evaluating the performance of sequential batch reactor (SBR & ASBR) wastewater treatment plants, case study. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100745. [Google Scholar]
- Sudhakar, S.; Moondra, N.; Christian, R.A. A comparative study on treatment of CETP wastewater using SBR and SBR-IFAS process. Water Conserv. Manag. 2022, 6, 51–54. [Google Scholar] [CrossRef]
- Verma, M.; Chakraborty, S.; Kumari, S.; Gupta, A.; Kumar, D.; Iqbal, J.; Kumar, R.N. Co-treatment of stabilized landfill leachate and municipal wastewater in a granular activated carbon-sequencing batch reactor (GAC-SBR). Process Saf. Environ. Prot. 2023, 174, 424–432. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Lawal, I.M.; Abubakar, S.; Hassan, I.; Zubairu, I.; Noor, A. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. J. Environ. Manag. 2021, 282, 111946. [Google Scholar] [CrossRef]
- Singh, A.; Srivastava, A.; Saidulu, D.; Gupta, A.K. Advancements of sequencing batch reactor for industrial wastewater treatment: Major focus on modifications, critical operational parameters, and future perspectives. J. Environ. Manag. 2022, 317, 115305. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Li, M.; Wang, H.; Li, Y.; Peng, H.; Feng, J. Microbial community and function evaluation in the start-up period of bioaugmented SBR fed with aniline wastewater. Bioresour. Technol. 2021, 319, 124148. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, H.; Kang, J.; Liu, B.; Song, G.; Liu, Y. Improving simultaneous N, P, and C removal and microbial population dynamics in an anaerobic–aerobic–anoxic SBR (AOA-SBR) treating municipal wastewater by altering organic loading rate (OLR). Environ. Technol. Innov. 2021, 24, 102081. [Google Scholar] [CrossRef]
- Zhang, N.; He, Y.; Yi, X.; Yan, Y.; Xu, W. Rapid start-up of autotrophic shortcut nitrification system in SBR and microbial community analysis. Environ. Technol. 2022, 43, 4363–4375. [Google Scholar] [CrossRef] [PubMed]
- Ochs, P.; Martin, B.D.; Germain, E.; Stephenson, T.; van Loosdrecht, M.; Soares, A. Ammonia removal from thermal hydrolysis dewatering liquors via three different deammonification technologies. Sci. Total Environ. 2021, 755, 142684. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, H.; Tian, Y. Achieving nitrogen removal with low material and energy consumption through partial nitrification coupled with short-cut sulfur autotrophic denitrification in a single-stage SBR. Bioresour. Technol. 2023, 380, 128999. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Bilal, M.; Tariq Khan, M. Harnessing Nanomaterials for Enhanced Biohydrogen Generation from Wastewater. Chem.–Asian J. 2024, 19, e202300618. [Google Scholar] [CrossRef]
- Daneshgar, S.; Borzooei, S.; Debliek, L.; Van Den Broeck, E.; Cornelissen, R.; de Langhe, P.; Torfs, E. A dynamic compartmental model of a sequencing batch reactor (SBR) for biological phosphorus removal. Water Sci. Technol. 2024, 90, 510–523. [Google Scholar] [CrossRef]
- Liu, J.; Han, X.; Zhu, X.; Li, J.; Zhong, D.; Wei, L.; Liang, H. A systemic evaluation of aerobic granular sludge among granulation, operation, storage, and reactivation processes in an SBR. Environ. Res. 2023, 235, 116594. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, Z.; Xu, X.; Xiao, F.; Zhang, Q.; Wang, C.; Zeng, M. Efficient treatment of leather wastewater using a combination of CEPT and SBR with a novel flocculant. J. Water Process Eng. 2024, 57, 104575. [Google Scholar] [CrossRef]
- Tałałaj, I.A.; Bartkowska, I.; Biedka, P. Treatment of young and stabilized landfill leachate by integrated sequencing batch reactor (SBR) and reverse osmosis (RO) process. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100502. [Google Scholar]
- Feng, J.; Zhang, Q.; Tan, B.; Li, M.; Peng, H.; He, J.; Su, J. Microbial community and metabolic characteristics evaluation in start-up stage of electro-enhanced SBR for aniline wastewater treatment. J. Water Process Eng. 2022, 45, 102489. [Google Scholar] [CrossRef]
- Masłoń, A. Impact of uneven flow wastewater distribution on the technological efficiency of a sequencing batch reactor. Sustainability 2022, 14, 2405. [Google Scholar] [CrossRef]
- Sytek-Szmeichel, K.; Podedworna, J.; Zubrowska-Sudol, M. Efficiency of wastewater treatment in SBR and IFAS-MBSBBR systems in specified technological conditions. Water Sci. Technol. 2016, 73, 1349–1356. [Google Scholar] [CrossRef]
- Piotrowski, R.; Paul, A.; Lewandowski, M. Improving SBR performance alongside with cost reduction through optimizing biological processes and dissolved oxygen concentration trajectory. Appl. Sci. 2019, 9, 2268. [Google Scholar] [CrossRef]
- Zekker, I.; Artemchuk, O.; Rikmann, E.; Ohimai, K.; Dhar Bhowmick, G.; Madhao Ghangrekar, M.; Tenno, T. Start-up of anammox SBR from non-specific inoculum and process acceleration methods by hydrazine. Water 2021, 13, 350. [Google Scholar] [CrossRef]
- Jafarinejad, S. Recent developments in the application of sequencing batch reactor (SBR) technology for the petroleum industry wastewater treatment. Chem. Int. 2017, 3, 241. [Google Scholar]
- De Nardi, I.R.; Del Nery, V.; Amorim, A.K.B.; Dos Santos, N.G.; Chimenes, F. Performances of SBR, chemical–DAF and UV disinfection for poultry slaughterhouse wastewater reclamation. Desalination 2011, 269, 184–189. [Google Scholar] [CrossRef]
- Aziz, S.Q.; Aziz, H.A.; Yusoff, M.S.; Mohajeri, S. Removal of phenols and other pollutants from different landfill leachates using powdered activated carbon supplemented SBR technology. Environ. Monit. Assess. 2012, 184, 6147–6158. [Google Scholar] [CrossRef]
- Sae-oui, P.; Suchiva, K.; Thepsuwan, U.; Intiya, W.; Yodjun, P.; Sirisinha, C. Effects of blend ratio and SBR type on properties of silica-filled SBR/NR tire tread compounds. Rubber Chem. Technol. 2016, 89, 240–250. [Google Scholar] [CrossRef]
- Sivic, A.; Atanasova, N.; Puig, S.; Griessler Bulc, T. Ammonium removal in landfill leachate using SBR technology: Dispersed versus attached biomass. Water Sci. Technol. 2018, 77, 27–38. [Google Scholar] [CrossRef]
- Gogina, E.; Quan, T.H. The assessment of technology SBR in Vietnamese wastewater treatment. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 365, p. 022061. [Google Scholar]
- Yan, L.; Liu, S.; Liu, Q.; Zhang, M.; Liu, Y.; Wen, Y.; Yang, Q. Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresour. Technol. 2019, 275, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, R.; Chen, L.; Dong, B.; Kawagishi, T. Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater. Front. Environ. Sci. Eng. 2017, 11, 13. [Google Scholar] [CrossRef]
- PN-EN ISO 5815-1:2019-12; Water Quality—Determination of Biochemical Oxygen Demand After n Days (BODn)—Part 1: Dilution and Seeding Method with Allylthiourea Addition. Polish Committee for Standardization: Warsaw, Poland, 2019.
- PN-ISO 15705:2005; Water Quality—Determination of the Chemical Oxygen Demand—Small-Scale Sealed-Tube Method. Polish Committee for Standardization: Warsaw, Poland, 2005.
- PN-EN ISO 10523:2012; Water Quality—Determination of pH. Polish Committee for Standardization: Warsaw, Poland, 2012.
- PN-EN 872:2007+A1:2007; Water Quality—Determination of Suspended Solids—Method by Filtration Through Glass Fiber Filters. Polish Committee for Standardization: Warsaw, Poland, 2007.
- Hammer, Ø.; Harper, D.A. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- Khan, A.H.; Rudayni, H.A.; Chaudhary, A.A.; Imran, M.; Vambol, S. Modern use of modified sequencing batch reactor in wastewater treatment. Ecol. Quest. 2022, 33, 99–110. [Google Scholar]
- Razafimanantsoa, V.A. Energy optimization of biological wastewater treatment using rotating belt filters upstream BNR. Environ. Technol. Innov. 2020, 20, 100876. [Google Scholar]
- Fan, W.; Yuan, L.; Qu, X. CFD simulation of hydrodynamic behaviors and aerobic sludge granulation in a stirred tank with lower ratio of height to diameter. Biochem. Eng. J. 2018, 137, 78–94. [Google Scholar] [CrossRef]
- Ujazdowski, T.; Zubowicz, T.; Piotrowski, R. A comprehensive approach to SBR modelling for monitoring and control system design. J. Water Process Eng. 2023, 53, 103774. [Google Scholar] [CrossRef]
- Młyńska, A.; Chmielowski, K. The changes of nitrogen content during sewage treatment: A study of a two-stage wastewater treatment plant. J. Water Land Dev. 2024, 106, 106–114. [Google Scholar] [CrossRef]
- Młyński, D.; Bugajski, P.; Młyńska, A. Application of the mathematical simulation methods for the assessment of the wastewater treatment plant operation work reliability. Water 2019, 11, 873. [Google Scholar] [CrossRef]
- Carrasquero-Ferrer, S.; Pino-Rodríguez, J.; Díaz-Montiel, A. Sequencing batch reactor: A sustainable wastewater treatment option for the canned vegetable industry. Sustainability 2025, 17, 818. [Google Scholar] [CrossRef]
- Maurya, Y.S.; Das, I.; Adak, A. Treatment of railway laundry wastewater through a chain of physicochemical processes and an aerobic sequential batch reactor. J. Hazard. Toxic Radioact. Waste 2025, 29, 04024032. [Google Scholar] [CrossRef]
- Giordani, A.; Bicelli, L.G.; Augusto, M.R.; Okada, D.Y.; Brucha, G.; de Moura, R.B.; de Souza, T.S.O. Metabolic pathways and microbial interactions in simultaneous removal of carbon, nitrogen, and sulfur in anaerobic sequencing batch reactors (ASBRs) under high nitrite concentration. J. Water Process Eng. 2025, 69, 106823. [Google Scholar] [CrossRef]
- Nowak, A.; Mazur, R.; Panek, E.; Dacewicz, E.; Chmielowski, K. Treatment efficiency of fish processing wastewater in different types of biological reactors. Phys. Chem. Earth 2019, 109, 40–48. [Google Scholar] [CrossRef]
- Młyńska, A.; Halecki, W.; Chmielowski, K. Efficient biological treatment: Achieving exceptional reductions in pollutants and ensuring environmental compliance. Desalination Water Treat. 2024, 319, 100552. [Google Scholar] [CrossRef]
- Chmielowski, K.; Halecki, W.; Masłoń, A.; Bąk, Ł.; Kalenik, M.; Spychała, M.; Sionkowski, T. The Efficiency of a Biological Reactor in a Domestic Wastewater Treatment Plant Operating Based on ABS (Acrylonitrile Butadiene Styrene) Material and Recycled PUR (Polyurethane) Foam. Sustainability 2024, 16, 1149. [Google Scholar] [CrossRef]
- Akshay, K.; Arjun, M.; Govind, S.S.; Hrithwik, V.; Akhil, S.; Rahulan, N. Mechanical behavior of silicon carbide filled SBR/NBR blends. Mater. Today Proc. 2021, 42, 1432–1436. [Google Scholar] [CrossRef]
- Askari, S.S.; Giri, B.S.; Basheer, F.; Izhar, T.; Ahmad, S.A.; Mumtaz, N. Enhancing sequencing batch reactors for efficient wastewater treatment across diverse applications: A comprehensive review. Environ. Res. 2024, 260, 119656. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Bhatia, A.; Gaur, R.Z.; Khan, A.A.; Khursheed, A.; Rajpal, A.; Kazmi, A.A. Cyclic Technology–Based Sequencing Batch Reactors (SBR) Treating Municipal Wastewater: Full-Scale Experience. In Innovations in Environmental Biotechnology; Springer Nature Singapore: Singapore, 2022; pp. 633–652. [Google Scholar]
- Dey, I.; Ambati, S.R.; Bhos, P.N.; Sonawane, S.; Pilli, S. Effluent Quality Improvement in Sequencing Batch Reactor-Based Wastewater Treatment Processes Using Advanced Control Strategies. Water Sci. Technol. 2024, 89, 2661–2675. [Google Scholar] [CrossRef]
- Carrera, P.; Ma, J.; Caluwé, M.; Wyffels, S.; Volcke, E.I. Next-Generation Continuous-Flow SBR Technology for Municipal Wastewater Treatment: Design and Optimisation. Sci. Total Environ. 2025, 973, 179165. [Google Scholar] [CrossRef]
Indicator | Raw | Raw | Limit |
---|---|---|---|
mg/dm3 | |||
BOD5 | 382.5 | 5.5 | 25 |
COD | 1263 | 28.8 | 125 |
Total Suspended Solids | 577.5 | 4.48 | 35 |
Total nitrogen | 11.63 | 11.6 | 15 |
Total phosphorus | 18.93 | 0.54 | 2 |
Parameter | Value |
---|---|
Q | 2830 m3/d |
RLM | 17,640 |
Volume | 2 × 1010 m3 (−20%) |
AOR | 25.5 kg/h (−19%) |
SOR | 56.7 kg/h |
Qp | 596 Nm3/h (−28%) |
Motor | ES65/2-P 22 kW |
Energy Consumption | 560 kWh (−13%) |
Annual Energy Cost Savings | ca. 4000 EURO |
Tests on Independent Variables | ||||||
p | df2 | df1 | F | Wilks Lambda | Indicator | |
<0.01 | 7 | 2 | 35.92 | 0.09 | TSS | |
<0.01 | 7 | 2 | 17.85 | 0.16 | TN | |
<0.01 | 7 | 2 | 27.16 | 0.11 | TP | |
Tests on Dependent Variables | ||||||
p | df2 | df1 | F | R2 | ||
<0.001 | 8 | 3 | 649.5 | 0.99 | COD | |
<0.001 | 8 | 3 | 38.45 | 0.93 | BOD5 | |
Regression Coefficients and Statistics | ||||||
R2 | p | t | Standard Error | Coefficient | ||
0.17 | −1.51 | 31.5 | −47.45 | Constant | COD | |
0.96 | <0.001 | 7.65 | 0.16 | 1.26 | TSS | |
0.49 | <0.01 | 5.06 | 1.27 | 6.45 | TN | |
0.05 | <0.01 | −6.65 | 0.87 | −5.79 | TP | |
0.67 | −0.45 | 35.4 | −15.8 | Constant | BOD5 | |
0.91 | 0.17 | 1.53 | 0.18 | 0.28 | TSS | |
0.62 | 0.14 | 1.65 | 1.43 | 2.36 | TN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sionkowski, T.; Halecki, W.; Jasiński, P.; Chmielowski, K. Achieving High-Efficiency Wastewater Treatment with Sequencing Batch Reactor Grundfos Technology. Processes 2025, 13, 1173. https://doi.org/10.3390/pr13041173
Sionkowski T, Halecki W, Jasiński P, Chmielowski K. Achieving High-Efficiency Wastewater Treatment with Sequencing Batch Reactor Grundfos Technology. Processes. 2025; 13(4):1173. https://doi.org/10.3390/pr13041173
Chicago/Turabian StyleSionkowski, Tomasz, Wiktor Halecki, Paweł Jasiński, and Krzysztof Chmielowski. 2025. "Achieving High-Efficiency Wastewater Treatment with Sequencing Batch Reactor Grundfos Technology" Processes 13, no. 4: 1173. https://doi.org/10.3390/pr13041173
APA StyleSionkowski, T., Halecki, W., Jasiński, P., & Chmielowski, K. (2025). Achieving High-Efficiency Wastewater Treatment with Sequencing Batch Reactor Grundfos Technology. Processes, 13(4), 1173. https://doi.org/10.3390/pr13041173