Influence of Effluent Quality Parameters on Daphnia spp. Overgrowth in an Urban Wastewater Treatment Plant: A Multiyear Case Study Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Statistical Analysis
2.2.1. Pearson’s Correlation Matrix
2.2.2. Principal Component Analysis (PCA)
2.2.3. Logistic Regression
2.2.4. Classification Tree
3. Results
3.1. Effect of the COVID-19 Pandemic
3.2. Pearson’s Correlation Matrix
3.3. Principal Component Analysis
3.4. T Test
3.5. Logistic Regression
3.6. Classification Tree
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Várhelyi, M.; Vasile, M.; Marius, A. Improving wastewater treatment plant operation by ammonia-based aeration and return activated sludge control. Comput. Aid. Chem. Eng. 2019, 46, 1165–1170. [Google Scholar] [CrossRef]
- Muga, H.E.; Mihelcic, J.R. Sustainability of wastewater treatment technologies. J. Environ. Manag. 2008, 88, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A. Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability 2023, 15, 10940. [Google Scholar] [CrossRef]
- Englande, A.J., Jr.; Krenkel, P.A. Waste Water Treatment and Water Reclamation. Encycl. Phys. Sci. Technol. 2003, 13, 661–677. [Google Scholar]
- Riffat, R.; Husnain, T. Fundamentals of Wastewater Treatment and Engineering, 2nd ed.; CRC Press: London, UK, 2012; p. 430. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Chapter 1: Wastewater Treatment: An Overview. In Green Adsorbents for Pollutant Removal, Environmental Chemistry for a Sustainable World; Springer Nature: Cham, Switzerland, 2018; Volume 18, pp. 1–21. [Google Scholar] [CrossRef]
- Suzenet, G.; Tal, A.; Boymanns, D. Sustainable water management for the city: Technologies for improving domestic water supply. Built Environ. 2002, 28, 138–151. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I. Wastewater treatment by biological methods. In Environmental Water; Elsevier: Amsterdam, The Netherlands, 2013; pp. 179–204. [Google Scholar] [CrossRef]
- Zagklis, D.P.; Bampos, G. Tertiary Wastewater Treatment Technologies: A Review of Technical, Economic, and Life Cycle Aspects. Processes 2022, 10, 2304. [Google Scholar] [CrossRef]
- Bethke, K.; Kwidzińska, K.; Caban, M. Investigation of pharmaceutical bioaccumulation in Daphnia sp. living in a wastewater treatment plant. Sci. Total. Environ. 2024, 950, 174915. [Google Scholar] [CrossRef]
- Ebert, D. Introduction to Daphnia biology. In Ecology, Epidemiology, and Evolution of Parasitism in Daphnia; National Library of Medicine (US), National Center for Biotechnology Information: Bethesda, MD, USA, 2005; pp. 5–18, ISBN-10: 1-932811-06-0. [Google Scholar]
- Roche, K.F. Growth potential of Daphnia magna Straus in the water of dairy waste stabilization ponds. Water Res. 1998, 32, 1325–1328. [Google Scholar] [CrossRef]
- Ebert, D. Daphnia as a versatile model system in ecology and evolution. EvoDevo 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Santos-Medrano, G.E.; Rico-Martínez, R. Acute sensitivity comparison among Daphnia magna Strauss, 1820 daphnia pulex leydig, 1860 and simocephalus vetulus muller, 1776, exposed to nine toxicants. Turk. J. Fish. Aquat. Sci. 2019, 19, 615–623. [Google Scholar] [CrossRef]
- La, G.-H.; Choi, J.-Y.; Chang, K.-H.; Jang, M.-H.; Joo, G.-J.; Kim, H.-W. Mating Behavior of Daphnia: Impacts of Predation Risk, Food Quantity, and Reproductive Phase of Females. PLoS ONE 2014, 9, e104545. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Kiran, B. A report on diversity of Cladocera in sewage fed tank of Bhadravathi taluk, Karnataka. Int. J. Fauna Biol. Stud. 2016, 3, 18–20. [Google Scholar]
- Miner, B.E.; De Meester, L.; Pfrender, M.E.; Lampert, W.; Hairston, N.G. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc. R. Soc. B Biol. Sci. 2012, 279, 1873–1882. [Google Scholar] [CrossRef] [PubMed]
- Serra, T.; Barcelona, A.; Pous, N.; Salvadó, V.; Colomer, J. Disinfection and particle removal by a nature-based Daphnia filtration system for wastewater treatment. J. Water Process. Eng. 2022, 50, 103238. [Google Scholar] [CrossRef]
- Pau, C.; Serra, T.; Colomer, J.; Casamitjana, X.; Sala, L.; Kampf, R. Filtering capacity of Daphnia magna on sludge particles in treated wastewater. Water Res. 2013, 47, 181–186. [Google Scholar] [CrossRef]
- Shiny, K.J.; Remani, K.N.; Nirmala, E.; Jalaja, T.K.; Sasidharan, V.K. Biotreatment of wastewater using aquatic invertebrates, Daphnia magna and Paramecium caudatum. Bioresour. Technol. 2005, 96, 55–58. [Google Scholar] [CrossRef]
- Burnet, J.-B.; Faraj, T.; Cauchie, H.-M.; Joaquim-Justo, C.; Servais, P.; Prévost, M.; Dorner, S.M. How does the cladoceran Daphnia pulex affect the fate of Escherichia coli in water? PLoS ONE 2017, 12, e0171705. [Google Scholar] [CrossRef]
- Serra, T.; Colomer, J.; Pau, C.; Marín, M.; Sala, L. Tertiary treatment for wastewater reuse based on the Daphnia magna filtration—Comparison with conventional tertiary treatments. Water Sci. Technol. 2014, 70, 705–711. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statical Computing: Vienna, Austria, 2023. Available online: https://www.R-project.org/ (accessed on 2 March 2024).
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009; ISBN 978-0-13-100lW6·5. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Hongyu, K.; Sandanielo, V.L.; Junior, G.J. Principal Component Analysis: Theoretical Summary, Application, and Interpretation. E&S–Eng. Sci. 2015, 5, 1. [Google Scholar] [CrossRef]
- Mishra, S.P.; Sarkar, U.; Taraphder, S.; Datta, S.; Swain, D.P.; Saikhom, R.; Panda, S.; Laishram, M. Multivariate Statistical Data Analysis—Principal Component Analysis (PCA). Int. J. Livest. Res. 2017, 7, 60. [Google Scholar]
- Gonzalez, L. Logistic regression and its application. Monograph (Specialisation)—Computer Science Course; Universidade Federal do Maranhão: São Luís, 2018. Available online: https://monografias.ufma.br/jspui/bitstream/123456789/3572/1/LEANDRO-GONZALEZ.pdf (accessed on 8 March 2025).
- Fernandes, A.A.T.; Filho, D.B.F.; da Rocha, E.C.; Nascimento, W.d.S. Read this paper if you want to learn logistic regression. Rev. Sociol. Polit. 2020, 28, 1–20. [Google Scholar] [CrossRef]
- Freitas, L. WALD Test for Evaluating Regression and Dispersion Parameters in Multivariate Generalized Linear Covariance Models. Master’s Dissertation, University Federal do Paraná, Curitiba, Brazil, 2022. Available online: https://hdl.handle.net/1884/78069 (accessed on 11 November 2024).
- Bergman, L.E.; Wilson, J.M.; Small, M.J.; VanBriesen, J.M. Application of Classification Trees for Predicting Disinfection By-Product Formation Targets from Source Water Characteristics. Environ. Eng. Sci. 2016, 33, 455–470. [Google Scholar] [CrossRef]
- Serra, T.; Müller, M.F.; Barcelona, A.; Salvadó, V.; Pous, N.; Colomer, J. Optimal light conditions for Daphnia filtration. Sci. Total. Environ. 2019, 686, 151–157. [Google Scholar] [CrossRef]
- Striebel, M.; Singer, G.; Herwig, S.; Andersen, T. “Trophic overyielding”: Phytoplankton diversity promotes zooplankton productivity. Ecology 2012, 93, 2719–2727. [Google Scholar] [CrossRef]
- Çolak, S.; Öztekin, E. Effect of COVID-19 Pandemic on Chemical Parameters of Wastewater Treatment Plant: A Case Study in Zonguldak City, Turkey. Environ. Eng. Manag. J. 2022, 21, 805–815. [Google Scholar] [CrossRef]
- Patel, P.P.; Mondal, S.; Ghosh, K.G. Some respite for India’s dirtiest river? Examining the Yamuna’s water quality at Delhi during the COVID-19 lockdown period. Sci. Total. Environ. 2020, 744, 140851. [Google Scholar] [CrossRef]
- Yazdian, H.; Jamshidi, S. Performance evaluation of wastewater treatment plants under the sewage variations imposed by COVID-19 spread prevention actions. J. Environ. Health Sci. Eng. 2021, 19, 1613–1621. [Google Scholar] [CrossRef]
- Tanyol, M.; Demir, V. Correlations between some operation parameters and efficiency evaluation of domestic wastewater treatment plant in Tunceli (Turkey). Desalination Water Treat. 2016, 57, 28115–28121. [Google Scholar] [CrossRef]
- Oberholster, P.; Dabrowski, J.; Botha, A. Assessing daphnia population dynamics and recovery patterns after exposure to multiple environmental stressors in a eutrophic lake. In Eutrophication: Causes, Economic Implications and Future Challenges, 1st ed.; Lambert, A., Roux, C., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2013; pp. 127–154. ISBN 978-1-62808-499-3. [Google Scholar]
- Vijverberg, J.; Kalf, D.F.; Boersma, M. Decrease in Daphnia egg viability at elevated pH. Limnol. Oceanogr. 1996, 41, 789–794. [Google Scholar] [CrossRef]
- El-Deed, M.; Habashy, M.; Mohammady, E. Effects of pH on Survival, Growth and Reproduction Rates of The Daphnia Magna. Aust. J. Basic Appl. Sci. 2011, 5, 1–10. [Google Scholar]
- Issa, S.; Simonsen, A.; Jaspers, V.L.; Einum, S. Population dynamics and resting egg production in Daphnia: Interactive effects of mercury, population density and temperature. Sci. Total. Environ. 2021, 755, 143625. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.; Miranda, N.A.F.; Cumming, G.S. The role of waterbirds in the dispersal of aquatic alien and invasive species. Divers. Distrib. 2015, 21, 744–754. [Google Scholar] [CrossRef]
Parameters | Before COVID-19 | During COVID-19 | Variation (%) | p-Value |
---|---|---|---|---|
Raw wastewater flow (m3·day−1) | 2640 ± 278 | 2036 ± 270 | −19.6% | 0.002 1 |
BOD (mg O2·L−1) | 651 ± 129 | 405 ± 101 | −37.8% | <0.001 1 |
COD (mg O2·L−1) | 1026 ± 210 | 854 ± 274 | −16.8% | 0.048 1 |
Nitrogen (mg N·L−1) | 83.5 ± 28.7 | 90.5 ± 32.3 | +8.38% | 0.467 |
Phosphorus (mg P·L−1) | 9.40 ± 3.34 | 10.7 ± 2.01 | +13.8% | 0.219 |
TSS (mg·L−1) | 437 ± 110 | 281 ± 131 | −35.7% | 0.004 1 |
pH | 7.28 ± 0.04 | 7.43 ± 0.11 | +1.99% | <0.001 1 |
Predictors | Test Statistic | Explanatory Power | ||
---|---|---|---|---|
β | ρ | Wald’s X2 | AIC | |
Volumetric Flow | −1.798 | 0.345 | - | - |
BOD_RW | −1.897 | 0.066 1 | 3.373 | 51.71 |
BOD_E | −2.366 | 0.069 1 | 3.301 | 51.2 |
NH4_E | 0.530 | 0.122 | - | - |
NO3_E | 0.065 | 0.854 | - | - |
pH_RW | 8.855 | 0.012 1 | 6.258 | 47.60 |
pH_E | −0.725 | 0.467 | - | - |
TN_RW | 0.131 | 0.852 | - | - |
TN_E | 0.410 | 0.115 | - | - |
TSS_AZ1 | 0.467 | 0.777 | - | - |
VS_SS1 | 1.388 | 0.254 | - | - |
TSS_AZ2 | 0.453 | 0.745 | - | - |
VS_SS2 | 1.210 | 0.282 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esperanço, P.; Egito, R.; Oliveira, V.; Amaral, A.L.; Rodrigues, C. Influence of Effluent Quality Parameters on Daphnia spp. Overgrowth in an Urban Wastewater Treatment Plant: A Multiyear Case Study Analysis. Processes 2025, 13, 1164. https://doi.org/10.3390/pr13041164
Esperanço P, Egito R, Oliveira V, Amaral AL, Rodrigues C. Influence of Effluent Quality Parameters on Daphnia spp. Overgrowth in an Urban Wastewater Treatment Plant: A Multiyear Case Study Analysis. Processes. 2025; 13(4):1164. https://doi.org/10.3390/pr13041164
Chicago/Turabian StyleEsperanço, Pedro, Rômulo Egito, Verónica Oliveira, António Luís Amaral, and Carla Rodrigues. 2025. "Influence of Effluent Quality Parameters on Daphnia spp. Overgrowth in an Urban Wastewater Treatment Plant: A Multiyear Case Study Analysis" Processes 13, no. 4: 1164. https://doi.org/10.3390/pr13041164
APA StyleEsperanço, P., Egito, R., Oliveira, V., Amaral, A. L., & Rodrigues, C. (2025). Influence of Effluent Quality Parameters on Daphnia spp. Overgrowth in an Urban Wastewater Treatment Plant: A Multiyear Case Study Analysis. Processes, 13(4), 1164. https://doi.org/10.3390/pr13041164