Sustainable Biodiesel Production from Turkish Coffee Waste Oil: A Comparative Study with Homogeneous and Heterogeneous Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Acid Catalyzed Pretreatment
2.3. Transesterification Experiments
2.4. Biodiesel Tests
3. Results and Discussion
3.1. Biodiesel Yield
3.1.1. Effect of Methanol/Oil Ratio
3.1.2. Catalyst Type
3.1.3. Reaction Time
3.1.4. Effect of Catalyst Amount
3.2. Biodiesel Characteristics
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, A.; Sartaj, K.; Pruthi, P.A.; Pruthi, V.; Matsakas, M. Utilization of Clarified Butter Sediment Waste as a Feedstock for Cost-Effective Production of Biodiesel. Foods 2019, 8, 234. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, M.; Karmegam, N.; Gundupalli, M.P.; Gebeyehu, K.B.; Asfaw, B.T.; Chang, S.W.; Ravindran, B.; Awasthi, M.K. Heterogeneous Base Catalysts: Synthesis and Application for Biodiesel Production—A Review. Bioresour. Technol. 2021, 331, 125054. [Google Scholar] [CrossRef]
- Mohiddin, M.N.B.; Tan, Y.H.; Seow, Y.X.; Kansedo, J.; Mubarak, N.M.; Abdullah, M.O.; Chan, Y.S.; Khalid, M. Evaluation on Feedstock, Technologies, Catalyst and Reactor for Sustainable Biodiesel Production: A Review. J. Ind. Eng. Chem. 2021, 98, 60–81. [Google Scholar] [CrossRef]
- Sánchez-Borrego, F.J.; Álvarez-Mateos, P.; García-Martín, J.F. Biodiesel and Other Value-Added Products from Bio-Oil Obtained from Agrifood Waste. Processes 2021, 9, 797. [Google Scholar] [CrossRef]
- Okolie, J.A.; Escobar, J.I.; Umenweke, G.; Khanday, W.; Okoye, P.U. Continuous Biodiesel Production: A Review of Advances in Catalysis, Microfluidic and Cavitation Reactors. Fuel 2022, 307, 121821. [Google Scholar] [CrossRef]
- Alsaiari, R.A.; Musa, E.M.; Rizk, M.A. Biodiesel Synthesis from Date Seed Oil Using Camel Dung as a Novel Green Catalyst: An Experimental Investigation. Catalysts 2024, 14, 643. [Google Scholar] [CrossRef]
- Oo, Y.M.; Juera-Ong, P.; Pongraktham, K.; Somnuk, K. Comparative Studies on Methyl Ester Production from Pretreated Sludge Palm Oil Using Homogeneous and Heterogeneous Base Catalysts. Catalysts 2024, 14, 647. [Google Scholar] [CrossRef]
- Aitlaalim, A.; Ouanji, F.; Benzaouak, A.; Mahi, M.E.; Lotfi, E.M.; Kacimi, M.; Liotta, L.F. Utilization ofWaste Grooved Razor Shell (GRS) as a Catalyst in Biodiesel Production from Refined and Waste Cooking Oils. Catalysts 2020, 10, 703. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, S.; Narale, B.A.; Shanmugam, A.; Mettu, S.; Ashokkumar, M. Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022, 11, 2035. [Google Scholar] [CrossRef]
- Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current biodiesel production technologies: A comparative review. Energy Convers. Manag. 2012, 63, 138–148. [Google Scholar]
- Ameen, M.; Zafar, M.; Nizami, A.S.; Ahmad, M.; Munir, M.; Sultana, S.; Usma, A.; Rehan, M. Biodiesel Synthesis From Cucumis melo Varagrestis Seed Oil: Toward Non-food Biomass Biorefineries. Front. Energy Res. 2022, 10, 830845. [Google Scholar] [CrossRef]
- Ulukardesler, A.H. Biodiesel Production fromWaste Cooking Oil Using Different Types of Catalysts. Processes 2023, 11, 2035. [Google Scholar] [CrossRef]
- Hazrat, M.A.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Silitonga, A.S.; Fattah, I.M.R.; Mahlia, T.M.I. Kinetic Modelling of Esterification and Transesterification Processes for Biodiesel Production Utilising Waste-Based Resource. Catalysts 2022, 12, 1472. [Google Scholar] [CrossRef]
- Boğa, T.; Dertli, E. Kullanılmış Kahve Telvesinin Lif Kaynağı Olarak Değerlendirilme Potansiyeli. Avrupa Bilim Teknol. Derg. 2021, 31, 114–120. [Google Scholar] [CrossRef]
- International Coffee Organization. Available online: https://ico.org/ (accessed on 18 July 2024).
- Andrade, C.; Perestrelo, R.; Câmara, J.S. Valorization of Spent Coffee Grounds as a Natural Source of Bioactive Compounds for Several Industrial Applications-A Volatilomic Approach. Foods 2022, 11, 1731. [Google Scholar] [CrossRef]
- Yüksel, A.N.; Barut, K.T.Ö.; Bayram, M. The effects of roasting, milling, brewing and storage processes on the physicochemical properties of Turkish Coffee. LWT-Food Sci. Technol. 2020, 131, 109711. [Google Scholar] [CrossRef]
- Ulukardesler, A.H. Valorization of Turkish Coffee Waste as a Biodiesel Feedstock. J. Sci. Rep.-A 2023, 54, 239–250. [Google Scholar] [CrossRef]
- Goh, B.H.H.; Ong, H.C.; Chong, C.T.; Chen, W.H.; Leong, K.Y.; Tan, S.X.; Lee, X.J. Ultrasonic assisted oil extraction and biodiesel synthesis of Spent Coffee. Fuel 2020, 261, 116121. [Google Scholar] [CrossRef]
- Calligaris, S.; Munari, M.; Arrighetti, G.; Barba, L. Insights into the physicochemical properties of coffee oil. Eur. J. Lipid Sci. Technol. 2009, 111, 1270–1277. [Google Scholar] [CrossRef]
- Dong, W.; Chen, Q.; Wei, C.; Hu, R.; Long, Y.; Zong, Y.; Chu, Z. Comparison of the effect of extraction methods on the quality of green coffee oil from Arabica coffee beans: Lipid yield, fatty acid composition, bioactive components, and antioxidant activity. Ultrason. Sonochem. 2021, 74, 105578. [Google Scholar] [CrossRef]
- Uddin, M.N.; Techato, K.; Rasul, M.G.; Hassan, N.M.S.; Mojifur, M. Waste coffee oil: A promising source for biodiesel production. Energy Procedia 2019, 160, 677–682. [Google Scholar]
- Abomohra, A.E.; Zheng, X.; Wang, Q.; Huang, J.; Ebaid, R. Enhancement of biodiesel yield and characteristics through in-situ solvo-thermal co-transesterification of wet microalgae with spent coffee grounds. Bioresour. Technol. 2021, 323, 124640. [Google Scholar]
- Kamil, M.; Ramadan, K.M.; Olabi, A.G.; Al-Ali, E.I.; Ma, X.; Awad, O.I. Economic, technical, and environmental viability of biodiesel blends. Renew. Energy 2020, 147, 1880–1894. [Google Scholar]
- Haile, M.; Asfaw, A.; Asfaw, N. Investigation of Waste Coffee Ground as a Potential Raw Material for Biodiesel Production. Int. J. Renew. Energy Res. 2013, 3, 856–860. [Google Scholar]
- Al-Hamamre, Z.; Foerster, S.; Hartmann, F.; Kröger, M.; Kaltschmitt, M. Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel 2012, 96, 70–76. [Google Scholar]
- Deligiannis, A.; Papazafeiropoulou, A.; Anastopoulos, G.; Zannikos, F. Waste coffee grounds as an energy feedstock. In Proceedings of the 3rd International CEMEPE & SECOTOX Conference, Skiathos, Greece, 19–24 June 2011; pp. 617–622. [Google Scholar]
- Oliveira, L.S.; Franca, A.S.; Camargos, R.R.S.; Ferraz, V.P. Coffee oil as a potential feedstock for biodiesel production. Bioresour. Technol. 2008, 99, 3244–3250. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Chakraborty, S.; Chakraborty, R. Optimization of Infrared Radiated Fast and Energy-Efficient Biodiesel Production fromWaste Mustard Oil Catalyzed by Amberlyst 15: Engine Performance and Emission Quality Assessments. Fuel 2016, 173, 60–68. [Google Scholar]
- Zhang, P.; Liu, Y.; Fan, M.; Jiang, P. Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity. Renew. Energy 2016, 86, 99–105. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, D.K.; Lee, J.S. Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst. Bioresour. Technol. 2010, 101, 62–65. [Google Scholar]
- Hykkerud, A.; Marchetti, J.M. Esterification of oleic acid with ethanol in the presence of Amberlyst 15. Biomass Bioenergy 2016, 95, 340–343. [Google Scholar]
- Jaya, N.; Selvan, B.K.; Vennison, S.J. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst. Ecotoxicol. Environ. Saf. 2015, 121, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Patino, Y.; Faba, L.; Diaz, E.; Ordonez, S. Biodiesel production from wastewater sludge using exchange resins as heterogeneous acid catalyst: Catalyst selection and sludge pre-treatments. J. Water Process. Eng. 2021, 44, 102335. [Google Scholar] [CrossRef]
- Abidin, S.Z.; Mohammed, M.L.; Saha, B. Two-Stage Conversion of Used Cooking Oil to Biodiesel Using Ion Exchange Resins as Catalysts. Catalysts 2023, 13, 1209. [Google Scholar] [CrossRef]
- Shibasaki-Kitakawa, N.; Tsuji, T.; Kubo, M.; Yonemoto, T. Biodiesel production from waste cooking oil using anion-exchange resin as both catalyst and adsorbent. Bioenergy Res. 2011, 4, 287–293. [Google Scholar]
- Haigh, K.F.; Abidin, S.Z.; Vladisavljevic, G.; Saha, B. Comparison of Novozyme 435 and Purolite D5081 as heterogeneous catalysts for the pretreatment of used cooking oil for biodiesel production. Fuel 2013, 111, 186–193. [Google Scholar]
- Peter, A.S.; Alias, M.P.; Iype, M.P.; Jolly, J.; Sankar, V.; Babu, K.J.; Baby, D.K. Optimization of Biodiesel Production by Transesterification of Palm Oil and Evaluation of Biodiesel Quality. Mater. Today Proc. 2021, 42, 1002–1007. [Google Scholar]
- Trombettoni, V.; Lanari, D.; Prinsen, P.; Luque, R.; Marrocchi, A.; Vaccaro, L. Recent Advances in Sulfonated Resin Catalysts for Efficient Biodiesel and Bio-Derived Additives Production. Prog. Energy Combust. Sci. 2018, 65, 136–162. [Google Scholar]
- Thirumarimurugan, M.; Sivakumar, V.M.; Xavier, A.M.; Prabhakaran, D.; Kannadasan, T. Preparation of Biodiesel from Sunflower Oil by Transesterification. Int. J. Biosci. Biochem. Bioinform. 2012, 2, 441–445. [Google Scholar]
- Komintarachat, C.; Chuepeng, S. Solid Acid Catalyst for Biodiesel Production fromWaste Used Cooking Oils. Ind. Eng. Chem. Res. 2009, 48, 9350–9353. [Google Scholar]
- Yaakob, Z.; Mohammad, M.; Alherbawi, M.; Alam, Z.; Sopian, K. Overview of the production of biodiesel from Waste cooking oil. Renew. Sustain. Energy Rev. 2013, 18, 184–193. [Google Scholar]
- Naik, L.R.; Radhika, N.; Sravani, K.; Hareesha, A.; Mohanakumari, B.; Bhavanasindhu, K. Optimized Parameters for Production of Biodiesel from Fried Oil. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 62–65. [Google Scholar]
- Mohadesi, M.; Aghel, B.; Maleki, M.; Ansari, A. Production of Biodiesel from Waste Cooking Oil Using a Homogeneous Catalyst: Study of Semi-Industrial Pilot of Microreactor. Renew. Energy 2019, 136, 677–682. [Google Scholar]
- Hundie, K.M. Optimization of Biodiesel Production Parameters from Cucurbita maxima Waste Oil Using Microwave Assisted via Box-Behnken Design Approach. J. Chem. 2022, 2022, 8516163. [Google Scholar]
- Chiang, C.L.; Lin, K.S.; Shu, C.W.; Wu, J.C.S.; Wu, K.C.W.; Huang, Y.T. Enhancement of Biodiesel Production via Sequential Esterification/Transesterification Over Solid Superacidic and Superbasic Catalysts. Catal. Today 2020, 348, 257–269. [Google Scholar]
- Naeem, A.; Khan, I.W.; Farooq, M.; Mahmood, T.; Din, I.U.; Ghazi, Z.A.; Saeed, T. Kinetic and Optimization Study of Sustainable Biodiesel Production fromWaste Cooking Oil Using Novel Heterogeneous Solid Base Catalyst. Bioresour. Technol. 2021, 328, 124831. [Google Scholar]
- Rahman, S.M.A.; Fattah, I.M.R.; Maitra, S.; Mahlia, T.M.I. A ranking scheme for biodiesel underpinned by critical physicochemical properties. Energy Convers. Manag. 2021, 229, 113742. [Google Scholar]
- Tan, X.; Sudarsanam, P.; Tan, J.; Wang, A.; Zhang, H.; Li, H.; Yang, S. Sulfonic acid-functionalized heterogeneous catalytic materials for efficient biodiesel production: A review. J. Environ. Chem. Eng. 2021, 9, 10719. [Google Scholar]
Methanol/Oil | Catalyst | Catalyst wt (%) | Time (min) | Biodiesel Yield (%) | Reference |
---|---|---|---|---|---|
30 | KOH | 4 | 180 | 97.11 | [19] |
4:1 | H2SO4/KOH | 1 | 120 | -- | [22] |
-- | Microalgae | 1.1 | 132 | 20 | [23] |
6:1 | H2SO4/NaOH | 20:1/1.5 | 90 | -- | [24] |
6:1 | H2SO4/NaOH | 1 | 120 | 73.4 | [25] |
5:1–9:1 | H2SO4/KOH | 1.5 | 60–150–240 | 55–85 | [26] |
9:1 | NaOH | 1 | 60 | 92 | [27] |
6:1 | NaOH | 1 | -- | 81 | [28] |
Oil | Catalyst | Reference |
---|---|---|
Mustard oil | Amberlyst 15 | [29] |
Waste cooking oil | Amberlyst 15 | [30] |
Soybean oil | Amberlyst 15 Wet microalgae | [31] |
Oleic acid | Amberlyst 15 | [32] |
Pongamia oil | Indion 810 | [33] |
Wastewater sludge | Amberlyst 15, 36; IR120 IR120 | [34] |
Waste cooking oil | Purolite D5081, CT-122, CT-169, CT-175, CT-275, Diaion PA306s | [35] |
Waste cooking oil | Purolite D5081, Novozyme 435 | [36] |
Waste cooking oil | Diaion PA306S | [37] |
Fatty Acid Composition | (wt%) | |
---|---|---|
Name | Formula | |
Oleic acid | C18H34O2 | 40.78 |
Linoleic acid | C18H32O2 | 34.63 |
Myristic acid | C14H28O2 | 12.5 |
Palmitic acid | C16H32O2 | 3.98 |
Stearic acid | C18H38O2 | 3.33 |
Eicosenoic acid | C24H48O2 | 1.98 |
11-Eicosenoic acid | C20H38O2 | 1.32 |
Behenic acid | C22H44O2 | 0.73 |
Tetracosanoic acid | C24H48O2 | 0.45 |
Others | 0.3 |
Catalyst Type | Methanol/Oil Ratio (Molar) | Catalyst Amount (wt%) | Time (min) |
---|---|---|---|
KOH-Amberlyst 15 | 12–15–20 | 1 | 60 |
120 | |||
1.5 | 60 | ||
120 | |||
2 | 60 | ||
120 | |||
120 |
Fatty Acid Composition | (wt%) | ||
---|---|---|---|
Name | Formula | KOH | A15 |
Linoleic acid | C18H32O2 | 33.75 | 32.96 |
Palmitic acid | C16H32O2 | 28.16 | 26.75 |
Myristoleic acid | C14H26O2 | 14.75 | 15.09 |
Oleic acid | C18H34O2 | 7.85 | 8.28 |
Stearic acid | C18H38O2 | 5.09 | 6.04 |
Lignoceric acid | C24H46O2 | 4.19 | 4.85 |
Arachidic acid | C20H40O2 | 2.14 | 1.99 |
Myristic acid | C14H28O2 | 1.96 | 2.05 |
Behenic acid | C22H44O2 | 1.01 | 0.92 |
Lauric acid | C12H24O2 | 0.99 | 0.89 |
Others | 0.11 | 0.18 |
Property | Limits | Ref. [22] | Ref. [25] | Ref. [19] | Biodiesel | |
---|---|---|---|---|---|---|
KOH | A15 | |||||
Density (kg/m3) | 860–900 | 895 | 891.5 | 886.2 | 878.6 | 899.4 |
Kinematic viscosity (40 °C) (mm2/s) | 3.5–5 | 5.16 | 5.26 | 4.16 | 4.85 | 5.03 |
Saponification value (mg KOH/g oil) | --- | 209.54 | --- | --- | 184 | 190.7 |
Acid value (mgKOH/g oil) | <0.5 | 0.5 | 0.78 | 1.1 | 0.2 | 0.23 |
Iodine value (Wijs g/100 g oil) | <120 | 85.89 | 73.41 | --- | 116 | 128 |
Peroxide value (meq g/kg) | 2.1–4.1 | --- | --- | --- | 2.8 | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulukardesler, A.H. Sustainable Biodiesel Production from Turkish Coffee Waste Oil: A Comparative Study with Homogeneous and Heterogeneous Catalysts. Processes 2025, 13, 1002. https://doi.org/10.3390/pr13041002
Ulukardesler AH. Sustainable Biodiesel Production from Turkish Coffee Waste Oil: A Comparative Study with Homogeneous and Heterogeneous Catalysts. Processes. 2025; 13(4):1002. https://doi.org/10.3390/pr13041002
Chicago/Turabian StyleUlukardesler, Ayse Hilal. 2025. "Sustainable Biodiesel Production from Turkish Coffee Waste Oil: A Comparative Study with Homogeneous and Heterogeneous Catalysts" Processes 13, no. 4: 1002. https://doi.org/10.3390/pr13041002
APA StyleUlukardesler, A. H. (2025). Sustainable Biodiesel Production from Turkish Coffee Waste Oil: A Comparative Study with Homogeneous and Heterogeneous Catalysts. Processes, 13(4), 1002. https://doi.org/10.3390/pr13041002