Sustainable Biodiesel Production from Turkish Coffee Waste Oil: A Comparative Study with Homogeneous and Heterogeneous Catalysts
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Acid Catalyzed Pretreatment
2.3. Transesterification Experiments
2.4. Biodiesel Tests
3. Results and Discussion
3.1. Biodiesel Yield
3.1.1. Effect of Methanol/Oil Ratio
3.1.2. Catalyst Type
3.1.3. Reaction Time
3.1.4. Effect of Catalyst Amount
3.2. Biodiesel Characteristics
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, A.; Sartaj, K.; Pruthi, P.A.; Pruthi, V.; Matsakas, M. Utilization of Clarified Butter Sediment Waste as a Feedstock for Cost-Effective Production of Biodiesel. Foods 2019, 8, 234. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, M.; Karmegam, N.; Gundupalli, M.P.; Gebeyehu, K.B.; Asfaw, B.T.; Chang, S.W.; Ravindran, B.; Awasthi, M.K. Heterogeneous Base Catalysts: Synthesis and Application for Biodiesel Production—A Review. Bioresour. Technol. 2021, 331, 125054. [Google Scholar] [CrossRef]
- Mohiddin, M.N.B.; Tan, Y.H.; Seow, Y.X.; Kansedo, J.; Mubarak, N.M.; Abdullah, M.O.; Chan, Y.S.; Khalid, M. Evaluation on Feedstock, Technologies, Catalyst and Reactor for Sustainable Biodiesel Production: A Review. J. Ind. Eng. Chem. 2021, 98, 60–81. [Google Scholar] [CrossRef]
- Sánchez-Borrego, F.J.; Álvarez-Mateos, P.; García-Martín, J.F. Biodiesel and Other Value-Added Products from Bio-Oil Obtained from Agrifood Waste. Processes 2021, 9, 797. [Google Scholar] [CrossRef]
- Okolie, J.A.; Escobar, J.I.; Umenweke, G.; Khanday, W.; Okoye, P.U. Continuous Biodiesel Production: A Review of Advances in Catalysis, Microfluidic and Cavitation Reactors. Fuel 2022, 307, 121821. [Google Scholar] [CrossRef]
- Alsaiari, R.A.; Musa, E.M.; Rizk, M.A. Biodiesel Synthesis from Date Seed Oil Using Camel Dung as a Novel Green Catalyst: An Experimental Investigation. Catalysts 2024, 14, 643. [Google Scholar] [CrossRef]
- Oo, Y.M.; Juera-Ong, P.; Pongraktham, K.; Somnuk, K. Comparative Studies on Methyl Ester Production from Pretreated Sludge Palm Oil Using Homogeneous and Heterogeneous Base Catalysts. Catalysts 2024, 14, 647. [Google Scholar] [CrossRef]
- Aitlaalim, A.; Ouanji, F.; Benzaouak, A.; Mahi, M.E.; Lotfi, E.M.; Kacimi, M.; Liotta, L.F. Utilization ofWaste Grooved Razor Shell (GRS) as a Catalyst in Biodiesel Production from Refined and Waste Cooking Oils. Catalysts 2020, 10, 703. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, S.; Narale, B.A.; Shanmugam, A.; Mettu, S.; Ashokkumar, M. Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022, 11, 2035. [Google Scholar] [CrossRef]
- Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current biodiesel production technologies: A comparative review. Energy Convers. Manag. 2012, 63, 138–148. [Google Scholar]
- Ameen, M.; Zafar, M.; Nizami, A.S.; Ahmad, M.; Munir, M.; Sultana, S.; Usma, A.; Rehan, M. Biodiesel Synthesis From Cucumis melo Varagrestis Seed Oil: Toward Non-food Biomass Biorefineries. Front. Energy Res. 2022, 10, 830845. [Google Scholar] [CrossRef]
- Ulukardesler, A.H. Biodiesel Production fromWaste Cooking Oil Using Different Types of Catalysts. Processes 2023, 11, 2035. [Google Scholar] [CrossRef]
- Hazrat, M.A.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Silitonga, A.S.; Fattah, I.M.R.; Mahlia, T.M.I. Kinetic Modelling of Esterification and Transesterification Processes for Biodiesel Production Utilising Waste-Based Resource. Catalysts 2022, 12, 1472. [Google Scholar] [CrossRef]
- Boğa, T.; Dertli, E. Kullanılmış Kahve Telvesinin Lif Kaynağı Olarak Değerlendirilme Potansiyeli. Avrupa Bilim Teknol. Derg. 2021, 31, 114–120. [Google Scholar] [CrossRef]
- International Coffee Organization. Available online: https://ico.org/ (accessed on 18 July 2024).
- Andrade, C.; Perestrelo, R.; Câmara, J.S. Valorization of Spent Coffee Grounds as a Natural Source of Bioactive Compounds for Several Industrial Applications-A Volatilomic Approach. Foods 2022, 11, 1731. [Google Scholar] [CrossRef]
- Yüksel, A.N.; Barut, K.T.Ö.; Bayram, M. The effects of roasting, milling, brewing and storage processes on the physicochemical properties of Turkish Coffee. LWT-Food Sci. Technol. 2020, 131, 109711. [Google Scholar] [CrossRef]
- Ulukardesler, A.H. Valorization of Turkish Coffee Waste as a Biodiesel Feedstock. J. Sci. Rep.-A 2023, 54, 239–250. [Google Scholar] [CrossRef]
- Goh, B.H.H.; Ong, H.C.; Chong, C.T.; Chen, W.H.; Leong, K.Y.; Tan, S.X.; Lee, X.J. Ultrasonic assisted oil extraction and biodiesel synthesis of Spent Coffee. Fuel 2020, 261, 116121. [Google Scholar] [CrossRef]
- Calligaris, S.; Munari, M.; Arrighetti, G.; Barba, L. Insights into the physicochemical properties of coffee oil. Eur. J. Lipid Sci. Technol. 2009, 111, 1270–1277. [Google Scholar] [CrossRef]
- Dong, W.; Chen, Q.; Wei, C.; Hu, R.; Long, Y.; Zong, Y.; Chu, Z. Comparison of the effect of extraction methods on the quality of green coffee oil from Arabica coffee beans: Lipid yield, fatty acid composition, bioactive components, and antioxidant activity. Ultrason. Sonochem. 2021, 74, 105578. [Google Scholar] [CrossRef]
- Uddin, M.N.; Techato, K.; Rasul, M.G.; Hassan, N.M.S.; Mojifur, M. Waste coffee oil: A promising source for biodiesel production. Energy Procedia 2019, 160, 677–682. [Google Scholar]
- Abomohra, A.E.; Zheng, X.; Wang, Q.; Huang, J.; Ebaid, R. Enhancement of biodiesel yield and characteristics through in-situ solvo-thermal co-transesterification of wet microalgae with spent coffee grounds. Bioresour. Technol. 2021, 323, 124640. [Google Scholar]
- Kamil, M.; Ramadan, K.M.; Olabi, A.G.; Al-Ali, E.I.; Ma, X.; Awad, O.I. Economic, technical, and environmental viability of biodiesel blends. Renew. Energy 2020, 147, 1880–1894. [Google Scholar]
- Haile, M.; Asfaw, A.; Asfaw, N. Investigation of Waste Coffee Ground as a Potential Raw Material for Biodiesel Production. Int. J. Renew. Energy Res. 2013, 3, 856–860. [Google Scholar]
- Al-Hamamre, Z.; Foerster, S.; Hartmann, F.; Kröger, M.; Kaltschmitt, M. Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel 2012, 96, 70–76. [Google Scholar]
- Deligiannis, A.; Papazafeiropoulou, A.; Anastopoulos, G.; Zannikos, F. Waste coffee grounds as an energy feedstock. In Proceedings of the 3rd International CEMEPE & SECOTOX Conference, Skiathos, Greece, 19–24 June 2011; pp. 617–622. [Google Scholar]
- Oliveira, L.S.; Franca, A.S.; Camargos, R.R.S.; Ferraz, V.P. Coffee oil as a potential feedstock for biodiesel production. Bioresour. Technol. 2008, 99, 3244–3250. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Chakraborty, S.; Chakraborty, R. Optimization of Infrared Radiated Fast and Energy-Efficient Biodiesel Production fromWaste Mustard Oil Catalyzed by Amberlyst 15: Engine Performance and Emission Quality Assessments. Fuel 2016, 173, 60–68. [Google Scholar]
- Zhang, P.; Liu, Y.; Fan, M.; Jiang, P. Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity. Renew. Energy 2016, 86, 99–105. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, D.K.; Lee, J.S. Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst. Bioresour. Technol. 2010, 101, 62–65. [Google Scholar]
- Hykkerud, A.; Marchetti, J.M. Esterification of oleic acid with ethanol in the presence of Amberlyst 15. Biomass Bioenergy 2016, 95, 340–343. [Google Scholar]
- Jaya, N.; Selvan, B.K.; Vennison, S.J. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst. Ecotoxicol. Environ. Saf. 2015, 121, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Patino, Y.; Faba, L.; Diaz, E.; Ordonez, S. Biodiesel production from wastewater sludge using exchange resins as heterogeneous acid catalyst: Catalyst selection and sludge pre-treatments. J. Water Process. Eng. 2021, 44, 102335. [Google Scholar] [CrossRef]
- Abidin, S.Z.; Mohammed, M.L.; Saha, B. Two-Stage Conversion of Used Cooking Oil to Biodiesel Using Ion Exchange Resins as Catalysts. Catalysts 2023, 13, 1209. [Google Scholar] [CrossRef]
- Shibasaki-Kitakawa, N.; Tsuji, T.; Kubo, M.; Yonemoto, T. Biodiesel production from waste cooking oil using anion-exchange resin as both catalyst and adsorbent. Bioenergy Res. 2011, 4, 287–293. [Google Scholar]
- Haigh, K.F.; Abidin, S.Z.; Vladisavljevic, G.; Saha, B. Comparison of Novozyme 435 and Purolite D5081 as heterogeneous catalysts for the pretreatment of used cooking oil for biodiesel production. Fuel 2013, 111, 186–193. [Google Scholar]
- Peter, A.S.; Alias, M.P.; Iype, M.P.; Jolly, J.; Sankar, V.; Babu, K.J.; Baby, D.K. Optimization of Biodiesel Production by Transesterification of Palm Oil and Evaluation of Biodiesel Quality. Mater. Today Proc. 2021, 42, 1002–1007. [Google Scholar]
- Trombettoni, V.; Lanari, D.; Prinsen, P.; Luque, R.; Marrocchi, A.; Vaccaro, L. Recent Advances in Sulfonated Resin Catalysts for Efficient Biodiesel and Bio-Derived Additives Production. Prog. Energy Combust. Sci. 2018, 65, 136–162. [Google Scholar]
- Thirumarimurugan, M.; Sivakumar, V.M.; Xavier, A.M.; Prabhakaran, D.; Kannadasan, T. Preparation of Biodiesel from Sunflower Oil by Transesterification. Int. J. Biosci. Biochem. Bioinform. 2012, 2, 441–445. [Google Scholar]
- Komintarachat, C.; Chuepeng, S. Solid Acid Catalyst for Biodiesel Production fromWaste Used Cooking Oils. Ind. Eng. Chem. Res. 2009, 48, 9350–9353. [Google Scholar]
- Yaakob, Z.; Mohammad, M.; Alherbawi, M.; Alam, Z.; Sopian, K. Overview of the production of biodiesel from Waste cooking oil. Renew. Sustain. Energy Rev. 2013, 18, 184–193. [Google Scholar]
- Naik, L.R.; Radhika, N.; Sravani, K.; Hareesha, A.; Mohanakumari, B.; Bhavanasindhu, K. Optimized Parameters for Production of Biodiesel from Fried Oil. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 62–65. [Google Scholar]
- Mohadesi, M.; Aghel, B.; Maleki, M.; Ansari, A. Production of Biodiesel from Waste Cooking Oil Using a Homogeneous Catalyst: Study of Semi-Industrial Pilot of Microreactor. Renew. Energy 2019, 136, 677–682. [Google Scholar]
- Hundie, K.M. Optimization of Biodiesel Production Parameters from Cucurbita maxima Waste Oil Using Microwave Assisted via Box-Behnken Design Approach. J. Chem. 2022, 2022, 8516163. [Google Scholar]
- Chiang, C.L.; Lin, K.S.; Shu, C.W.; Wu, J.C.S.; Wu, K.C.W.; Huang, Y.T. Enhancement of Biodiesel Production via Sequential Esterification/Transesterification Over Solid Superacidic and Superbasic Catalysts. Catal. Today 2020, 348, 257–269. [Google Scholar]
- Naeem, A.; Khan, I.W.; Farooq, M.; Mahmood, T.; Din, I.U.; Ghazi, Z.A.; Saeed, T. Kinetic and Optimization Study of Sustainable Biodiesel Production fromWaste Cooking Oil Using Novel Heterogeneous Solid Base Catalyst. Bioresour. Technol. 2021, 328, 124831. [Google Scholar]
- Rahman, S.M.A.; Fattah, I.M.R.; Maitra, S.; Mahlia, T.M.I. A ranking scheme for biodiesel underpinned by critical physicochemical properties. Energy Convers. Manag. 2021, 229, 113742. [Google Scholar]
- Tan, X.; Sudarsanam, P.; Tan, J.; Wang, A.; Zhang, H.; Li, H.; Yang, S. Sulfonic acid-functionalized heterogeneous catalytic materials for efficient biodiesel production: A review. J. Environ. Chem. Eng. 2021, 9, 10719. [Google Scholar]
Methanol/Oil | Catalyst | Catalyst wt (%) | Time (min) | Biodiesel Yield (%) | Reference |
---|---|---|---|---|---|
30 | KOH | 4 | 180 | 97.11 | [19] |
4:1 | H2SO4/KOH | 1 | 120 | -- | [22] |
-- | Microalgae | 1.1 | 132 | 20 | [23] |
6:1 | H2SO4/NaOH | 20:1/1.5 | 90 | -- | [24] |
6:1 | H2SO4/NaOH | 1 | 120 | 73.4 | [25] |
5:1–9:1 | H2SO4/KOH | 1.5 | 60–150–240 | 55–85 | [26] |
9:1 | NaOH | 1 | 60 | 92 | [27] |
6:1 | NaOH | 1 | -- | 81 | [28] |
Oil | Catalyst | Reference |
---|---|---|
Mustard oil | Amberlyst 15 | [29] |
Waste cooking oil | Amberlyst 15 | [30] |
Soybean oil | Amberlyst 15 Wet microalgae | [31] |
Oleic acid | Amberlyst 15 | [32] |
Pongamia oil | Indion 810 | [33] |
Wastewater sludge | Amberlyst 15, 36; IR120 IR120 | [34] |
Waste cooking oil | Purolite D5081, CT-122, CT-169, CT-175, CT-275, Diaion PA306s | [35] |
Waste cooking oil | Purolite D5081, Novozyme 435 | [36] |
Waste cooking oil | Diaion PA306S | [37] |
Fatty Acid Composition | (wt%) | |
---|---|---|
Name | Formula | |
Oleic acid | C18H34O2 | 40.78 |
Linoleic acid | C18H32O2 | 34.63 |
Myristic acid | C14H28O2 | 12.5 |
Palmitic acid | C16H32O2 | 3.98 |
Stearic acid | C18H38O2 | 3.33 |
Eicosenoic acid | C24H48O2 | 1.98 |
11-Eicosenoic acid | C20H38O2 | 1.32 |
Behenic acid | C22H44O2 | 0.73 |
Tetracosanoic acid | C24H48O2 | 0.45 |
Others | 0.3 |
Catalyst Type | Methanol/Oil Ratio (Molar) | Catalyst Amount (wt%) | Time (min) |
---|---|---|---|
KOH-Amberlyst 15 | 12–15–20 | 1 | 60 |
120 | |||
1.5 | 60 | ||
120 | |||
2 | 60 | ||
120 | |||
120 |
Fatty Acid Composition | (wt%) | ||
---|---|---|---|
Name | Formula | KOH | A15 |
Linoleic acid | C18H32O2 | 33.75 | 32.96 |
Palmitic acid | C16H32O2 | 28.16 | 26.75 |
Myristoleic acid | C14H26O2 | 14.75 | 15.09 |
Oleic acid | C18H34O2 | 7.85 | 8.28 |
Stearic acid | C18H38O2 | 5.09 | 6.04 |
Lignoceric acid | C24H46O2 | 4.19 | 4.85 |
Arachidic acid | C20H40O2 | 2.14 | 1.99 |
Myristic acid | C14H28O2 | 1.96 | 2.05 |
Behenic acid | C22H44O2 | 1.01 | 0.92 |
Lauric acid | C12H24O2 | 0.99 | 0.89 |
Others | 0.11 | 0.18 |
Property | Limits | Ref. [22] | Ref. [25] | Ref. [19] | Biodiesel | |
---|---|---|---|---|---|---|
KOH | A15 | |||||
Density (kg/m3) | 860–900 | 895 | 891.5 | 886.2 | 878.6 | 899.4 |
Kinematic viscosity (40 °C) (mm2/s) | 3.5–5 | 5.16 | 5.26 | 4.16 | 4.85 | 5.03 |
Saponification value (mg KOH/g oil) | --- | 209.54 | --- | --- | 184 | 190.7 |
Acid value (mgKOH/g oil) | <0.5 | 0.5 | 0.78 | 1.1 | 0.2 | 0.23 |
Iodine value (Wijs g/100 g oil) | <120 | 85.89 | 73.41 | --- | 116 | 128 |
Peroxide value (meq g/kg) | 2.1–4.1 | --- | --- | --- | 2.8 | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulukardesler, A.H. Sustainable Biodiesel Production from Turkish Coffee Waste Oil: A Comparative Study with Homogeneous and Heterogeneous Catalysts. Processes 2025, 13, 1002. https://doi.org/10.3390/pr13041002
Ulukardesler AH. Sustainable Biodiesel Production from Turkish Coffee Waste Oil: A Comparative Study with Homogeneous and Heterogeneous Catalysts. Processes. 2025; 13(4):1002. https://doi.org/10.3390/pr13041002
Chicago/Turabian StyleUlukardesler, Ayse Hilal. 2025. "Sustainable Biodiesel Production from Turkish Coffee Waste Oil: A Comparative Study with Homogeneous and Heterogeneous Catalysts" Processes 13, no. 4: 1002. https://doi.org/10.3390/pr13041002
APA StyleUlukardesler, A. H. (2025). Sustainable Biodiesel Production from Turkish Coffee Waste Oil: A Comparative Study with Homogeneous and Heterogeneous Catalysts. Processes, 13(4), 1002. https://doi.org/10.3390/pr13041002