Seismic Porosity Prediction in Tight Carbonate Reservoirs Based on a Spatiotemporal Neural Network
Abstract
:1. Introduction
2. Methodology
2.1. Workflow
- (1)
- Preparation of labeled data. Abnormal values (i.e., zero or negative values) are first removed from the porosity logging data. Then, the input logging measurements are standardized to ensure consistent training across different features. Finally, the input data are divided into training and test data.
- (2)
- Deep learning model training. A CNN–BiGRU model is built and trained with the labeled data by adjusting the hyperparameters through multiple iterations. The generalization performance is verified through blind well testing.
- (3)
- Seismic porosity inversion. The trained network model is applied to the pre-stack seismic inversion results to obtain the spatial distribution of porosity.
2.2. CNN for Spatial Feature Extraction
2.3. Bidirectional GRU for Temporal Feature Extraction
2.4. Establishment of the CNN–BiGRU Model
2.5. Evaluation Criteria
3. Geological Background
4. Model Training and Blind Well Testing
4.1. Sensitivity Analysis
4.2. Hyperparameter Optimization
4.3. Data Normalization
4.4. Model Training
4.5. Blind Well Testing
5. Application to Seismic Data
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation | Definition |
AVO | Amplitude variation with offset |
IP | P-wave impedance |
Porosity | |
CNN | Convolutional neural network |
RNN | Recurrent neural network |
LSTM | Long short-term memory neural network |
GRU | Gated recurrent unit |
BiGRU | Bidirectional gated recurrent unit |
CNN–BiGRU | A hybrid network incorporating CNN and BiGRU |
NLF | Nonlinear fitting |
RMSE | Root mean square error |
PCC | Pearson correlation coefficient |
References
- Zou, C.; Zhao, L.; Xu, M.; Chen, Y.; Geng, J. Porosity prediction with uncertainty quantification from multiple seismic attributes using random forest. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021826. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Z.; Zhang, Z. Numerical study on hydraulic fracture-cavity interaction in fractured-vuggy carbonate reservoir. J. Pet. Sci. Eng. 2022, 213, 110426. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, L.; Xu, M.; Zhao, X.; You, Y.; Geng, J. Porosity prediction from prestack seismic data via deep learning: Incorporating a low-frequency porosity model. J. Geophys. Eng. 2023, 20, 1016–1029. [Google Scholar] [CrossRef]
- Xu, S.; Payne, M.A. Modeling elastic properties in carbonate rocks. Lead. Edge 2009, 28, 66–74. [Google Scholar] [CrossRef]
- Zhao, L.; Nasser, M.; Han, D.H. Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs. Geophys. Prospect. 2013, 61, 827–841. [Google Scholar] [CrossRef]
- Fournier, F.; Pellerin, M.; Villeneuve, Q.; Teillet, T.; Hong, F.; Poli, E.; Borgomano, J.; Léonide, P.; Hairabian, A. The equivalent pore aspect ratio as a tool for pore type prediction in carbonate reservoirs. AAPG Bull. 2018, 102, 1343–1377. [Google Scholar] [CrossRef]
- Guo, Q.; Ba, J.; Fu, L.Y.; Luo, C. Joint seismic and petrophysical nonlinear inversion with Gaussian mixture-based adaptive regularization. Geophysics 2021, 86, R895–R911. [Google Scholar] [CrossRef]
- Du, M.; Pan, H.; Wei, C.; Li, H.; Cai, S.; Huang, C.; Gui, Z. Simultaneous quantification of triple pore types in carbonate reservoirs using well logs and seismic data. Geophysics 2024, 89, M211–M226. [Google Scholar] [CrossRef]
- Pan, H.J.; Wei, C.; Yan, X.F.; Li, X.M.; Yang, Z.F.; Gui, Z.X.; Liu, S.-X. 3D rock physics template-based probabilistic estimation of tight sandstone reservoir properties. Pet. Sci. 2024, 21, 3090–3101. [Google Scholar] [CrossRef]
- Feng, R.; Mejer Hansen, T.; Grana, D.; Balling, N. An unsupervised deep-learning method for porosity estimation based on poststack seismic data. Geophysics 2020, 85, M97–M105. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, H.; Guo, K.; Li, C.; Zu, S.; Wu, L. Quantitative characterization of shale gas reservoir properties based on BiLSTM with attention mechanism. Geosci. Front. 2023, 14, 101567. [Google Scholar] [CrossRef]
- Alfarraj, M.; AlRegib, G. Semisupervised sequence modeling for elastic impedance inversion. Interpretation 2019, 7, SE237–SE249. [Google Scholar] [CrossRef]
- Wu, X.; Yan, S.; Bi, Z.; Zhang, S.; Si, H. Deep learning for multidimensional seismic impedance inversion. Geophysics 2021, 86, R735–R745. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wang, Q.; Lu, W.K.; Ge, Q.; Yan, X.F. Seismic impedance inversion based on cycle-consistent generative adversarial network. Pet. Sci. 2022, 19, 147–161. [Google Scholar] [CrossRef]
- Biswas, R.; Sen, M.K.; Das, V.; Mukerji, T. Prestack and poststack inversion using a physics-guided convolutional neural network. Interpretation 2019, 7, SE161–SE174. [Google Scholar] [CrossRef]
- Cao, D.; Su, Y.; Cui, R. Multi-parameter pre-stack seismic inversion based on deep learning with sparse reflection coefficient constraints. J. Pet. Sci. Eng. 2022, 209, 109836. [Google Scholar] [CrossRef]
- Singh, P.K.; Shankar, U. Estimation of reservoir properties using pre-stack seismic inversion and neural network in mature oil field, Upper Assam basin, India. J. Appl. Geophys. 2024, 230, 105523. [Google Scholar] [CrossRef]
- Rezaee, M.R.; Ilkhchi, A.K.; Barabadi, A. Prediction of shear wave velocity from petrophysical data utilizing intelligent systems: An example from a sandstone reservoir of Carnarvon Basin, Australia. J. Pet. Sci. Eng. 2007, 55, 201–212. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Zhao, S.; Qi, Q. S-wave velocity inversion and prediction using a deep hybrid neural network. Sci. China Earth Sci. 2022, 65, 724–741. [Google Scholar] [CrossRef]
- Hayashi, K.; Suzuki, T.; Inazaki, T.; Konishi, C.; Suzuki, H.; Matsuyama, H. Estimating S-wave velocity profiles from horizontal-to-vertical spectral ratios based on deep learning. Soils Found. 2024, 64, 101525. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, C.; Zhao, B. Shear-wave velocity prediction based on the CNN-BiGRU integrated network with spatiotemporal attention mechanism. Processes 2024, 12, 1367. [Google Scholar] [CrossRef]
- Alqahtani, N.; Armstrong, R.T.; Mostaghimi, P. Deep learning convolutional neural networks to predict porous media properties. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Australia, 23–25 October 2018; SPE: Milwaukee, WI, USA, 2018; p. D012S032R010. [Google Scholar]
- Graczyk, K.M.; Matyka, M. Predicting porosity, permeability, and tortuosity of porous media from images by deep learning. Sci. Rep. 2020, 10, 21488. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Cho, Y.; Pyrcz, M.; Tang, H.; Fu, P. Machine-learning-based porosity estimation from multifrequency poststack seismic data. Geophysics 2022, 87, M217–M233. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Niu, L.P.; Zhao, L.X.; Wang, B.F.; He, Z.L.; Zhang, H.; Chen, D.; Geng, J.H. Gaussian mixture model deep neural network and its application in porosity prediction of deep carbonate reservoir. Geophysics 2022, 87, M59–M72. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, W. Shale content prediction of well logs based on CNN-BiGRU-VAE neural network. J. Earth Syst. Sci. 2023, 132, 139. [Google Scholar] [CrossRef]
- Aljubran, M.; Ramasamy, J.; Albassam, M.; Magana-Mora, A. Deep learning and time-series analysis for the early detection of lost circulation incidents during drilling operations. IEEE Access 2021, 9, 76833–76846. [Google Scholar] [CrossRef]
- Onwuchekwa, C. Application of machine learning ideas to reservoir fluid properties estimation. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 6–8 August 2018; SPE: Milwaukee, WI, USA, 2018; p. SPE-193461. [Google Scholar]
- Zhang, G.; Wang, Z.; Chen, Y. Deep learning for seismic lithology prediction. Geophys. J. Int. 2018, 215, 1368–1387. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Chen, X.; Li, Y. Seismic lithology/fluid prediction via a hybrid ISD-CNN. IEEE Geosci. Remote Sens. Lett. 2020, 18, 13–17. [Google Scholar] [CrossRef]
- Hussain, M.; Liu, S.; Hussain, W.; Liu, Q.; Hussain, H.; Ashraf, U. Application of Deep Learning for Reservoir Porosity Prediction and Self Organizing Map for Lithofacies Prediction. J. Appl. Geophys. 2024, 230, 105502. [Google Scholar] [CrossRef]
- Mandelli, S.; Lipari, V.; Bestagini, P.; Tubaro, S. Interpolation and denoising of seismic data using convolutional neural networks. arXiv 2019, arXiv:1901.07927. [Google Scholar]
- Richardson, A.; Feller, C. Seismic data denoising and deblending using deep learning. arXiv 2019, arXiv:1907.01497. [Google Scholar]
- Yu, S.; Ma, J.; Wang, W. Deep learning for denoising. Geophysics 2019, 84, V333–V350. [Google Scholar] [CrossRef]
- Das, V.; Pollack, A.; Wollner, U.; Mukerji, T. Convolutional neural network for seismic impedance inversion. Geophysics 2019, 84, R869–R880. [Google Scholar] [CrossRef]
- Yang, N.; Li, G.; Zhao, P.; Zhang, J.; Zhao, D. Porosity prediction from pre-stack seismic data via a data-driven approach. J. Appl. Geophys. 2023, 211, 104947. [Google Scholar] [CrossRef]
- Hourcade, C.; Bonnin, M.; Beucler, É. New CNN-based tool to discriminate anthropogenic from natural low magnitude seismic events. Geophys. J. Int. 2023, 232, 2119–2132. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Fu, J.; Xu, H. Missing well logs prediction using deep learning integrated neural network with the self-attention mechanism. Energy 2022, 261, 125270. [Google Scholar] [CrossRef]
- Di, H.; Abubakar, A. A CNN-accelerated workflow for stochastic seismic property estimation. Geophysics 2024, 90, IM35–IM45. [Google Scholar] [CrossRef]
- Shan, L.; Liu, Y.; Tang, M.; Yang, M.; Bai, X. CNN-BiLSTM hybrid neural networks with attention mechanism for well log prediction. J. Pet. Sci. Eng. 2021, 205, 108838. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Zhang, G.; Yan, B.; Ni, X.; Xie, T. Simultaneous prediction of multiple physical parameters using gated recurrent neural network: Porosity, water saturation, shale content. Front. Earth Sci. 2022, 10, 984589. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J. A lithology identification approach using well logs data and convolutional long short-term memory networks. IEEE Geosci. Remote Sens. Lett. 2023, 20, 7506405. [Google Scholar] [CrossRef]
- Soares, L.D.; Franco EM, C. BiGRU-CNN neural network applied to short-term electric load forecasting. Production 2021, 32, e20210087. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S.; Wang, F. A CNN-BiGRU sea level height prediction model combined with bayesian optimization algorithm. Ocean. Eng. 2025, 315, 119849. [Google Scholar] [CrossRef]
- Wang, T.; Fu, L.; Zhou, Y.; Gao, S. Service price forecasting of urban charging infrastructure by using deep stacked CNN-BiGRU network. Eng. Appl. Artif. Intell. 2022, 116, 105445. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Yuan, S. Deep learning reservoir porosity prediction method based on a spatiotemporal convolution bi-directional long short-term memory neural network model. Geomech. Energy Environ. 2022, 32, 100282. [Google Scholar] [CrossRef]
- Jung, W.; Jung, D.; Kim, B.; Lee, S.; Rhee, W.; Ahn, J.H. Restructuring batch normalization to accelerate CNN training. Proc. Mach. Learn. Syst. 2019, 1, 14–26. [Google Scholar]
- Hochreiter, S. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Busch, P.; Lahti, P.; Werner, R.F. Colloquium: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 2014, 86, 1261–1281. [Google Scholar] [CrossRef]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J.; Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer Science and Business Media: New York, NY, USA, 2009; pp. 1–4. [Google Scholar]
- Chen, X.; Dong, J.; Wang, B.; Li, W.; Ma, J. A Novel Method to Predict S-Wave Velocity of Carbonate Based on Variable Matrix and Equivalent Porous Medium Model. Geofluids 2024, 2024, 9285032. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Kingma, D.P. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Methods | Evaluation Criteria | ||
---|---|---|---|
RMSE | PCC | Computational Time | |
NLF | 0.0149 | 0.927 | 0.002s |
CNN | 0.0074 | 0.972 | 2.231s |
BiGRU | 0.0094 | 0.966 | 1.668s |
CNN–BiGRU | 0.0068 | 0.983 | 2.465s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Yu, Z.; Wang, Y.; Ju, M.; Liu, F.; Gui, Z. Seismic Porosity Prediction in Tight Carbonate Reservoirs Based on a Spatiotemporal Neural Network. Processes 2025, 13, 788. https://doi.org/10.3390/pr13030788
Li F, Yu Z, Wang Y, Ju M, Liu F, Gui Z. Seismic Porosity Prediction in Tight Carbonate Reservoirs Based on a Spatiotemporal Neural Network. Processes. 2025; 13(3):788. https://doi.org/10.3390/pr13030788
Chicago/Turabian StyleLi, Fei, Zhiyi Yu, Yonggang Wang, Meixin Ju, Feng Liu, and Zhixian Gui. 2025. "Seismic Porosity Prediction in Tight Carbonate Reservoirs Based on a Spatiotemporal Neural Network" Processes 13, no. 3: 788. https://doi.org/10.3390/pr13030788
APA StyleLi, F., Yu, Z., Wang, Y., Ju, M., Liu, F., & Gui, Z. (2025). Seismic Porosity Prediction in Tight Carbonate Reservoirs Based on a Spatiotemporal Neural Network. Processes, 13(3), 788. https://doi.org/10.3390/pr13030788