Thermocatalytic Decomposition of Dimethyl Methylphosphonate Using CuO/ZrO2 Catalysts with Hollow Microsphere Morphology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of ZrO2 Hollow Microsphere Catalysts
2.3. Preparation of Cu/Zr Catalysts with Different Loading Ratios (10%, 30%, 50%, 70%, and 90%)
2.4. Preparation of CuO Catalysts
2.5. Characterization
2.6. Evaluation Method of DMMP Thermal Catalytic Decomposition Performance
2.7. Thermocatalytic Decomposition Reaction Exhaust Gas Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DMMP | Dimethyl methylphosphonate |
AChE | Acetylcholinesterase |
SSA | Specific surface area |
SEM | Scanning electron microscopy |
EDS | Energy-dispersive spectroscopy |
H2-TPR | Hydrogen temperature-programmed reduction |
ICP-OES | Inductively coupled plasma optical emission spectrometer |
XPS | X-ray photoelectron spectroscopy |
DRIFTS | Diffuse reflectance infrared Fourier transform spectroscopy |
MFC | Mass flow controller |
FID | Flame ionization detector |
References
- Motamedhashemi, M.Y.; Monji, M.; Egolfopoulos, F.; Tsotsis, T. A hybrid catalytic membrane reactor for destruction of a chemical warfare simulant. J. Membr. Sci. 2015, 473, 1–7. [Google Scholar] [CrossRef]
- Costanzi, S.; Machado, J.-H.; Mitchell, M. Nerve agents: What they are, how they work, how to counter them. ACS Chem. Neurosci. 2018, 9, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.J.; Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Update 1 of: Destruction and detection of chemical warfare agents. Chem. Rev. 2015, 115, 1–76. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Destruction and detection of chemical warfare agents. Chem. Rev. 2011, 111, 5345–5403. [Google Scholar] [CrossRef]
- Bermudez, V.M. Computational study of environmental effects in the adsorption of DMMP, sarin, and VX on γ-Al2O3: Photolysis and surface hydroxylation. J. Phys. Chem. C 2009, 113, 1917–1930. [Google Scholar] [CrossRef]
- Singer, B.C.; Hodgson, A.T.; Destaillats, H.; Hotchi, T.; Revzan, K.L.; Sextro, R.G. Indoor sorption of surrogates for sarin and related nerve agents. Environ. Sci. Technol. 2005, 39, 3203–3214. [Google Scholar] [CrossRef]
- Xie, Y.; Zheng, C.; Lan, L.; Song, H.; Kang, J.; Kang, K.; Bai, S. The application of microfibrous entrapped activated carbon composite material for the sarin simulant dimethyl methylphosphonate adsorption. Nanomaterials 2023, 13, 2661. [Google Scholar] [CrossRef]
- Kiani, S.S.; Farooq, A.; Ahmad, M.; Irfan, N.; Nawaz, M.; Irshad, M.A. Impregnation on activated carbon for removal of chemical warfare agents (CWAs) and radioactive content. Environ. Sci. Pollut. Res. 2021, 28, 60477–60494. [Google Scholar] [CrossRef]
- Gundavarapu, S.; Zhuang, J.; Barrett, E.G.; Xu, F.; Russell, R.G.; Sopori, M.L. A critical role of acute bronchoconstriction in the mortality associated with high-dose sarin inhalation: Effects of epinephrine and oxygen therapies. Toxicol. Appl. Pharmacol. 2014, 274, 200–208. [Google Scholar] [CrossRef]
- Neupane, S.; Rahman, R.K.; Baker, J.; Arafin, F.; Ninnemann, E.; Thurmond, K.; Wang, C.-H.; Masunov, A.E.; Vasu, S.S. DMMP pyrolysis and oxidation studies at high temperature inside a shock tube using laser absorption measurements of CO. Combust. Flame 2020, 214, 14–24. [Google Scholar] [CrossRef]
- McEntee, M.; Gordon, W.O.; Balboa, A.; Delia, D.J.; Pitman, C.L.; Pennington, A.M.; Rolison, D.R.; Pietron, J.J.; DeSario, P.A. Mesoporous copper nanoparticle/TiO2 aerogels for room-temperature hydrolytic decomposition of the chemical warfare simulant dimethyl methylphosphonate. ACS Appl. Nano Mater. 2020, 3, 3503–3512. [Google Scholar] [CrossRef]
- Gao, H.; Kong, W.; Zhou, S.; Wang, X.; He, Q.; Dong, Y. Thermal catalytic decomposition of dimethyl methyl phosphonate using CuO-CeO2/γ-Al2O3. Appl. Sci. 2022, 12, 10101. [Google Scholar] [CrossRef]
- Jeon, S.; Schweigert, I.V.; Pehrsson, P.E.; Balow, R.B. Kinetics of dimethyl methylphosphonate adsorption and decomposition on zirconium hydroxide using variable temperature in situ attenuated total reflection infrared spectroscopy. ACS Appl. Mater. Interfaces 2020, 12, 14662–14671. [Google Scholar] [CrossRef] [PubMed]
- Rusu, C.N.; Yates, J.T. Adsorption and decomposition of dimethyl methylphosphonate on TiO2. J. Phys. Chem. B 2000, 104, 12292–12298. [Google Scholar] [CrossRef]
- Panayotov, D.A.; Morris, J.R. Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2: Adsorbate reactions with lattice oxygen as studied by infrared spectroscopy. J. Phys. Chem. C 2009, 113, 15684–15691. [Google Scholar] [CrossRef]
- Walenta, C.A.; Xu, F.; Tesvara, C.; O’Connor, C.R.; Sautet, P.; Friend, C.M. Facile decomposition of organophosphonates by dual lewis sites on a Fe3O4 (111) Film. J. Phys. Chem. C 2020, 124, 12432–12441. [Google Scholar] [CrossRef]
- Mitchell, M.B.; Sheinker, V.N.; Mintz, E.A. Adsorption and decomposition of dimethyl methylphosphonate on metal oxides. J. Phys. Chem. B 1997, 101, 11192–11203. [Google Scholar] [CrossRef]
- Cao, L.; Segal, S.R.; Suib, S.L.; Tang, X.; Satyapal, S. Thermocatalytic oxidation of dimethyl methylphosphonate on supported metal oxides. J. Catal. 2000, 194, 61–70. [Google Scholar] [CrossRef]
- Kong, W.; Wang, X.; Wang, K.; He, Q.; Zhou, S.; Yang, P.; Dong, Y. Thermocatalytic decomposition of dimethyl methylphosphonate based on CeO2 catalysts with different morphologies. Appl. Sci. 2023, 13, 3093. [Google Scholar] [CrossRef]
- Kong, W.; Zhou, S.; Wang, X.; He, Q.; Yang, P.; Yuan, Y.; Dong, Y. Catalytic oxidative decomposition of dimethyl methyl phosphonate over CuO/CeO2 catalysts prepared using a secondary alkaline hydrothermal method. Catalysts 2022, 12, 1277. [Google Scholar] [CrossRef]
- He, M.-Y.; Ekerdt, J.G. Infrared studies of the adsorption of synthesis gas on zirconium dioxide. J. Catal. 1984, 87, 381–388. [Google Scholar] [CrossRef]
- Ananchenko, D.V.; Nikiforov, S.V.; Sobyanin, K.V.; Konev, S.F.; Dauletbekova, A.K.; Akhmetova-Abdik, G.; Akilbekov, A.T.; Popov, A.I. Paramagnetic defects and thermoluminescence in irradiated nanostructured monoclinic zirconium dioxide. Materials 2022, 15, 8624. [Google Scholar] [CrossRef]
- Jung, K.T.; Bell, A.T. The Effects of Synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia. J. Mol. Catal. Chem. 2000, 163, 27–42. [Google Scholar] [CrossRef]
- Lin, F.-Q.; Dong, W.-S.; Liu, C.-L.; Liu, Z.; Li, M. In situ source–template-interface reaction route to hollow ZrO2 microspheres with mesoporous shells. J. Colloid Interface Sci. 2008, 323, 365–371. [Google Scholar] [CrossRef]
- Dai, W.; Meng, X.; Xu, B.; Zhao, R.; Jin, D.; Xu, F.; Yang, D.; Xin, Z. Effect of reflux time on the performance of the Cu/ZrO2 catalyst for CO2 hydrogenation to methanol. ACS Appl. Energy Mater. 2023, 6, 9417–9426. [Google Scholar] [CrossRef]
- Tada, S.; Watanabe, F.; Kiyota, K.; Shimoda, N.; Hayashi, R.; Takahashi, M.; Nariyuki, A.; Igarashi, A.; Satokawa, S. Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. J. Catal. 2017, 351, 107–118. [Google Scholar] [CrossRef]
- Ratnasamy, P.; Srinivas, D.; Satyanarayana, C.V.V.; Manikandan, P.; Senthil Kumaran, R.S.; Sachin, M.; Shetti, V.N. Influence of the support on the preferential oxidation of CO in hydrogen-rich steam reformates over the CuO–CeO2–ZrO2 system. J. Catal. 2004, 221, 455–465. [Google Scholar] [CrossRef]
- Liu, S.-H.; Wang, H.P.; Wang, H.-C.; Yang, Y.W. In Situ EXAFS Studies of copper on ZrO2 during catalytic hydrogenation of CO2. J. Electron Spectrosc. Relat. Phenom. 2005, 144–147, 373–376. [Google Scholar] [CrossRef]
- Borovinskaya, E.S.; Trebbin, S.; Alscher, F.; Breitkopf, C. Synthesis, modification, and characterization of CuO/ZnO/ZrO2 mixed metal oxide catalysts for CO2/H2 conversion. Catalysts 2019, 9, 1037. [Google Scholar] [CrossRef]
- Basahel, S.; Mokhtar, M.; Alsharaeh, E.; Ali, T.; Mahmoud, H.; Narasimharao, K. Physico-chemical and catalytic properties of mesoporous CuO-ZrO2 catalysts. Catalysts 2016, 6, 57. [Google Scholar] [CrossRef]
- Suh, Y.-W.; Moon, S.-H.; Rhee, H.-K. Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2. Catal. Today 2000, 63, 447–452. [Google Scholar] [CrossRef]
- Śliwa, M.; Podobiński, J.; Rutkowska-Zbik, D.; Datka, J. In situ IR studies on ethanol transformations over CuO, CuO/ZrO2 and CuO/ZrO2/ZnO catalysts modified with NiO. J. Mol. Struct. 2022, 1257, 132581. [Google Scholar] [CrossRef]
- Ardizzone, S.; Bianchi, C.L.; Signoretto, M. Zr(IV) Surface chemical state and acid features of sulphated-zirconia samples. Appl. Surf. Sci. 1998, 136, 213–220. [Google Scholar] [CrossRef]
- Velu, S.; Suzuki, K.; Gopinath, C.S.; Yoshida, H.; Hattori, T. XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts. Phys. Chem. Chem. Phys. 2002, 4, 1990–1999. [Google Scholar] [CrossRef]
- Ardizzone, S.; Bianchi, C.L. XPS Characterization of sulphated zirconia catalysts: The role of iron. Surf. Interface Anal. 2000, 30, 77–80. [Google Scholar] [CrossRef]
- Sato, A.G.; Volanti, D.P.; Meira, D.M.; Damyanova, S.; Longo, E.; Bueno, J.M.C. Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion. J. Catal. 2013, 307, 1–17. [Google Scholar] [CrossRef]
- Navío; Hidalgo; Colón, G.; Botta, S.G.; Litter, M.I. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol−gel technique. Langmuir 2001, 17, 202–210. [Google Scholar] [CrossRef]
- Salinas, D.; Sepúlveda, C.; Escalona, N.; GFierro, J.L.; Pecchi, G. Sol–Gel La2O3–ZrO2 mixed oxide catalysts for biodiesel production. J. Energy Chem. 2018, 27, 565–572. [Google Scholar] [CrossRef]
- Liu, W.-J.; Zeng, F.-X.; Jiang, H.; Zhang, X.-S.; Li, W.-W. Composite Fe2O3 and ZrO2/Al2O3 photocatalyst: Preparation, characterization, and studies on the photocatalytic activity and chemical stability. Chem. Eng. J. 2012, 180, 9–18. [Google Scholar] [CrossRef]
- Morant, C.; Sanz, J.M.; Galán, L.; Soriano, L.; Rueda, F. An XPS study of the interaction of oxygen with zirconium. Surf. Sci. 1989, 218, 331–345. [Google Scholar] [CrossRef]
- Jia, X.; Li, J.; Wang, E. One-Pot Green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 2012, 4, 5572. [Google Scholar] [CrossRef]
- Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.; Spadaro, L.; Frusteri, F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Appl. Catal. Gen. 2008, 350, 16–23. [Google Scholar] [CrossRef]
- Lee, K.Y.; Houalla, M.; Hercules, D.M.; Hall, W.K. Catalytic oxidative decomposition of dimethyl methylphosphonate over Cu-substituted hydroxyapatite. J. Catal. 1994, 145, 223–231. [Google Scholar] [CrossRef]
- Graven, W.M.; Weller, S.W.; Peters, D.L. Catalytic conversion of organophosphate vapor over platinum-alumina. Ind. Eng. Chem. Process Des. Dev. 1966, 5, 183–189. [Google Scholar] [CrossRef]
- Xi, Y.; Huang, M.; Luo, X. Enhanced phosphate adsorption performance by innovative anion imprinted polymers with dual interaction. Appl. Surf. Sci. 2019, 467–468, 135–142. [Google Scholar] [CrossRef]
- Trotochaud, L.; Head, A.R.; Büchner, C.; Yu, Y.; Karslıoğlu, O.; Tsyshevsky, R.; Holdren, S.; Eichhorn, B.; Kuklja, M.M.; Bluhm, H. Room temperature decomposition of dimethyl methylphosphonate on cuprous oxide yields atomic phosphorus. Surf. Sci. 2019, 680, 75–87. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, J.; Kang, Y.C.; Reddic, J.E.; Chen, D.A. Dimethyl methylphosphonate decomposition on Cu surfaces: Supported Cu nanoclusters and films on TiO2(110). Langmuir 2004, 20, 9686–9694. [Google Scholar] [CrossRef]
- Chen, D.A.; Ratliff, J.S.; Hu, X.; Gordon, W.O.; Senanayake, S.D.; Mullins, D.R. Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films. Surf. Sci. 2010, 604, 574–587. [Google Scholar] [CrossRef]
- Wang, L.; Denchy, M.; Blando, N.; Hansen, L.; Bilik, B.; Tang, X.; Hicks, Z.; Bowen, K.H. Thermal decomposition of dimethyl methylphosphonate on size-selected clusters: A comparative study between copper metal and cupric oxide clusters. J. Phys. Chem. C 2021, 125, 11348–11358. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Schoenitz, M.; Dreizin, E.L. Vapor-phase decomposition of dimethyl methylphosphonate (DMMP), a sarin surrogate, in presence of metal oxides. Def. Technol. 2021, 17, 1095–1114. [Google Scholar] [CrossRef]
- Moravie, R.M.; Froment, F.; Corset, J. Vibrational spectra and possible conformers of dimethylmethylphosphonate by normal mode analysis. Spectrochim. Acta Part A Mol. Spectrosc. 1989, 45, 1015–1024. [Google Scholar] [CrossRef]
- Aurian-Blajeni, B.; Boucher, M.M. Interaction of dimethyl methylphosphonate with metal oxides. Langmuir 1989, 5, 170–174. [Google Scholar] [CrossRef]
- Podobiński, J.; Śliwa, M.; Datka, J. Ethoxy groups on ZrO2, CuO, and CuO/ZrO2 studied by IR spectroscopy. Molecules 2022, 27, 4790. [Google Scholar] [CrossRef] [PubMed]
Catalyst | SSA (m2/g) | Average Pore Size (nm) | PV (cm3/g) | Crystallites Size (nm) | Actual Loading Ratio (wt.%) |
---|---|---|---|---|---|
ZrO2 | 100.1 | 6.40 | 0.16 | 5.2 | / |
10%Cu/Zr | 69.9 | 7.45 | 0.13 | 10.4 | 13.20 |
30%Cu/Zr | 60.8 | 7.30 | 0.11 | 12.8 | 33.40 |
50%Cu/Zr | 43.6 | 8.09 | 0.09 | 48.3 | 59.31 |
70%Cu/Zr | 28.6 | 9.26 | 0.07 | 17.5 | 71.03 |
90%Cu/Zr | 11.2 | 17.88 | 0.05 | 15.8 | 90.01 |
CuO | 10.3 | 15.15 | 0.04 | 16.2 | / |
Catalyst | OI | OII | OIII | Cu2+/ (Cu0+ Cu1++ Cu2+) | ||||
---|---|---|---|---|---|---|---|---|
BE (eV) | OI/Oall | BE (eV) | OII/Oall | BE (eV) | OIII/Oall | ZrI/Zrall | ||
ZrO2 | 530.2 | 63.1% | 531.8 | 24.0% | 533.2 | 12.9% | / | 78.9% |
10%Cu/Zr | 529.8 | 46.8% | 531.7 | 34.3% | 533.3 | 18.9% | 65.9% | 51.6% |
30%Cu/Zr | 529.9 | 34.5% | 531.7 | 37.1% | 533.3 | 28.4% | 52.8% | 73.6% |
50%Cu/Zr | 529.4 | 13.0% | 531.3 | 49.8% | 533.2 | 37.2% | 59.1% | 54.2% |
70%Cu/Zr | 529.8 | 40.0% | 531.4 | 39.2% | 533.0 | 20.8% | 66.8% | 71.2% |
90%Cu/Zr | 529.8 | 69.4% | 531.5 | 22.5% | 532.7 | 8.1% | 67.4% | 60.9% |
CuO | 529.8 | 66.9% | 531.6 | 26.7% | 533.4 | 6.4% | 66.4% | / |
Catalysts | Peak Temperature (°C) | Total Hydrogen Consumption (mmol/g) |
---|---|---|
ZrO2 | 292.8 590.0 802.2 | 0.30 |
10%Cu/Zr | 117.8 160.2 | 1.32 |
30%Cu/Zr | 191.2 213.7 | 4.28 |
50%Cu/Zr | 193.5 218.0 | 7.24 |
70%Cu/Zr | 191.0 221.0 | 10.22 |
90%Cu/Zr | 196.8 219.5 | 13.44 |
CuO | 257.5 | 15.40 |
Catalyst | Protection Time (min) | Filling Quality (g) | SSA (m2/g) | MSTC gDMMP/gcat | SSTC gDMMP/Scat |
---|---|---|---|---|---|
ZrO2 | 116 | 0.3716 | 100.1 | 0.087 | 0.00032 |
10%Cu/Zr | 272 | 0.3861 | 69.9 | 0.197 | 0.00109 |
30%Cu/Zr | 220 | 0.3916 | 60.8 | 0.157 | 0.00101 |
50%Cu/Zr | 212 | 0.4471 | 43.6 | 0.132 | 0.00136 |
70%Cu/Zr | 208 | 0.5000 | 28.6 | 0.116 | 0.00203 |
90%Cu/Zr | 124 | 0.5909 | 11.2 | 0.059 | 0.00309 |
CuO | 56 | 0.5851 | 10.3 | 0.027 | 0.00152 |
Reference | Catalyst | Reaction Condition | Protection Time |
---|---|---|---|
Gao et al. [12] | CuO/γ-Al2O3 | 350 °C, DMMP concentration 4.0 g/m3, flow rate 100 mL/min | 1.8 h |
CuO-1% CeO2/γ-Al2O3 | 2.1 h | ||
CuO-5% CeO2/γ-Al2O3 | 3.9 h | ||
CuO-10% CeO2/γ-Al2O3 | 1.8 h | ||
Cao et al. [18] | 10% V/Al2O3 | 400 °C, DMMP concentration 1300 ppm, flow rate 50 mL/min | 12.5 h |
1% Pt/Al2O3 | 8.5 h | ||
10% Cu/Al2O3 | 7.5 h | ||
Al2O3 | 4.0 h | ||
10% Fe/Al2O3 | 3.5 h | ||
10% Ni/Al2O3 | 1.5 h | ||
10% Ni/Al2O3 | 25 h | ||
Kong et al. [19] | 2MCeO2np | 300 °C, DMMP concentration 5.32 g/m3, flow rate 50 mL/min | 5.8 h |
6MCeO2nr | 7.0 h | ||
12MCeO2nr | 8.1 h | ||
6MCeO2nc | 3.5 h | ||
12MCeO2nc | 6.3 h | ||
Kong et al. [20] | CeO2 | 400 °C, DMMP concentration 8.46 g/m3, flow rate 100 mL/min | 2.33 h |
10% Cu/Ce | 4.2 h | ||
20% Cu/Ce | 4.43 h | ||
50% Cu/Ce | 5.36 h | ||
80% Cu/Ce | 2.33 h | ||
CuO | 0.93 h | ||
Lee et al. [43] | Cu2-HA | 400 °C, DMMP concentration 3.58 g/m3, flow rate 100 mL/min | 7.5 h |
1.6%Pt-TiO2 | 300 °C, DMMP concentration 3.58 g/m3, flow rate 100 mL/min | 8 h | |
Graven et al. [44] | 0.5%Pt-Al2O3 | 299 °C, DMMP concentration 3.5 g/m3, flow rate 8.85 L/min | 8 h |
This work | ZrO2 | 400 °C, DMMP concentration 5.59 g/m3, flow rate 50 mL/min | 1.93 h |
10%Cu/Zr | 4.53 h | ||
30%Cu/Zr | 3.67 h | ||
50%Cu/Zr | 3.53 h | ||
70%Cu/Zr | 3.47 h | ||
90%Cu/Zr | 3.73 h | ||
CuO | 0.93 h |
Catalyst | Freshly Prepared | Inactivation of Reaction | ||||
---|---|---|---|---|---|---|
ZrI/Zrall | OLat/Oall | Cu2+/Cuall | ZrI/Zrall | OLat/Oall | Cu2+/Cuall | |
ZrO2 | 78.9% | 63.1% | / | 79.3% | 47.4% | / |
10%Cu/Zr | 51.6% | 46.8% | 65.1% | 85.4% | 13.8% | 62.7% |
CuO | / | 66.9% | 66.4% | / | 10.8% | 64.7% |
Vibration Mode | Infrared Wavenumber (cm−1) |
---|---|
νa(P−CH3) | 2997 |
νa(O−CH3) | 2957 |
νs(P−CH3) | 2929 |
νs(O−CH3) | 2852 |
δa(O−CH3) | 1465 |
δs(P−CH3) | 1314 |
ν(P=O) | 1245 |
ρ‖(O−CH3) | 1185 |
νa(C−O) | 1055 |
νs(C−O) | 1030 |
ρ‖(P−CH3) | 913 |
ν(P−O) | 819 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, Y.; Sun, P.; Zhou, S.; Yang, P.; Dong, Y. Thermocatalytic Decomposition of Dimethyl Methylphosphonate Using CuO/ZrO2 Catalysts with Hollow Microsphere Morphology. Processes 2025, 13, 779. https://doi.org/10.3390/pr13030779
Wang X, Liu Y, Sun P, Zhou S, Yang P, Dong Y. Thermocatalytic Decomposition of Dimethyl Methylphosphonate Using CuO/ZrO2 Catalysts with Hollow Microsphere Morphology. Processes. 2025; 13(3):779. https://doi.org/10.3390/pr13030779
Chicago/Turabian StyleWang, Xuwei, Yimeng Liu, Peng Sun, Shuyuan Zhou, Piaoping Yang, and Yanchun Dong. 2025. "Thermocatalytic Decomposition of Dimethyl Methylphosphonate Using CuO/ZrO2 Catalysts with Hollow Microsphere Morphology" Processes 13, no. 3: 779. https://doi.org/10.3390/pr13030779
APA StyleWang, X., Liu, Y., Sun, P., Zhou, S., Yang, P., & Dong, Y. (2025). Thermocatalytic Decomposition of Dimethyl Methylphosphonate Using CuO/ZrO2 Catalysts with Hollow Microsphere Morphology. Processes, 13(3), 779. https://doi.org/10.3390/pr13030779