An Experimental Assessment of Miscanthus x giganteus for Landfill Leachate Treatment: A Case Study of the Grebača Landfill in Obrenovac
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, B.J.; Chakraborty, A.; Sehgal, R. A systematic review of industrial wastewater management: Evaluating challenges and enablers. J. Environ. Manag. 2023, 348, 119230. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Hu, P.; Lang-Yona, N.; Xu, M.; Guo, C.; Gu, J.D. Global landfill leachate characteristics: Occurrences and abundances of environmental contaminants and the microbiome. J. Hazard. Mater. 2024, 461, 132446. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska-Trypuć, A.; Wołejko, E.; Wydro, U.; Leszczyński, J.; Wasil, M.; Kiełtyka-Dadasiewicz, A. Chemical Composition and Toxicological Evaluation of Landfill Leachate from Białystok. Poland. Sustainability 2023, 15, 16497. [Google Scholar] [CrossRef]
- Jamrah, A.; AL-Zghoul, T.M.; Al-Qodah, Z. An Extensive Analysis of Combined Processes for Landfill Leachate Treatment. Water 2024, 16, 1640. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Elbl, J.; Koda, E.; Adamcová, D.; Bilgin, A.; Lukas, V.; Podlasek, A.; Kintl, A.; Wdowska, M.; Brtnický, M.; et al. Chemical Composition and Hazardous Effects of Leachate from the Active Municipal Solid Waste Landfill Surrounded by Farmlands. Sustainability 2020, 12, 4531. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A.; Mazur, A.; Pochwatka, P.; Janczak, D.; Dach, J. Evaluation of the Effects of Using the Giant Miscanthus (Miscanthus x giganteus) Biomass in Various Energy Conversion Processes. Energies 2022, 15, 3486. [Google Scholar] [CrossRef]
- Voća, N.; Leto, J.; Karažija, T.; Bilandžija, N.; Peter, A.; Kutnjak, H.; Šurić, J.; Poljak, M. Energy Properties and Biomass Yield of Miscanthus x giganteus Fertilized by Municipal Sewage Sludge. Molecules 2021, 26, 4371. [Google Scholar] [CrossRef]
- Singh, D.; Goswami, R.K.; Agrawal, K.; Chaturvedi, V.; Verma, P. Bio-inspired remediation of wastewater: A contemporary approach for environmental clean-up. Curr. Res. Green Sustain. Chem. 2022, 5, 100261. [Google Scholar] [CrossRef]
- Mulabagal, V.; Baah, D.A.; Egiebor, N.O.; Sajjadi, B.; Chen, W.Y.; Viticoski, R.L.; Hayworth, J.S. Biochar from Biomass: A Strategy for Carbon Dioxide Sequestration, Soil Amendment, Power Generation, CO2 Utilization, and Removal of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in the Environment. In Handbook of Climate Change Mitigation and Adaptation; Lackner, M., Sajjadi, B., Chen, W.Y., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Al Souki, K.S.; Burdová, H.; Mamirova, A.; Kuráň, P.; Kříženecká, S.; Oravová, L.; Tolaszová, J.; Nebeská, D.; Popelka, J.; Ustak, S.; et al. Evaluation of the Miscanthus x giganteus short term impacts on enhancing the quality of agricultural soils affected by single and/or multiple contaminants. Environ. Technol. Innov. 2021, 24, 101890. [Google Scholar] [CrossRef]
- Nebeská, D.; Trögl, J.; Ševců, A.; Špánek, R.; Marková, K.; Davis, L.; Burdová, H.; Pidlisnyuk, V. Miscanthus x giganteus role in phytodegradation and changes in bacterial community of soil contaminated by petroleum industry. Ecotoxicol. Environ. Saf. 2021, 224, 112630. [Google Scholar] [CrossRef] [PubMed]
- Romantschuk, L.; Matviichuk, N.; Mozharivska, I.; Matviichuk, B.; Ustymenko, V.; Tryboi, O. Phytoremediation of Soils by Cultivation Miscanthus x giganteus L. and Phalaris arundinacea L. Ecol. Eng. Environ. Technol. 2024, 6, 137–147. [Google Scholar] [CrossRef]
- Bastia, G.; Al Souki, K.S.; Pourrut, B. Evaluation of Miscanthus x giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations. Plants 2023, 12, 1560. [Google Scholar] [CrossRef]
- Nurzhanova, A.; Pidlisnyuk, V.; Abit, K.; Nurzhanov, C.; Kenessov, B.; Stefanovska, T.; Erickson, L. Comparative assessment of using Miscanthus x giganteus for remediation of soils contaminated by heavy metals: A case of military and mining sites. Environ. Sci. Pollut. Res. 2019, 26, 13320–13333. [Google Scholar] [CrossRef]
- Silva, J.A. Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability 2023, 15, 10940. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, C.; Pan, J.; Yang, G.; Sun, C.; Liu, Y.; Chen, X.; Zhao, Z. Leachate from municipal solid waste landfills in a global perspective: Characteristics, influential factors and environmental risks. J. Clean. Prod. 2022, 333, 130234. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Ibrahim, A.M.; Al-Sulaiman, A.M.; Okasha, R.A. Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview. Ain Shams Eng. J. 2024, 15, 102293. [Google Scholar] [CrossRef]
- Kumar, R.N.; Sadaf, S.; Verma, M.; Chakraborty, S.; Kumari, S.; Polisetti, V.; Kallem, P.; Iqbal, J.; Banat, F. Old Landfill Leachate and Municipal Wastewater Co-Treatment by Sequencing Batch Reactor Combined with Coagulation–Flocculation Using Novel Flocculant. Sustainability 2023, 15, 8205. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Kuppan, N.; Padman, M.; Mahadeva, M.; Srinivasan, S.; Devarajan, R. A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Manag. Bull. 2024, 2, 154–171. [Google Scholar] [CrossRef]
- Ebsa, G.; Gizaw, B.; Admassie, M.; Degu, T.; Alemu, T. The role and mechanisms of microbes in dichlorodiphenyltrichloroethane (DDT) and its residues bioremediation. Biotechnol. Rep. 2024, 42, e00835. [Google Scholar] [CrossRef] [PubMed]
- Kakde, P.; Sharma, J. Microbial Bioremediation of Petroleum Contaminated Soil: Structural Complexity, Degradation Dynamics and Advanced Remediation Techniques. J. Pure Appl. Microbiol. 2024, 18, 2244–2261. [Google Scholar] [CrossRef]
- Abdelaal, M.; Mashaly, I.A.; Srour, D.S.; Dakhil, M.A.; El-Liethy, M.A.; El-Keblawy, A.; El-Barougy, R.F.; Halmy, M.W.A.; El-Sherbeny, G.A. Phytoremediation Perspectives of Seven Aquatic Macrophytes for Removal of Heavy Metals from Polluted Drains in the Nile Delta of Egypt. Biology 2021, 10, 560. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Galal, T.M.; Sewelam, N.A.; Talha, N.I.; Abdallah, S.M. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative assessment. Environ. Sci. Pollut. Res. Int. 2020, 27, 12138–12151. [Google Scholar] [CrossRef]
- Benavides, L.C.L.; Pinilla, L.A.C.; Serrezuela, R.R.; Serrezuela, W.F.R. Extraction in Laboratory of Heavy Metals Through Rhizofiltration using the Plant Zea mays (maize). Int. J. Appl. Environ. Sci. 2018, 13, 9–26. [Google Scholar]
- Robinson, T.; Robinson, H. The use of reed beds for treatment of landfill leachets. Detritus 2018, 3, 124–140. [Google Scholar] [CrossRef]
- Odinga, C.A.; Kumar, A.; Mthembu, M.S.; Bux, F.; Swalaha, F.M. Rhizofiltration system consisting of Phragmites australis and Kyllinga nemoralis: Evaluation of efficient removal of metals and pathogenic microorganisms. Desalination Water Treat. 2019, 169, 120–132. [Google Scholar] [CrossRef]
- Lutts, S.; Zhou, M.X.; Flores-Bavestrello, A.; Hainaut, P.; Dailly, H.; Debouche, G.; Foucart, G. Season-dependent physiological behavior of Miscanthus x giganteus growing on heavy-metal contaminated areas in relation to soil properties. Heliyon 2024, 10, e25943. [Google Scholar] [CrossRef]
- Grzegórska, A.; Czaplicka, N.; Antonkiewicz, J.; Rybarczyk, P.; Baran, A.; Dobrzyński, K.; Zabrocki, D.; Rogala, A. Remediation of soils on municipal rendering plant territories using Miscanthus x giganteus. Environ. Sci. Pollut. Res. Int. 2023, 30, 22305–22318. [Google Scholar] [CrossRef]
- Ranđelović, D. Reclamation methods and their outcomes in Serbian mining basins. In Proceedings of the 2nd International and 14th National Congress of Soil Science Society of Serbia, Novi Sad, Serbia, 25–28 September 2017; Available online: https://ritnms.itnms.ac.rs/bitstream/handle/123456789/1023/bitstream_2228.pdf?sequence=1&isAllowed=y (accessed on 17 January 2025).
- Nsanganwimana, F.; Al Souki, K.S.; Waterlot, C.; Douay, F.; Pelfrêne, A.; Ridošková, A.; Louvel, B.; Pourrut, B. Potentials of Miscanthus x giganteus for phytostabilization of trace element-contaminated soils: Ex situ experiment. Ecotoxicol. Environ. Saf. 2021, 214, 112125. [Google Scholar] [CrossRef]
- Institute of Public Health of Serbia. 2019. Available online: https://www.batut.org.rs/download/publikacije/pub2019a.pdf (accessed on 19 January 2025).
- Official Gazette of the RS, No. 50/2012 Regulation on the Limit Value of Pollutants in Surface and Groundwater and Sediment and Deadlines for Achieving Them. 2012. Available online: https://www.paragraf.rs/propisi/uredba-granicnim-vrednostima-zagadjujucih-materija-vodama.html (accessed on 19 January 2025).
- U.S. EPA. Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges and Oils; Revision 1; U.S. EPA: Washington, DC, USA, 2007.
- U.S. EPA. Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry; Revision 2; U.S. EPA: Washington, DC, USA, 2014.
- Arain, M.B.; Kazi, T.G.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Baig, J.A. Speciation of Heavy Metals in Sediment by Conventional, Ultrasound and Microwave Assisted Single Extraction Methods: A Comparison with Modified Sequential Extraction Procedure. J. Hazard. Mater. 2008, 154, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- ISO 10390:2005; Soil Quality—Determination of pH. ISO (International Organization for Standardization): Geneva, Switzerland, 2005.
- ISO 11277:2009; Determination of Particle Size Distribution in Mineral Soil Material. Method by Sieving and Sedimentation. ISO (International Organization for Standardization): Geneva, Switzerland, 2009.
- Wuave, T. Leachate migration and percolation consequences on water quality: A case study of Plateau State Nigeria. E3S Web Conf. 2024, 497, 02012. [Google Scholar] [CrossRef]
- Wijesekara, S.S.R.M.D.H.R.; Mayakaduwa, S.S.; Siriwardana, A.R.; de Silva, N.; Basnayake, B.F.A.; Kawamoto, K.; Vithanage, M. Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka. Environ. Earth Sci. 2014, 72, 1707–1719. [Google Scholar] [CrossRef]
- European Union. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy; EU: Brussels, Belgium, 2013; Available online: http://data.europa.eu/eli/dir/2013/39/oj (accessed on 17 January 2025).
- EPA. Environmental Guidelines: Solid Waste Landfills, 2nd ed.; U.S. EPA: Washington, DC, USA, 2016. Available online: https://www.epa.nsw.gov.au/sites/default/files/solid-waste-landfill-guidelines-160259.pdf (accessed on 15 January 2025).
- Masoud, A.M.N.; Alfarra, A.; Sorlini, S. Constructed Wetlands as a Solution for Sustainable Sanitation: A Comprehensive Review on Integrating Climate Change Resilience and Circular Economy. Water 2022, 14, 3232. [Google Scholar] [CrossRef]
- Sossou, K.; Prasad, S.B.; Agbotsou, K.E.; Souley, H.S.; Mudigandla, R. Characteristics of landfill leachate and leachate treatment by biological and advanced coagulation process: Feasibility and effectiveness—An overview. Waste Manag. Bull. 2024, 2, 181–198. [Google Scholar] [CrossRef]
- Republic Hydrometeorological Service of Serbia. Available online: https://www.hidmet.gov.rs/eng/hidrologija/index.php (accessed on 10 January 2025).
- WHO. World Health Statistics 2017: Monitoring Health For the SDGs, Sustainable Development Goals; WHO: Geneva, Switzerland, 2017; Available online: https://iris.who.int/bitstream/handle/10665/255336/9789241565486-eng.pdf?sequence=1 (accessed on 27 December 2024).
- Hydrogeological Institute of Serbia. 2024. Available online: https://www.hidmet.gov.rs/data/klimatologija/ciril/2023.pdf (accessed on 9 February 2025).
- Loeppmann, S.; Blagodatskaya, E.; Pausch, J.; Kuzyakov, Y. Enzyme properties down the soil profile—A matter of substrate quality in rhizosphere and detritusphere. Soil Biol. Biochem. 2016, 103, 274–283. [Google Scholar] [CrossRef]
- Duffner, A.; Hoffland, E.; Temminghoff, E.J.M. Bioavailability of zinc and phosphorus in calcareous soils as affected by citrate exudation. Plant Soil 2012, 361, 165–175. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, S.; Saavedra-Mella, F.; Nguyen, T.A.H.; Southam, G.; Chan, T.S.; Lu, Y.R.; Huang, L. Rhizosphere modifications of iron-rich minerals and forms of heavy metals encapsulated in sulfidic tailings hardpan. J. Hazard. Mater. 2020, 384, 121444. [Google Scholar] [CrossRef]
- Zadel, U.; Nesme, J.; Michalke, B.; Vestergaard, G.; Płaza, G.A.; Schröder, P.; Radl, V.; Schloter, M. Changes induced by heavy metals in the plant-associated microbiome of Miscanthus x giganteus. Sci. Total Environ. 2020, 711, 134433. [Google Scholar] [CrossRef]
- Kumar, A.; Dadhwal, M.; Mukherjee, G.; Srivastava, A.; Gupta, S.; Ahuja, V. Phytoremediation: Sustainable Approach for Heavy Metal Pollution. Scientifica 2024, 2024, 3909400. [Google Scholar] [CrossRef]
- Lavanya, M.B.; Viswanath, D.S.; Sivapullaiah, P.V. Phytoremediation: An eco-friendly approach for remediation of heavy metal-contaminated soils-A comprehensive review. Environ. Nanotechnol. Monit. Manag. 2024, 22, 100975. [Google Scholar] [CrossRef]
- Ghosh, M.; Singh, S.P. A Review on Phytoremediation of Heavy Metals and Utilization of Its Byproducts. Appl. Ecol. Environ. Res. 2005, 3, 1–18. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Mamirova, A.; Pranaw, K.; Stadnik, V.; Kuráň, P.; Trögl, J.; Shapoval, P. Miscanthus × giganteus Phytoremediation of Soil Contaminated with Trace Elements as Influenced by the Presence of Plant Growth-Promoting Bacteria. Agronomy 2022, 12, 771. [Google Scholar] [CrossRef]
- Mench, M.; Martin, E. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil 1991, 132, 187–196. [Google Scholar] [CrossRef]
- Nguyen, T.X.T.; Amyot, M.; Labrecque, M. Differential effects of plant root systems on nickel, copper and silver bioavailability in contaminated soil. Chemosphere 2017, 168, 131–138. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef]
- Al Souki, K.S.; Liné, C.; Louvel, B.; Waterlot, C.; Douay, F.; Pourrut, B. Miscanthus x giganteus culture on soils highly contaminated by metals: Modelling leaf decomposition impact on metal mobility and bioavailability in the soil-plant system. Ecotoxicol. Environ. Saf. 2020, 199, 110654. [Google Scholar] [CrossRef]
- Bosiacki, M. Influence of increasing nickel content in soil on Miscanthus × giganteus Greef and Deu. Yielding and on the content of nickel in above-ground biomass. Arch. Environ. Prot. 2015, 41, 72–79. [Google Scholar] [CrossRef]
- Clemente, R.; Arco-Lázaro, E.; Pardo, T.; Martín, I.; Sánchez-Guerrero, A.; Sevilla, F.; Bernal, M.P. Combination of soil organic and inorganic amendments helps plants overcome trace element induced oxidative stress and allows phytostabilisation. Chemosphere 2019, 223, 223–231. [Google Scholar] [CrossRef]
- Martínez-Alcalá, I.; Bernal, P.M. Environmental Impact of Metals, Metalloids, and Their Toxicity. In Metalloids in Plants: Advances and Future Prospects; Deshmukh, R., Tripathi, D.K., Guerriero, G., Eds.; John and Wiley and Sons: Hoboken, NJ, USA, 2020; Chapter 21. [Google Scholar] [CrossRef]
- Luo, T.; Sheng, Z.; Chen, M.; Qin, M.; Tu, Y.; Khan, M.N.; Khan, Z.; Liu, L.; Wang, B.; Kuai, J.; et al. Phytoremediation of copper-contaminated soils by rapeseed (Brassica napus L.) and underlying molecular mechanisms for copper absorption and sequestration. Ecotoxicol. Environ. Saf. 2024, 273, 116123. [Google Scholar] [CrossRef]
- Sharma, J. Introduction to Phytoremediation—A Green Clean Technology. SSRN 2018, 3177321. [Google Scholar] [CrossRef]
- Romanchuk, L.; Matviichuk, N.; Abramova, I.; Matviichuk, B.V.; Tryboi, O. Removal of heavy metals by energy crops when grown on technologically contaminated soils. Ecol. Eng. Environ. Technol. 2024, 26, 92–102. [Google Scholar] [CrossRef]
- Wu, B.; Li, X.; Lin, S.; Jiao, R.; Yang, X.; Shi, A.; Nie, X.; Lin, Q.; Qiu, R. Miscanthus sp. root exudate alters rhizosphere microbial community to drive soil aggregation for heavy metal immobilization. Sci. Total Environ. 2024, 949, 175009. [Google Scholar] [CrossRef]
- Pešić, M.; Radović, S.; Rakić, T.; Dželetović, Ž.; Stanković, S.; Lozo, J. Insights into the response of Miscanthus x giganteus to rhizobacteria: Enhancement of metal tolerance and root development under heavy metal stress. Arch. Biol. Sci. 2024, 76, 205–221. [Google Scholar] [CrossRef]
- Khatoon, Z.; Orozco-Mosqueda, M.d.C.; Santoyo, G. Microbial Contributions to Heavy Metal Phytoremediation in Agricultural Soils: A Review. Microorganisms 2024, 12, 1945. [Google Scholar] [CrossRef]
Year 2024 | Month | Min. Temp. (°C) | Max. Temp. (°C) | Avarage Temp. (°C) | Precipitation Amount (mm) |
---|---|---|---|---|---|
1 | January | −2.0 | 7.0 | 2.5 | 42 |
2 | February | −1.5 | 8.0 | 3.7 | 37 |
3 | March | 2.5 | 14.0 | 8.2 | 48 |
4 | April | 6.5 | 19.0 | 12.8 | 53 |
5 | May | 11.5 | 24.0 | 17.8 | 72 |
6 | June | 15.5 | 28.0 | 21.8 | 62 |
7 | July | 17.5 | 31.0 | 24.8 | 52 |
8 | August | 18.0 | 32.0 | 25.8 | 43 |
9 | September | 13.5 | 26.0 | 19.8 | 32 |
10 | October | 8.5 | 21.0 | 14.8 | 52 |
11 | November | 3.5 | 15.0 | 9.8 | 57 |
12 | December | −0.5 | 8.0 | 4.5 | 62 |
Parameter | Unit | Without Miscanthus x giganteus | With Miscanthus x giganteus | ||
---|---|---|---|---|---|
Start | End | Start | End | ||
pH | 7.26 ± 1.24 | 7.96 ± 1.05 | 7.95 ± 1.06 | 7.87 ± 1.18 | |
Granulometric analysis | |||||
0–0.04 mm | % | 1.10 ± 0.54 | 0.46 ± 0.04 | 2.07 ± 0.99 | 3.91 ± 0.94 |
0.04–0.08 mm | % | 13.3 ± 1.89 | 13.9 ± 0,98 | 2.70 ± 0.21 | 7.27 ± 1.97 |
0.08–0.10 mm | % | 2.95 ± 0.57 | 3.99 ± 1.00 | 3.56 ± 0.95 | 16.6 ± 5.64 |
0.10–0.15 mm | % | 8.15 ± 2.41 | 7.70 ± 2.04 | 9.31 ± 2.04 | 9.94 ± 2.18 |
0.15–0.5 mm | % | 27.4 ± 4.47 | 28.7 ± 3.21 | 39.3 ± 10.6 | 19.5 ± 3.01 |
0.5–1.20 mm | % | 19.9 ± 2.08 | 26.2 ± 2.47 | 21.7 ± 1.64 | 14.84 ± 2.00 |
1.20–1.50 mm | % | 18.5 ± 3.09 | 18.90 ± 5.42 | 11.2 ± 1.46 | 18.8 ± 2.08 |
1.50–2.0 mm | % | 8.69 ± 2.11 | 10.08 ± 1.96 | 10.1 ± 0.97 | 9.13 ± 0.63 |
Humus | % | 2.09 ± 0.05 | 5.39 ± 1.54 | 1.84 ± 0.07 | 2.18 ± 0.08 |
Clay | % | 2.50 ± 0.10 | 3.75 ± 0.97 | 3.25 ± 0.73 | 5.00 ± 0.51 |
Zn | mg/kg | 170.8 ± 10.7 | 162.1 ± 11.54 | 135.8 ± 2.54 | 136.3 ± 2.67 |
Ni | mg/kg | 147.1 ± 5.09 | 194.7 ± 9.82 | 106.8 ± 3.07 | 112.7 ± 3.96 |
Cu | mg/kg | 31.9 ± 4.94 | 58.94 ± 8.73 | 15.0 ± 2.16 | 14.04 ± 2.04 |
Metal | Phase I (Mobile) | Phase II (Reducible) | Phase III (Organic/Sulfidic) |
---|---|---|---|
Zn (Without Plant) | 28.1 ± 2.54 | 46.5 ± 6.98 | 1.27 ± 0.54 |
Zn (With Plant) | 2.28 ± 0.87 | 12.1 ± 0.97 | 0.84 ± 0.04 |
Ni (Without Plant) | 27.8 ± 3.58 | 72.5 ± 9.34 | 19.5 ± 0.99 |
Ni (With Plant) | 8.53 ± 1.00 | 46.7 ± 3.85 | 12.9 ± 1.08 |
Cu (Without Plant) | 4.00 ± 0.56 | 19.8 ± 0.64 | 3.45 ± 0.07 |
Cu (With Plant) | 1.61 ± 0.07 | 2.35 ± 0.09 | 1.64 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrić, S.; Knežević, G.; Maletić, S.; Rončević, S.; Kragulj Isakovski, M.; Zeremski, T.; Beljin, J. An Experimental Assessment of Miscanthus x giganteus for Landfill Leachate Treatment: A Case Study of the Grebača Landfill in Obrenovac. Processes 2025, 13, 768. https://doi.org/10.3390/pr13030768
Andrić S, Knežević G, Maletić S, Rončević S, Kragulj Isakovski M, Zeremski T, Beljin J. An Experimental Assessment of Miscanthus x giganteus for Landfill Leachate Treatment: A Case Study of the Grebača Landfill in Obrenovac. Processes. 2025; 13(3):768. https://doi.org/10.3390/pr13030768
Chicago/Turabian StyleAndrić, Svetozar, Goran Knežević, Snežana Maletić, Srđan Rončević, Marijana Kragulj Isakovski, Tijana Zeremski, and Jelena Beljin. 2025. "An Experimental Assessment of Miscanthus x giganteus for Landfill Leachate Treatment: A Case Study of the Grebača Landfill in Obrenovac" Processes 13, no. 3: 768. https://doi.org/10.3390/pr13030768
APA StyleAndrić, S., Knežević, G., Maletić, S., Rončević, S., Kragulj Isakovski, M., Zeremski, T., & Beljin, J. (2025). An Experimental Assessment of Miscanthus x giganteus for Landfill Leachate Treatment: A Case Study of the Grebača Landfill in Obrenovac. Processes, 13(3), 768. https://doi.org/10.3390/pr13030768