Pyrolysis of Persea americana Pruning Residues: Kinetic and Thermodynamic Analyses
Abstract
1. Introduction
2. Materials and Methods
2.1. Fourier Transform Infrared Spectroscopy
2.2. Thermal, Kinetic, and Thermodynamic Analyses
2.2.1. Thermal Analysis (TGA–DTG)
2.2.2. Kinetic Analysis
2.2.3. Estimates of the Thermodynamic Parameters
3. Results and Discussion
3.1. Fourier Transform Infrared (FT-IR) Spectroscopy
3.2. Thermal, Kinetic, and Thermodynamic Analyses
3.2.1. Thermal Analysis (TGA–DTG)
3.2.2. Kinetic Analysis
3.2.3. Estimates of Thermodynamic Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; Ríos-Saucedo, J.C.; Ruiz-García, V.M.; Ngangyo-Heya, M.; Nava-Berumen, C.A.; Núñez-Retana, V.D. Quality of Pellet Made from Agricultural and Forestry Waste in Mexico. Bioenergy Res. 2022, 15, 977–986. [Google Scholar] [CrossRef]
- Tauro, R.; Manrique, S.; Franch, I.; Juan, P.; Medellin, F.C. Spatial Expansion of Avocado in Mexico: Could the Energy Use of Pruning Residues Offset Orchard GHG Emissions? Environ. Dev. Sustain. 2023, 26, 27325–27350. [Google Scholar] [CrossRef]
- Servicio de Información Agroalimentaria y Pesquera, (SIAP) Avance de Siembras y Cosechas: Resumen Nacional Por Estado, Perennes, Agosto 2025. Available online: https://nube.agricultura.gob.mx/avance_agricola/ (accessed on 28 September 2025).
- Zadeh, Z.E.; Abdulkhani, A.; Aboelazayem, O.; Saha, B. Recent Insights into Lignocellulosic Biomass. Processes 2020, 8, 799. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Luo, L.; Yellezuome, D.; Rahman, M.M.; Zou, J.; Hu, H.; Cai, J. Insight into Kinetic and Thermodynamic Analysis Methods for Lignocellulosic Biomass Pyrolysis. Renew. Energy 2023, 202, 154–171. [Google Scholar] [CrossRef]
- Malagón-Romero, D.H.; León-Caballero, N.D.; Velasco-Peña, M.A.; Arrubla-Vélez, J.P.; Quintero-Naucil, M.; Aristizábal-Marulanda, V. Pyrolysis of Hass Avocado (Persea Americana) Seeds: Kinetic and Economic Analysis of Bio-Oil, Gas, and Biochar Production. Bioenergy Res. 2025, 18, 33. [Google Scholar] [CrossRef]
- Vikram, S.; Rosha, P.; Kumar, S. Recent Modeling Approaches to Biomass Pyrolysis: A Review. Energy Fuels 2021, 35, 7406–7433. [Google Scholar] [CrossRef]
- Potnuri, R.; Suriapparao, D.V.; Rao, C.S.; Kumar, T.H. Understanding the Role of Modeling and Simulation in Pyrolysis of Biomass and Waste Plastics: A Review. Bioresour. Technol. Rep. 2022, 20, 101221. [Google Scholar] [CrossRef]
- Aboelela, D.; Saleh, H.; Attia, A.M.; Elhenawy, Y.; Majozi, T.; Bassyouni, M. Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions. Sustainability 2023, 15, 11238. [Google Scholar] [CrossRef]
- Sharma, A.; Pareek, V.; Zhang, D. Biomass Pyrolysis—A Review of Modelling, Process Parameters and Catalytic Studies. Renew. Sustain. Energy Rev. 2015, 50, 1081–1096. [Google Scholar] [CrossRef]
- Alvarado Flores, J.J.; Alcaraz Vera, J.V.; Ávalos Rodríguez, M.L.; López Sosa, L.B.; Rutiaga Quiñones, J.G.; Pintor Ibarra, L.F.; Márquez Montesino, F.; Aguado Zarraga, R. Analysis of Pyrolysis Kinetic Parameters Based on Various Mathematical Models for More than Twenty Different Biomasses: A Review. Energies 2022, 15, 6524. [Google Scholar] [CrossRef]
- Alvarado Flores, J.J.; Pintor Ibarra, L.F.; Mendez Zetina, F.D.; Rutiaga Quiñones, J.G.; Alcaraz Vera, J.V.; Ávalos Rodríguez, M.L. Pyrolysis and Physicochemical, Thermokinetic and Thermodynamic Analyses of Ceiba aesculifolia (Kunth) Britt and Baker Waste to Evaluate Its Bioenergy Potential. Molecules 2024, 29, 4388. [Google Scholar] [CrossRef]
- Vyazovkin, S. Isoconversional Kinetics of Thermally Stimulated Processes; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; ISBN 9783319141756. [Google Scholar]
- Bongomin, O.; Nzila, C.; Igadwa Mwasiagi, J.; Maube, O. Comprehensive Thermal Properties, Kinetic, and Thermodynamic Analyses of Biomass Wastes Pyrolysis via TGA and Coats-Redfern Methodologies. Energy Convers. Manag. X 2024, 24, 100723. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Supee, A.H.; Zaini, M.A.A. Kinetics, Thermodynamics, and Thermal Decomposition Behavior of Palm Oil Empty Fruit Bunch, Coconut Shell, Bamboo, and Cardboard Pyrolysis: An Integrated Approach Using Coats–Redfern Method. Environ. Monit. Assess. 2023, 195, 1218. [Google Scholar] [CrossRef]
- Lee, C.G.; Kim, M.J.; Eom, C.D. Kinetic Study of Torrefied Woody Biomass via TGA Using a Single Heating Rate and the Model-Fitting Method. Bioresources 2022, 17, 411–428. [Google Scholar] [CrossRef]
- Mishra, R.; Mohanty, K. Kinetic Analysis and Pyrolysis Behavior of Low-Value Waste Lignocellulosic Biomass for Its Bioenergy Potential Using Thermogravimetric Analyzer. Mater. Sci. Energy Technol. 2021, 4, 136–147. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Khass, T.M.; Mostafa, M.E. Thermal Degradation Behaviour and Chemical Kinetic Characteristics of Biomass Pyrolysis Using TG/DTG/DTA Techniques. Biomass Convers. Biorefinery 2024, 14, 17779–17803. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Soria-González, J.A.; Tauro, R.; Alvarado-Flores, J.J.; Berrueta-Soriano, V.M.; Rutiaga-Quiñones, J.G. Avocado Tree Pruning Pellets (Persea Americana Mill.) for Energy Purposes: Characterization and Quality Evaluation. Energies 2022, 15, 7514. [Google Scholar] [CrossRef]
- Chong, C.T.; Mong, G.R.; Ng, J.H.; Chong, W.W.F.; Ani, F.N.; Lam, S.S.; Ong, H.C. Pyrolysis Characteristics and Kinetic Studies of Horse Manure Using Thermogravimetric Analysis. Energy Convers. Manag. 2019, 180, 1260–1267. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic. J. Polym. Sci. Part. C Polym. Symp. 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetic Analysis of Derivative Curves in Thermal Analysis. J. Therm. Anal. 1970, 2, 301–324. [Google Scholar] [CrossRef]
- Akahira, T.; Sunose, T. Method of Determining Activation Deterioration Constant of Electrical Insulating Materials. Res. Rep. Chiba Inst. Technol. 1971, 16, 22–31. [Google Scholar]
- Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Musule, R.; Alarcón-Gutiérrez, E.; Houbron, E.P.; Bárcenas-Pazos, G.M.; del Rosario Pineda-López, M.; Domínguez, Z.; Sánchez-Velásquez, L.R. Chemical Composition of Lignocellulosic Biomass in the Wood of Abies Religiosa across an Altitudinal Gradient. J. Wood Sci. 2016, 62, 537–547. [Google Scholar] [CrossRef]
- Gonultas, O.; Candan, Z. Chemical Characterization and Ftir Spectroscopy of Thermally Compressed Eucalyptus Wood Panels. Maderas Cienc. Y Tecnol. 2018, 20, 431–442. [Google Scholar] [CrossRef]
- Md Salim, R.; Asik, J.; Sarjadi, M.S. Chemical Functional Groups of Extractives, Cellulose and Lignin Extracted from Native Leucaena Leucocephala Bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar] [CrossRef]
- Musule, R.; Núñez, J.; Bonales-Revuelta, J.; García-Bustamante, C.A.; Vázquez-Tinoco, J.C.; Masera-Cerutti, O.R.; Ruiz-García, V.M. Cradle to Grave Life Cycle Assessment of Mexican Forest Pellets for Residential Heating. Bioenergy Res. 2022, 15, 1733–1746. [Google Scholar] [CrossRef]
- Pintor-Ibarra, L.F.; Alvarado-Flores, J.J.; Rutiaga-Quiñones, J.G.; Alcaraz-Vera, J.V.; Ávalos-Rodríguez, M.L.; Moreno-Anguiano, O. Chemical and Energetic Characterization of the Wood of Prosopis Laevigata: Chemical and Thermogravimetric Methods. Molecules 2024, 29, 2587. [Google Scholar] [CrossRef]
- Yasir, M.; Das, S.; Kharya, M. The Phytochemical and Pharmacological Profile of Persea Americana Mill. Pharmacogn. Rev. 2010, 4, 77–84. [Google Scholar] [CrossRef]
- René, B.S. Estudio Químico de La Madera Del Tocón, Fuste y Ramas de Persea Americana, de La Región de Uruapan, Michoacán; Universidad Michoacana de San Nicolás de Hidalgo: Morelia, Mexico, 2011. [Google Scholar]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Müller, G.; Schöpper, C.; Vos, H.; Kharazipour, A.; Polle, A. FTIR-ATR Spectroscopic Analyses of Changes in Wood Properties during Particleand Fibreboard Production of Hardand Softwood Trees. Bioresources 2009, 4, 49–71. [Google Scholar] [CrossRef]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Chemical Changes of Heat Treated Pine and Eucalypt Wood Monitored by FTIR. Maderas. Cienc. Y Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef]
- Efika, C.E.; Onwudili, J.A.; Williams, P.T. Influence of Heating Rates on the Products of High-Temperature Pyrolysis of Waste Wood Pellets and Biomass Model Compounds. Waste Manag. 2018, 76, 497–506. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, J.; Zhang, Q. Effects of Heating Rate on Slow Pyrolysis Behavior, Kinetic Parameters and Products Properties of Moso Bamboo. Bioresour. Technol. 2014, 169, 313–319. [Google Scholar] [CrossRef]
- Ong, H.C.; Chen, W.H.; Singh, Y.; Gan, Y.Y.; Chen, C.Y.; Show, P.L. A State-of-the-Art Review on Thermochemical Conversion of Biomass for Biofuel Production: A TG-FTIR Approach. Energy Convers. Manag. 2020, 209, 112634. [Google Scholar] [CrossRef]
- Huang, Y.; Li, B.; Liu, D.; Xie, X.; Zhang, H.; Sun, H.; Hu, X.; Zhang, S. Fundamental Advances in Biomass Autothermal/Oxidative Pyrolysis: A Review. ACS Sustain. Chem. Eng. 2020, 8, 11888–11905. [Google Scholar] [CrossRef]
- Alvarado Flores, J.J.; Rutiaga Quiñones, J.G. Estudio de Cinética En Procesos Termogravimétricos de Materiales Lignocelulósicos. Maderas. Cienc. Y Tecnol. 2018, 20, 221–238. [Google Scholar] [CrossRef]
- Anca-Couce, A.; Tsekos, C.; Retschitzegger, S.; Zimbardi, F.; Funke, A.; Banks, S.; Kraia, T.; Marques, P.; Scharler, R.; de Jong, W.; et al. Biomass Pyrolysis TGA Assessment with an International Round Robin. Fuel 2020, 276, 118002. [Google Scholar] [CrossRef]
- Díez, D.; Urueña, A.; Piñero, R.; Barrio, A.; Tamminen, T. Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method). Processes 2020, 8, 1048. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Osman, A.I.; Farghali, M.; Ihara, I.; Elgarahy, A.M.; Ayyad, A.; Mehta, N.; Ng, K.H.; Abd El-Monaem, E.M.; Eltaweil, A.S.; Hosny, M.; et al. Materials, Fuels, Upgrading, Economy, and Life Cycle Assessment of the Pyrolysis of Algal and Lignocellulosic Biomass: A Review. Environ. Chem. Lett. 2023, 21, 1419–1476. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into Biomass Pyrolysis Mechanism Based on Cellulose, Hemicellulose, and Lignin: Evolution of Volatiles and Kinetics, Elucidation of Reaction Pathways, and Characterization of Gas, Biochar and Bio-oil. Combust Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Mostafa, M.E. Kinetic Parameters Determination of Biomass Pyrolysis Fuels Using TGA and DTA Techniques. Waste Biomass Valorization 2015, 6, 401–415. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis- A Technological Review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Bayón, R.; García-Rojas, R.; Rojas, E.; Rodríguez-García, M.M. Assessment of Isoconversional Methods and Peak Functions for the Kinetic Analysis of Thermogravimetric Data and Its Application to Degradation Processes of Organic Phase Change Materials. J. Therm. Anal. Calorim. 2024, 149, 13879–13899. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef]
- Emiola-Sadiq, T.; Zhang, L.; Dalai, A.K. Thermal and Kinetic Studies on Biomass Degradation via Thermogravimetric Analysis: A Combination of Model-Fitting and Model-Free Approach. ACS Omega 2021, 6, 22233–22247. [Google Scholar] [CrossRef] [PubMed]
- Ikegwu, U.M.; Okoro, N.M.; Ozonoh, M.; Daramola, M.O. Thermogravimetric Properties and Degradation Kinetics of Biomass during Its Thermochemical Conversion Process. Mater. Today Proc. 2022, 65, 2163–2171. [Google Scholar] [CrossRef]
- Chen, W.H.; Huang, M.Y.; Chang, J.S.; Chen, C.Y.; Lee, W.J. An Energy Analysis of Torrefaction for Upgrading Microalga Residue as a Solid Fuel. Bioresour. Technol. 2015, 185, 285–293. [Google Scholar] [CrossRef]
- Paniagua, S.; Reyes, S.; Lima, F.; Pilipenko, N.; Calvo, L.F. Combustion of Avocado Crop Residues: Effect of Crop Variety and Nature of Nutrients. Fuel 2021, 291, 119660. [Google Scholar] [CrossRef]
- Sharma, A.; Mohanty, B. Thermal Degradation of Mango (Mangifera indica) Wood Sawdust in a Nitrogen Environment: Characterization, Kinetics, Reaction Mechanism, and Thermodynamic Analysis. RSC Adv. 2021, 11, 13396–13408. [Google Scholar] [CrossRef] [PubMed]
- Van de Velden, M.; Baeyens, J.; Brems, A.; Janssens, B.; Dewil, R. Fundamentals, Kinetics and Endothermicity of the Biomass Pyrolysis Reaction. Renew. Energy 2010, 35, 232–242. [Google Scholar] [CrossRef]
- Mukherjee, A.; Patra, B.R.; Podder, J.; Dalai, A.K. Synthesis of Biochar from Lignocellulosic Biomass for Diverse Industrial Applications and Energy Harvesting: Effects of Pyrolysis Conditions on the Physicochemical Properties of Biochar. Front. Mater. 2022, 9, 870184. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of Biochar Properties as a Function of Feedstock Sources and Production Temperatures. J. Hazard. Mater. 2013, 256–257, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Igliński, B.; Kujawski, W.; Kiełkowska, U. Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review. Energies 2023, 16, 1829. [Google Scholar] [CrossRef]




| Parameter | Units | Avocado Branches |
|---|---|---|
| Higher Heating Value (HHV) | MJ/kg | 19.7 |
| Proximate Analysis (wt.%, dry basis) | ||
| Ash | % | 1.2 |
| Volatile matter | % | 83.9 |
| Fixed carbon | % | 14.9 |
| Ultimate Analysis (wt.%, dry basis) | ||
| Carbon | % | 47.0 |
| Hydrogen | % | 6.0 |
| Oxygen | % | 46.3 |
| Nitrogen | % | 0.8 |
| Sulfur | % | <0.01 |
| Basic Chemical Analysis | ||
| Cellulose | % | 46.8 |
| Hemicellulose | % | 20.6 |
| Lignin | % | 14.5 |
| Extractives (by difference) | % | 17.0 |
| Method | Method | Main Assumptions | Key Notes | Plotting Variables | Refs. |
|---|---|---|---|---|---|
| Friedman | Differential isoconversional (model-free) | No predefined reaction model; f(α) assumed constant for a fixed α. | Determines Ea point-by-point from ln(dα/dt) vs. 1/T. Sensitive to experimental noise; useful for detecting Ea variability with conversion. | ln(dα/dt) vs. 1/T | [22,23] |
| Flynn–Wall–Ozawa | Integral isoconversional (model-free) | No kinetic model required; multiple heating rates necessary. | Uses Doyle approximation to estimate Ea across α. Robust for multistep systems but relies on an integral approximation. | ln(β) vs. 1/T | [5,22,25] |
| Kissinger–Akahira–Sunose | Integral isoconversional (model-free) | No kinetic model required; multiple heating rates used. | Based on a linear temperature-integral approximation; provides slightly more accurate Ea estimates than FWO. Does not directly yield A unless combined with a reaction model or complementary analysis. | ln(β/T2) vs. 1/T | [5,22,26] |
| Kissinger (classical) | Non-isoconversional (model-fitting, single-peak) | Assumes a dominant single step; uses peak temperature (Tp) of maximum reaction rate. | Quick estimation of Ea from Tp dependence on heating rate. Does not provide Ea or A as a function of conversion; suitable for preliminary assessment. | ln(β/Tp2) vs. 1/Tp | [12,24] |
| Avrami | Model-fitting (mechanism/order) | Assumes an order n characteristic of the system; used to estimate apparent reaction order. | Estimates reaction order n. Useful to capture non-integer kinetics and heterogeneity in biomass pyrolysis; derived n can inform model-fitting methods. | ln[−ln(1 − α)] vs. ln(β) | [12,15] |
| Coats–Redfern | Integral model-fitting (requires g(α)) | Although the method requires an assumed g(α), in this study it was defined using the Avrami reaction order (n). | Provides simultaneous estimates of Ea and A under a defined reaction model. Applied here using the fractional-order g(α) to compare first-order vs. fractional behavior. | ln[g(α)/T2] vs. 1/T | [16,17,18,27] |
| Temperature (°C/K) | Slope (m) | Reaction Order (n = −m) | Correlation Coefficient (R2) |
|---|---|---|---|
| 252/525 | −0.0855 | 0.0855 | 0.9676 |
| 262/535 | −0.1538 | 0.1538 | 0.9748 |
| 272/545 | −0.2267 | 0.2267 | 0.9810 |
| 282/555 | −0.2917 | 0.2917 | 0.9868 |
| 292/565 | −0.3302 | 0.3302 | 0.9879 |
| 302/575 | −0.3400 | 0.3400 | 0.9825 |
| 312/585 | −0.3343 | 0.3343 | 0.9781 |
| 322/595 | −0.3213 | 0.3213 | 0.9724 |
| 332/605 | −0.3187 | 0.3187 | 0.9693 |
| 342/615 | −0.3340 | 0.3340 | 0.9656 |
| 352/625 | −0.3455 | 0.3455 | 0.9598 |
| 362/635 | −0.3065 | 0.3065 | 0.9273 |
| Average | 0.2824 | 0.9711 |
| Method | Conversion, α | Ea (KJ mol−1) | R2 | A (s−1) |
|---|---|---|---|---|
| 0.15 | 177.8 | 0.9859 | 2.71 × 1014 | |
| 0.20 | 165.2 | 0.9963 | 7.95 × 1012 | |
| 0.25 | 163.8 | 0.9975 | 3.72 × 1012 | |
| 0.30 | 166.8 | 0.9957 | 4.85 × 1012 | |
| 0.35 | 171.4 | 0.9954 | 8.87 × 1012 | |
| Coats–Redfern | 0.40 | 177.2 | 0.9945 | 2.12 × 1013 |
| 0.45 | 183.2 | 0.9937 | 5.30 × 1013 | |
| 0.50 | 190.7 | 0.9960 | 1.82 × 1014 | |
| 0.55 | 198.4 | 0.9978 | 6.53 × 1014 | |
| 0.60 | 200.6 | 0.9751 | 8.44 × 1014 | |
| 0.65 | 207.8 | 0.9654 | 2.75 × 1015 | |
| 0.70 | 221.0 | 0.9607 | 2.77 × 1016 | |
| Average | 185.3 | 0.9878 | 2.70 × 1015 | |
| 0.15 | 175.0 | 0.9925 | 3.60 × 1013 | |
| 0.20 | 183.1 | 0.9931 | 1.10 × 1014 | |
| 0.25 | 204.2 | 0.9837 | 5.14 × 1015 | |
| 0.30 | 182.7 | 0.9895 | 3.49 × 1013 | |
| 0.35 | 174.7 | 0.9824 | 4.21 × 1012 | |
| Friedman | 0.40 | 201.4 | 0.9856 | 5.93 × 1014 |
| 0.45 | 207.1 | 0.9844 | 1.20 × 1015 | |
| 0.50 | 189.9 | 0.9806 | 3.13 × 1013 | |
| 0.55 | 230.1 | 0.9837 | 5.46 × 1016 | |
| 0.60 | 226.0 | 0.9844 | 2.73 × 1016 | |
| 0.65 | 242.0 | 0.9774 | 2.33 × 1017 | |
| 0.70 | 302.3 | 0.9907 | 1.16 × 1022 | |
| Average | 209.9 | 0.9857 | 9.65 × 1020 | |
| 0.15 | 177.0 | 0.9655 | 1.49 × 1015 | |
| 0.20 | 167.4 | 0.9818 | 6.06 × 1013 | |
| 0.25 | 167.7 | 0.9820 | 3.13 × 1013 | |
| 0.30 | 170.1 | 0.9888 | 2.87 × 1013 | |
| 0.35 | 175.9 | 0.9858 | 5.46 × 1013 | |
| Flynn–Wall–Ozawa | 0.40 | 181.1 | 0.9832 | 9.64 × 1013 |
| 0.45 | 187.4 | 0.9818 | 2.13 × 1014 | |
| 0.50 | 194.4 | 0.9804 | 5.70 × 1014 | |
| 0.55 | 201.4 | 0.9786 | 1.56 × 1015 | |
| 0.60 | 207.8 | 0.9778 | 3.79 × 1015 | |
| 0.65 | 215.6 | 0.9765 | 1.22 × 1016 | |
| 0.70 | 226.0 | 0.9614 | 6.20 × 1016 | |
| Average | 189.3 | 0.9786 | 6.84 × 1015 | |
| 0.15 | 177.1 | 0.9620 | 1.46 × 1015 | |
| 0.20 | 166.7 | 0.9798 | 4.99 × 1013 | |
| 0.25 | 166.9 | 0.9799 | 2.49 × 1013 | |
| 0.30 | 169.3 | 0.9875 | 2.27 × 1013 | |
| 0.35 | 175.1 | 0.9841 | 4.49 × 1013 | |
| Kissinger–Akahira–Sunose | 0.40 | 180.5 | 0.9813 | 8.18 × 1013 |
| 0.45 | 187.0 | 0.9798 | 1.89 × 1014 | |
| 0.50 | 194.3 | 0.9783 | 5.33 × 1014 | |
| 0.55 | 201.6 | 0.9763 | 1.54 × 1015 | |
| 0.60 | 208.1 | 0.9755 | 3.90 × 1015 | |
| 0.65 | 216.2 | 0.9741 | 1.33 × 1016 | |
| 0.70 | 227.1 | 0.9578 | 7.32 × 1016 | |
| Average | 189.2 | 0.9764 | 7.86 × 1015 | |
| Kissinger | 171.3 | 0.9829 | 2.60 × 1012 |
| Method | Conversion, α | ΔH (KJ/mol) | ΔG (KJ/mol) | ΔS (J/mol·K) |
|---|---|---|---|---|
| 0.15 | 173.3 | 179.6 | −10.1 | |
| 0.20 | 160.6 | 179.9 | −31.2 | |
| 0.25 | 159.1 | 180.0 | −33.8 | |
| 0.30 | 162.0 | 179.9 | −28.9 | |
| 0.35 | 166.5 | 179.8 | −21.4 | |
| Coats–Redfern | 0.40 | 172.3 | 179.6 | −11.8 |
| 0.45 | 178.2 | 179.4 | −2.0 | |
| 0.50 | 185.6 | 179.2 | 10.4 | |
| 0.55 | 193.3 | 179.0 | 23.0 | |
| 0.60 | 195.5 | 178.9 | 26.7 | |
| 0.65 | 202.6 | 178.8 | 38.4 | |
| 0.70 | 215.8 | 178.5 | 60.2 | |
| Average | 180.4 | 179.4 | 1.6 | |
| 0.15 | 170.5 | 179.7 | −14.7 | |
| 0.20 | 178.5 | 179.4 | −1.4 | |
| 0.25 | 199.5 | 178.9 | 33.4 | |
| 0.30 | 178.0 | 179.4 | −2.4 | |
| 0.35 | 169.8 | 179.7 | −15.9 | |
| Friedman | 0.40 | 196.5 | 178.9 | 28.4 |
| 0.45 | 202.1 | 178.8 | 37.6 | |
| 0.50 | 184.8 | 179.2 | 9.0 | |
| 0.55 | 225.0 | 178.2 | 75.6 | |
| 0.60 | 220.8 | 178.3 | 68.6 | |
| 0.65 | 236.8 | 178.0 | 94.9 | |
| 0.70 | 297.0 | 176.8 | 194.1 | |
| Average | 205.0 | 178.8 | 42.3 | |
| 0.15 | 172.5 | 179.6 | −11.4 | |
| 0.20 | 162.8 | 179.9 | −27.6 | |
| 0.25 | 163.0 | 179.9 | −27.2 | |
| 0.30 | 165.4 | 179.8 | −23.3 | |
| 0.35 | 171.0 | 179.6 | −13.9 | |
| Flynn–Wall–Ozawa | 0.40 | 176.2 | 179.5 | −5.3 |
| 0.45 | 182.4 | 179.3 | 5.0 | |
| 0.50 | 189.4 | 179.1 | 16.5 | |
| 0.55 | 196.3 | 178.9 | 28.1 | |
| 0.60 | 202.6 | 178.8 | 38.5 | |
| 0.65 | 210.4 | 178.6 | 51.3 | |
| 0.70 | 220.7 | 178.3 | 68.4 | |
| Average | 184.4 | 179.3 | 8.3 | |
| 0.15 | 172.6 | 179.6 | −11.2 | |
| 0.20 | 162.1 | 179.9 | −28.7 | |
| 0.25 | 162.2 | 179.9 | −28.6 | |
| 0.30 | 164.5 | 179.8 | −24.8 | |
| 0.35 | 170.3 | 179.6 | −15.1 | |
| Kissinger–Akahira–Sunose | 0.40 | 175.6 | 179.5 | −6.3 |
| 0.45 | 182.0 | 179.3 | 4.3 | |
| 0.50 | 189.2 | 179.1 | 16.3 | |
| 0.55 | 196.5 | 178.9 | 28.3 | |
| 0.60 | 203.0 | 178.8 | 39.1 | |
| 0.65 | 211.1 | 178.6 | 52.5 | |
| 0.70 | 221.8 | 178.3 | 70.3 | |
| Average | 184.2 | 179.3 | 8.0 | |
| Kissinger | 166.4 | 179.8 | −21.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soria-González, J.A.; Alvarado-Flores, J.J.; Rutiaga-Quiñones, J.G.; Alcaraz-Vera, J.V.; Herrera-Bucio, R.; Ávalos-Rodríguez, M.L.; López-Sosa, L.B.; Guzmán-Mejía, E. Pyrolysis of Persea americana Pruning Residues: Kinetic and Thermodynamic Analyses. Processes 2025, 13, 3993. https://doi.org/10.3390/pr13123993
Soria-González JA, Alvarado-Flores JJ, Rutiaga-Quiñones JG, Alcaraz-Vera JV, Herrera-Bucio R, Ávalos-Rodríguez ML, López-Sosa LB, Guzmán-Mejía E. Pyrolysis of Persea americana Pruning Residues: Kinetic and Thermodynamic Analyses. Processes. 2025; 13(12):3993. https://doi.org/10.3390/pr13123993
Chicago/Turabian StyleSoria-González, José Alberto, José Juan Alvarado-Flores, José Guadalupe Rutiaga-Quiñones, Jorge Víctor Alcaraz-Vera, Rafael Herrera-Bucio, María Liliana Ávalos-Rodríguez, Luís Bernardo López-Sosa, and Erandini Guzmán-Mejía. 2025. "Pyrolysis of Persea americana Pruning Residues: Kinetic and Thermodynamic Analyses" Processes 13, no. 12: 3993. https://doi.org/10.3390/pr13123993
APA StyleSoria-González, J. A., Alvarado-Flores, J. J., Rutiaga-Quiñones, J. G., Alcaraz-Vera, J. V., Herrera-Bucio, R., Ávalos-Rodríguez, M. L., López-Sosa, L. B., & Guzmán-Mejía, E. (2025). Pyrolysis of Persea americana Pruning Residues: Kinetic and Thermodynamic Analyses. Processes, 13(12), 3993. https://doi.org/10.3390/pr13123993

