Accelerated Solvent Extraction, Chemical Modification, and Free-Radical Polymerization of Canola (Brassica napus), Carinata (Brassica carinata), and Crambe (Crambe abyssinica) Oils
Abstract
1. Introduction
2. Materials and Methods
2.1. Oil Extraction
2.2. Characterization of the Vegetable Oils
2.2.1. Oxidative Stability
2.2.2. Fatty Acid Compositional Profile
2.3. Polymerization
2.3.1. Epoxidation
2.3.2. Acrylation
2.3.3. Solution Polymerization
2.4. Characterization Techniques
2.4.1. Thermogravimetric Analysis (TG)
2.4.2. Differential Scanning Calorimetry (DSC)
2.4.3. Nuclear Magnetic Resonance (NMR)
2.4.4. Fourier Transform Infrared (FTIR) Spectroscopy
3. Results and Discussion
3.1. Characterization of the Oils
3.1.1. Oxidative Stability of the Vegetable Oils
3.1.2. Fatty Acids Profile
3.2. Chemical Structural Modification
3.3. Polymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereira, P.A.A.; Martha, G.B.; Santana, C.A.M.; Alves, E. The development of Brazilian agriculture: Future technological challenges and opportunities. Agric. Food Secur. 2012, 1, 4. [Google Scholar] [CrossRef]
- Zanetti, F.; Vamerali, T.; Mosca, G. Yield and oil variability in modern varieties of high-erucic winter oilseed rape (Brassica napus L. var. oleifera) and Ethiopian mustard (Brassica carinata A. Braun) under reduced agricultural inputs. Ind. Crops Prod. 2009, 30, 265–270. [Google Scholar] [CrossRef]
- Islam, M.R.; Beg, M.D.H.; Jamari, S.S. Development of vegetable-oil-based polymers. J. Appl. Polym. Sci. 2014, 131, 40787. [Google Scholar] [CrossRef]
- Bell, J.M. From Rapeseed to Canola: A Brief History of Research for Superior Meal and Edible Oil1. Poult. Sci. 1982, 61, 613–622. [Google Scholar] [CrossRef]
- Carlsson, A.; Clayton, D.; Salentijn, E.; Toonen, M.; Stymne, S.; Dyer, W.; Bowles, D. Oil Crop Platforms for Industrial Uses. Outputs from the EPOBIO Projects; Antony Rowe Ltd.: Chippenham, UK, 2007.
- Xue, J.-Y.; Wang, Y.; Chen, M.; Dong, S.; Shao, Z.-Q.; Liu, Y. Maternal Inheritance of U’s Triangle and Evolutionary Process of Brassica Mitochondrial Genomes. Front. Plant Sci. 2020, 11, 805. [Google Scholar] [CrossRef]
- Seepaul, R.; Kumar, S.; Iboyi, J.E.; Bashyal, M.; Stansly, T.L.; Bennett, R.; Boote, K.J.; Mulvaney, M.J.; Small, I.M.; George, S.; et al. Brassica carinata: Biology and agronomy as a biofuel crop. GCB Bioenergy 2021, 13, 582–599. [Google Scholar] [CrossRef]
- Samarappuli, D.; Zanetti, F.; Berzuini, S.; Berti, M.T. Crambe (Crambe abyssinica Hochst): A Non-Food Oilseed Crop with Great Potential: A Review. Agronomy 2020, 10, 1380. [Google Scholar] [CrossRef]
- Falasca, S.L.; Flores, N.; Lamas, M.C.; Carballo, S.M.; Anschau, A. Crambe abyssinica: An almost unknown crop with a promissory future to produce biodiesel in Argentina. Int. J. Hydrogen Energy 2010, 35, 5808–5812. [Google Scholar] [CrossRef]
- Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated Solvent Extraction: A Technique for Sample Preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar] [CrossRef]
- Gan, J.; Papiernik, S.K.; Koskinen, W.C.; Yates, S.R. Evaluation of Accelerated Solvent Extraction (ASE) for Analysis of Pesticide Residues in Soil. Environ. Sci. Technol. 1999, 33, 3249–3253. [Google Scholar] [CrossRef]
- Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Renewable polymeric materials from vegetable oils: A perspective. Mater. Today 2013, 16, 337–343. [Google Scholar] [CrossRef]
- Gaglieri, C.; Alarcon, R.T.; de Moura, A.; Bannach, G. Vegetable oils as monomeric and polymeric materials: A graphical review. Curr. Res. Green Sustain. Chem. 2022, 5, 100343. [Google Scholar] [CrossRef]
- AOCS. Approved Procedure Am 5-04, Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction; ANKOM Technology: Macedon, NY, USA, 2004. [Google Scholar]
- ISO: 6886:2016; Animal and Vegetable Fats and Oils—Determination of Oxidative Stability (Accelerated Oxidation Test). International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO: 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2017.
- Neto, W.S.; Dutra, G.V.S.; Jensen, A.T.; Araújo, O.A.; Garg, V.; de Oliveira, A.C.; Valadares, L.F.; de Souza, F.G.; Machado, F. Superparamagnetic nanoparticles stabilized with free-radical polymerizable oleic acid-based coating. J. Alloys Compd. 2018, 739, 1025–1036. [Google Scholar] [CrossRef]
- Boerema, A.; Peeters, A.; Swolfs, S.; Vandevenne, F.; Jacobs, S.; Staes, J.; Meire, P. Soybean Trade: Balancing Environmental and Socio-Economic Impacts of an Intercontinental Market. PLoS ONE 2016, 11, e0155222. [Google Scholar] [CrossRef]
- Confortin, T.C.; Todero, I.; Luft, L.; Ugalde, G.A.; Mazutti, M.A.; Oliveira, Z.B.; Bottega, E.L.; Knies, A.E.; Zabot, G.L.; Tres, M.V. Oil yields, protein contents, and cost of manufacturing of oil obtained from different hybrids and sowing dates of canola. J. Environ. Chem. Eng. 2019, 7, 102972. [Google Scholar] [CrossRef]
- Martín-Cabrejas, I.; Goicoechea-Oses, E. Effect of garlic essential oil on sunflower oil oxidative stability during accelerated storage studied by FTIR spectroscopy. Food Biosci. 2024, 62, 105012. [Google Scholar] [CrossRef]
- Belhoussaine, O.; El Kourchi, C.; Mohammed, A.; El Yadini, A.; Ullah, R.; Iqbal, Z.; Goh, K.W.; Gallo, M.; Harhar, H.; Bouyahya, A.; et al. Unveiling the oxidative stability, phytochemical richness, and nutritional integrity of cold-pressed Linum usitatissimum oil under UV exposure. Food Chem. X 2024, 24, 101785. [Google Scholar] [CrossRef]
- da Silva, J.M.; Stevanato, N.; Raspe, D.T.; da Silva, T.R.B.; Silva, C.d. Oil from crambe seeds treated with different resistance inducers: Oil yield and chemical characterization. Acta Scientiarum. Agron. 2024, 46, e65159. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sustain. Energy Rev. 2010, 14, 200–216. [Google Scholar] [CrossRef]
- Araruna, T.; Sousa, J.F.; Kruger, R.H.; Machado, A.H.L.; Machado, F. Eco-friendly Development of New Biodegradable and Renewable Polymers Based on Di(meth)Acrylated and Acrylamidated Monomers Derived from Limonene Dioxide. J. Polym. Environ. 2024, 32, 6576–6602. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, M.; Cochran, E.W.; Kessler, M.R. Biorenewable polymers based on acrylated epoxidized soybean oil and methacrylated vanillin. Mater. Today Commun. 2015, 5, 18–22. [Google Scholar] [CrossRef]
- Bodhak, C.; Patel, T.; Sahu, P.; Gupta, R.K. Soybean Oil-Derived Acrylate/Methacrylate Ether for High-Resolution Additive Manufacturing. ACS Appl. Polym. Mater. 2024, 6, 12886–12896. [Google Scholar] [CrossRef]





| Sample | Extraction Efficiency (%) | Oil Content (%) (m/m) | Oxidative Stability Time (Hours) |
|---|---|---|---|
| Canola | 34.43 | 37.40 | 8.66 |
| Carinata | 33.41 | 35.38 | 9.61 |
| Crambe | 37.89 | 35.13 | 25.46 |
| Fatty Acid | Canola | Carinata | Crambe |
|---|---|---|---|
| Caprylic | 0.06 | ND | ND |
| Capric | 0.01 | ND | ND |
| Lauric | 0.19 | 0.10 | 0.10 |
| Myristic | 0.11 | 0.08 | 0.09 |
| Palmitic | 4.50 | 3.00 | 1.86 |
| Palmitoleic | 0.20 | 0.11 | 0.13 |
| Stearic | 1.71 | 0.91 | 0.87 |
| Oleic | 62.11 | 9.96 | 17.58 |
| Linoleic | 20.23 | 17.85 | 7.93 |
| Linoleiladic | 0.03 | ND | ND |
| α-Linolenic | 9.74 | 19.99 | 9.31 |
| γ-Linolenic | 0.04 | 0.05 | ND |
| Arachidic | 0.61 | 0.78 | 0.96 |
| Godoic | ND | ND | ND |
| Arachidonic | 0.01 | 0.01 | ND |
| Eicosapentaenoic | 0.18 | 0.59 | 0.69 |
| 11,14-Eicosadienoic | 0.13 | 1.08 | 0.24 |
| Behenic | 0.34 | 0.72 | 1.87 |
| Erucic | ND | 42.08 | 56.25 |
| 13,16-Docosadienoic | 0.03 | 1.35 | 0.56 |
| Clupanodonic | 0.01 | 0.01 | ND |
| Nervonic | 0.18 | 0.59 | 0.69 |
| ∑ Unsaturated Fatty acids (%) | 92.82 | 94.42 | 94.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciciliano, L.; Brito, G.F.d.S.; Santos, L.K.d.; Favaro, S.P.; Machado, F. Accelerated Solvent Extraction, Chemical Modification, and Free-Radical Polymerization of Canola (Brassica napus), Carinata (Brassica carinata), and Crambe (Crambe abyssinica) Oils. Processes 2025, 13, 3901. https://doi.org/10.3390/pr13123901
Ciciliano L, Brito GFdS, Santos LKd, Favaro SP, Machado F. Accelerated Solvent Extraction, Chemical Modification, and Free-Radical Polymerization of Canola (Brassica napus), Carinata (Brassica carinata), and Crambe (Crambe abyssinica) Oils. Processes. 2025; 13(12):3901. https://doi.org/10.3390/pr13123901
Chicago/Turabian StyleCiciliano, Laura, Gabriel Ferreira da Silva Brito, Letícia Karen dos Santos, Simone Palma Favaro, and Fabricio Machado. 2025. "Accelerated Solvent Extraction, Chemical Modification, and Free-Radical Polymerization of Canola (Brassica napus), Carinata (Brassica carinata), and Crambe (Crambe abyssinica) Oils" Processes 13, no. 12: 3901. https://doi.org/10.3390/pr13123901
APA StyleCiciliano, L., Brito, G. F. d. S., Santos, L. K. d., Favaro, S. P., & Machado, F. (2025). Accelerated Solvent Extraction, Chemical Modification, and Free-Radical Polymerization of Canola (Brassica napus), Carinata (Brassica carinata), and Crambe (Crambe abyssinica) Oils. Processes, 13(12), 3901. https://doi.org/10.3390/pr13123901

