Electrochemical Techniques for the Elimination of Pesticides from Wastewater: Challenges and Emerging Directions
Abstract
1. Introduction
2. Search Methodology and Bibliometric Overview
2.1. Research Metric
2.1.1. Literature Search Strategy
- Topic 1—Electrochemical technologies:(“electrochemical technology*” OR “electrochemical*” OR “electro-chemical*” OR “anodic oxidation*” OR “electro-membrane*” OR “electrocatalytic*” OR “electro-oxidation*” OR “electrooxidation*” OR “photoelectro*” OR “photo-electro*” OR “electroperoxone*” OR “sono-electro*” OR “sonoelectro*” OR “electrocoagulation*” OR “electrochemical removal*” OR “electrochemical degradation*”).
- Topic 2—Pesticides: (pesticide*).
- Topic 3—Wastewater treatment:(“wastewater treatment*” OR “waste water*” OR aqueous media).
- Topic 4:
2.1.2. Screening Criteria
- original research articles
- review articles
- articles published in English
- Books, book chapters, and conference proceedings were excluded.
- The full-text review applied the following inclusion criteria:
- Pesticide removal rates;
- Kinetic analyses;
- Reductions in chemical oxygen demand (COD) and biochemical oxygen demand (BOD) and total organic carbon (TOC);
- Influence of operational variables;
- Comparison with other treatment approaches;
- Evaluation of energy consumption and operational costs;
- Toxicity assessments;
- Identification of degradation by-products with proposed degradation pathways.
- 31 review articles and
- 150 research articles
- were identified and extracted for further analysis.
2.1.3. Data Extraction and Analysis
- VOSviewer (version 1.6.18) and
- CiteSpace (version 6.4.R1).
2.2. Most Cited Articles
3. Basic Principle of Electrochemical Technologies for Pesticide Removal
3.1. Electrochemical Oxidation
3.2. Electro-Fenton
3.3. Electrocoagulation
| Author | Pesticide | Optimal Conditions | Cell Type/Electrodes | Degradation/Mineralization (TOC/COD/BOD) Efficiency |
|---|---|---|---|---|
| Dolatabadi et al. (2022) [96] | Diazinon | FeCl3/NH4Cl, pH 8.5, 11.75 mA/cm2 | Undivided cell with magnetic guar gum, Fe anode, cathode | Near complete degradation |
| Sankar et al. (2021) [97] | Malathion | NaCl, pH 7.5, 15 V | Undivided cell, Fe or Al electrode | Near complete degradation |
| Behloul et al. (2013) [98] | Malathion | NaCl, pH 6, 10 mA/cm2 | Undivided cell, Al electrode | 90% degradation |
| Abdel-Gawad et al. (2012) [99] | Malathion | NaCl, pH 6–7, 1 mA/cm2 | Undivided cell, four Fe electrodes connected in bipolar mode | Near complete degradation |
| Halkijevic et al. (2024) [95] | Imidacloprid | NaCl, pH 7.2, 68–204 mA/cm2 | Undivided cell Fe, Cu, or Al electrode | Fe-96.51% Cu-87.04% Al-complete degradation, COD 56% |
| Raschitor et al. (2019) [100] | Oxyfluorfen, Lindane | Na2SO4, 17.73–25.47 mA/cm2 | Undivided cell, Fe anode, SS cathode | Lindane-61%, Oxyfluorfen-30% degradation |
3.4. Comparative Evaluation of Electrochemical Techniques
4. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ·OH | Hydroxyl radicals |
| 2,4-D | 2,4-Dichlorophenoxyacetic acid |
| AOPs | Advanced oxidation processes |
| BDD | Boron-doped diamond |
| BOD | Biochemical Oxygen Demand |
| COD | Chemical Oxygen Demand |
| DSA | Dimensionally Stable Anodes |
| EC | Electrocoagulation |
| EF | Electro-Fenton |
| EO | Electrochemical oxidation |
| Fe2+ | Ferrous iron |
| H2O2 | Hydrogen peroxide |
| OEP | Oxygen Evolution Potential |
| PEF | Photoelectro-Fenton |
| SEF | Sonoelectro-Fenton |
| SPEF | Solar Photoelectro-Fenton |
| TOC | Total Organic Carbon |
| UV | Ultraviolet |
| WoS | Web of Science Core Collection database |
References
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Preet, G.; Sidhu, S.; Handa, N. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Sjerps, R.M.A.; Kooij, P.J.F.; Van Loon, A.; Wezel, A.P. Van Chemosphere Occurrence of Pesticides in Dutch Drinking Water Sources. Chemosphere 2019, 235, 510–518. [Google Scholar] [CrossRef]
- Plaza-bola, P.; Antonio, S.; Bel, A. Chemosphere Determination of Pesticide Levels in Wastewater from an Agro-Food Industry: Target, Suspect and Transformation Product Analysis. Mar. Celia Campos-Man 2019, 232, 152–163. [Google Scholar] [CrossRef]
- Aćimović, D.D.; Vasić Anićijević, D.D. Electrooxidative Removal of Organophosphates—A Combined Experimental and Theoretical Approach. In Organophosphates Detection, Exposure and Occurrence Volume 1: Impact on Health and the Natural Environment; Lazarević-Pašti, T., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2022; p. 367. ISBN 9781685076528. [Google Scholar]
- Starling, M.C.V.M.; Amorim, C.C.; Leão, M.M.D. Occurrence, Control and Fate of Contaminants of Emerging Concern in Environmental Compartments in Brazil. J. Hazard. Mater. 2019, 372, 17–36. [Google Scholar] [CrossRef]
- Robin, D.C.; Marchand, P.A. Evolution of the Biocontrol Active Substances in the Framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2019, 75, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Martin-Reina, J.; Duarte, J.A.; Cerrillos, L.; Bautista, J.D.; Moreno, I. Insecticide Reproductive Toxicity Profile: Organophosphate, Carbamate and Pyrethroids. J. Toxins 2017, 4, 7. [Google Scholar] [CrossRef]
- Albuquerque, E.X.; Pereira, E.F.R.; Alkondon, M.; Rogers, S.W. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiol. Rev. 2025, 89, 73–120. [Google Scholar] [CrossRef]
- Jali, A.M. Organophosphate and Carbamate Toxicity: Understanding, Diagnosing and Treating Poisoning. J. Pioneer. Med. Sci. 2025, 13, 89–103. [Google Scholar] [CrossRef]
- Rodríguez, R.; Picó, Y.; Font, G.; Mañes, J. Determination of Urea-Derived Pesticides in Fruits and Vegetables by Solid-Phase Preconcentration and Capillary Electrophoresis. Electrophoresis 2001, 22, 2010–2016. [Google Scholar] [CrossRef] [PubMed]
- Watt, B.E.; Proudfoot, A.T.; Bradberry, S.M.; Vale, J.A. Poisoning Due to Urea Herbicides. Toxicol. Rev. 2005, 24, 161–166. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Lin, L.; Yen, J. Dissipation of Herbicides Chlorsulfuron and Imazosulfuron in the Soil and the Effects on the Soil Bacterial Community. J. Environ. Sci. Heal. Part B 2010, 1234, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Morais, S.; Correia, M.; Domingues, V.; Delerue-Matos, C. Urea Pesticides. In Pesticides—Strategies for Pesticides Analysis; Stoytcheva, M., Ed.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, R.; Song, G.; Zhang, M. Determination of Carbamate and Benzoylurea Insecticides in Peach Juice Drink by Floated Organic Drop Microextraction-High Performance Liquid Chromatography. Anal. Lett. 2009, 42, 1805–1819. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Wang, X.; Lu, G.; An, Y.; Liu, M. Advances in Electrochemical and Photoelectrochemical Sensors for the Triazine Pesticide Atrazine. Anal. Lett. 2025, 1–23. [Google Scholar] [CrossRef]
- Bueno, G.; Salla, F.; Bracht, L.; Parizotto, A.V.; Comar, J.F.; Peralta, R.M.; Bracht, F.; Bracht, A. Kinetics of the Metabolic Effects, Distribution Spaces and Lipid-Bilayer Affinities of the Organo-Chlorinated Herbicides 2,4-D and Picloram in the Liver. Toxicol. Lett. 2019, 313, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Xu, L.; He, Z.; Wan, Y. Occurrence, Fate, Seasonal Variability, and Risk Assessment of Twelve Triazine Herbicides and Eight Related Derivatives in Source, Treated, and Tap Water of Wuhan, Central China. Chemosphere 2023, 322, 138158. [Google Scholar] [CrossRef]
- Jouybari, T.A.; Jouybari, H.A.; Shamsipur, M.; Babajani, N.; Kiani, A.; Nematifar, Z.; Sharafi, K.; Moradi, M.; Fattahi, N. Trace Determination of Triazine Herbicides in Fruit and Vegetables Using Novel Hydrophobic Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction Followed by High-Performance Liquid Chromatography-Ultraviolet. J. Sep. Sci. 2022, 45, 4448–4459. [Google Scholar] [CrossRef]
- Science, S. Recent Advances in the Extraction of Triazine Herbicides from Water Samples Natalia Manousi. J. Sep. Sci. 2022, 45, 113–133. [Google Scholar] [CrossRef]
- Gámiz, B.; Velarde, P.; Spokas, K.A.; Celis, R.; Cox, L. Geoderma Changes in Sorption and Bioavailability of Herbicides in Soil Amended with Fresh and Aged Biochar. Geoderma 2019, 337, 341–349. [Google Scholar] [CrossRef]
- Wang, M.; Lv, J.; Deng, H.; Liu, Q.; Liang, S. Occurrence and Removal of Triazine Herbicides during Wastewater Treatment Processes and Their Environmental Impact on Aquatic Life. Int. J. Environ. Res. Public Health 2022, 19, 4557. [Google Scholar] [CrossRef]
- Shang, N.; Yang, Y.; Xiao, Y.; Wu, Y.; Li, K.; Jiang, X. Exposure Levels and Health Implications of Fungicides, Neonicotinoid Insecticides, Triazine Herbicides and Their Associated Metabolites in Pregnant Women and Men ☆. Environ. Pollut. 2024, 342, 123069. [Google Scholar] [CrossRef]
- Liu, C.; Dou, X.; Zhang, L.; Li, Q.; Duan, Y. Chemosphere Determination of Triazine Herbicides and Their Metabolites in Multiple Medicinal Parts of Traditional Chinese Medicines Using Streamlined Pretreatment and UFLC-ESI-MS/MS. Chemosphere 2018, 190, 103–113. [Google Scholar] [CrossRef]
- Matsuda, K.; Ihara, M.; Sattelle, D.B. Neonicotinoid Insecticides: Molecular Targets, Resistance, and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid Contamination of Global Surface Waters and Associated Risk to Aquatic Invertebrates: A Review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef]
- Scott-dupree, G.C.C.C.D.; Bees, N.Á.S.Á.C.Á. A Field Study Examining the Effects of Exposure to Neonicotinoid Seed-Treated Corn on Commercial Bumble Bee Colonies. Ecotoxicology 2014, 23, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Shoda, A.; Nishi, M.; Murata, M.; Mantani, Y.; Yokoyama, T.; Hirano, T.; Ikenaka, Y.; Hoshi, N. Quantitative Elucidation of the Transfer of the Neonicotinoid Pesticide Clothianidin to the Breast Milk in Mice. Toxicol. Lett. 2023, 373, 33–40. [Google Scholar] [CrossRef]
- Tariba Lovaković, B.; Kašuba, V.; Sekovanić, A.; Orct, T.; Jančec, A.; Pizent, A. Effects of Sub-Chronic Exposure to Imidacloprid on Reproductive Organs of Adult Male Rats: Antioxidant State, DNA Damage, and Levels of Essential Elements. Antioxidants 2021, 10, 1965. [Google Scholar] [CrossRef] [PubMed]
- Mourikes, V.E.; Santacruz Márquez, R.; Deviney, A.; Neff, A.M.; Laws, M.J.; Flaws, J.A. Imidacloprid and Its Bioactive Metabolite, Desnitro-Imidacloprid, Differentially Affect Ovarian Antral Follicle Growth, Morphology, and Hormone Synthesis In Vitro. Toxics 2023, 11, 349. [Google Scholar] [CrossRef]
- Dali, O.; D\textquoterightCruz, S.; Legoff, L.; Diba Lahmidi, M.; Heitz, C.; Merret, P.-E.; Kernanec, P.-Y.; Pakdel, F.; Smagulova, F. Transgenerational Epigenetic Effects Imposed by Neonicotinoid Thiacloprid Exposure. Life Sci. Alliance 2024, 7, e202302237. [Google Scholar] [CrossRef]
- Niti, C.; Sunita, S.; Kamlesh, K.; Rakesh, K. Bioremediation: An emerging technology for remediation of pesticides. Res. J. Chem. Environ. 2014, 17, 4. [Google Scholar]
- Li, W.; Zhao, Y.; Yan, X.; Duan, J.; Saint, C.P.; Beecham, S. Transformation Pathway and Toxicity Assessment of Malathion in Aqueous Solution during UV Photolysis and Photocatalysis. Chemosphere 2019, 234, 204–214. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Yang, Y.; Fan, L.; Qin, W.; Su, L.; Zhao, Y.; Li, C. Photochemical Behavior and Photo-Induced Toxicity of Chiral Pesticides and Their Chiral Monomers in Aqueous Environment. Environ. Int. 2023, 177, 107996. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Kaur, S.; Romero, R.; Singh, J. Degradation of Pesticides in Wastewater Using Heterogeneous Photocatalysis. In Advanced Oxidation Processes for Effluent Treatment Plants; Shah, M.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 161–175. ISBN 978-0-12-821011-6. [Google Scholar] [CrossRef]
- Tepuš, B.; Simonič, M.; Petrinić, I. Comparison between Nitrate and Pesticide Removal from Ground Water Using Adsorbents and NF and RO Membranes. J. Hazard. Mater. 2009, 170, 1210–1217. [Google Scholar] [CrossRef]
- Tasić, T.; Milanković, V.; Potkonjak, N.; Unterweger, C.; Pašti, I.; Lazarević-Pašti, T. Valorization of Viscose Textile Waste for the Adsorptive Removal of Organophosphate Pesticides from Water. J. Water Process Eng. 2025, 69, 106793. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Brković, S.; Potkonjak, N.; Unterweger, C.; Pašti, I.; Lazarević-Pašti, T. The Adsorption of Chlorpyrifos and Malathion under Environmentally Relevant Conditions Using Biowaste Carbon Materials. J. Hazard. Mater. 2024, 480, 135940. [Google Scholar] [CrossRef] [PubMed]
- Biswas, B.; Goel, S. Electrocoagulation and Electrooxidation Technologies for Pesticide Removal from Water or Wastewater: A Review. Chemosphere 2022, 302, 134709. [Google Scholar] [CrossRef]
- Akter, S.; Suhan, B.K.; Islam, S. Environmental Nanotechnology, Monitoring & Management Recent Advances and Perspective of Electrocoagulation in the Treatment of Wastewater: A Review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100643. [Google Scholar] [CrossRef]
- Brillas, E. A Review on the Degradation of Organic Pollutants in Waters by UV Photoelectro-Fenton and Solar Photoelectro-Fenton. Res. J. Chem. Environ. 2014, 25, 393–417. [Google Scholar] [CrossRef]
- Guillossou, R.; Le Roux, J.; Mailler, R.; Vulliet, E.; Morlay, C.; Nauleau, F.; Gasperi, J.; Rocher, V. Organic Micropollutants in a Large Wastewater Treatment Plant: What Are the Benefits of an Advanced Treatment by Activated Carbon Adsorption in Comparison to Conventional Treatment? Chemosphere 2019, 218, 1050–1060. [Google Scholar] [CrossRef]
- Ječmenica Dučić, M.; Vasić Anićijević, D.; Aćimović, D.; Švorc, Ľ.; Bugarski, B.; Pešić, R.; Brdarić, T. Predicting the Fate of Bisphenol A During Electrochemical Oxidation: A Simple Semiempirical Method Based on the Concentration Profile of Hydroxyl Radicals. Int. J. Mol. Sci. 2025, 26, 4785. [Google Scholar] [CrossRef]
- Simić, M.D.; Savić, B.G.; Ognjanović, M.R.; Stanković, D.M.; Relić, D.J.; Aćimović, D.D.; Brdarić, T.P. Degradation of Bisphenol A on SnO2-MWCNT Electrode Using Electrochemical Oxidation. J. Water Process Eng. 2023, 51, 103416. [Google Scholar] [CrossRef]
- Guo, D.; Guo, Y.; Huang, Y.; Chen, Y.; Dong, X.; Chen, H.; Li, S. Preparation and Electrochemical Treatment Application of Ti/Sb–SnO2-Eu&RGO Electrode in the Degradation of Clothianidin Wastewater. Chemosphere 2021, 265, 129126. [Google Scholar] [CrossRef] [PubMed]
- Vlyssides, A.; Barampouti, E.M.; Mai, S.; Arapoglou, D.; Kotronarou, A. Degradation of Methylparathion in Aqueous Solution by Electrochemical Oxidation. Environ. Sci. Technol. 2004, 38, 6125–6131. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huitle, C.A.; De Battisti, A.; Ferro, S.; Reyna, S.; Cerro-López, M.; Quiro, M.A. Removal of the Pesticide Methamidophos from Aqueous Solutions by Electrooxidation Using Pb/PbO2, Ti/SnO2, and Si/BDD Electrodes. Environ. Sci. Technol. 2008, 42, 6929–6935. [Google Scholar] [CrossRef]
- Pereira, G.F.; Silva, B.F.; Oliveira, R.V.; Coledam, D.A.C.; Aquino, J.M.; Rocha-Filho, R.C.; Bocchi, N.; Biaggio, S.R. Comparative Electrochemical Degradation of the Herbicide Tebuthiuron Using a Flow Cell with a Boron-Doped Diamond Anode and Identifying Degradation Intermediates. Electrochim. Acta 2017, 247, 860–870. [Google Scholar] [CrossRef]
- Malpass, G.R.P.; Miwa, D.W.; Machado, S.A.S.; Olivi, P.; Motheo, A.J. Oxidation of the Pesticide Atrazine at DSA ® Electrodes. J. Hazard. Mater. 2006, 137, 565–572. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Keller, J.; Brillas, E.; Radjenovic, J. Removal of Organic Contaminants from Secondary Effluent by Anodic Oxidation with a Boron-Doped Diamond Anode as Tertiary Treatment. J. Hazard. Mater. 2015, 283, 551–557. [Google Scholar] [CrossRef]
- Souza, F.; Quijorna, S.; Lanza, M.R.V.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Applicability of Electrochemical Oxidation Using Diamond Anodes to the Treatment of a Sulfonylurea Herbicide. Catal. Today 2017, 280, 192–198. [Google Scholar] [CrossRef]
- Li, M.; Zhao, F.; Sillanpää, M.; Meng, Y.; Yin, D. Electrochemical Degradation of 2-Diethylamino-6-Methyl-4- Hydroxypyrimidine Using Three-Dimensional Electrodes Reactor with Ceramic Particle Electrodes. Sep. Purif. Technol. 2015, 156, 588–595. [Google Scholar] [CrossRef]
- Ječmenica Dučić, M.; Krstić, A.; Zdolšek, N.; Aćimović, D.; Savić, B.; Brdarić, T.; Vasić Anićijević, D. Low-Cost Graphene-Based Composite Electrodes for Electrochemical Oxidation of Phenolic Dyes. Crystals 2023, 13, 125. [Google Scholar] [CrossRef]
- Ječmenica Dučić, M.; Aćimović, D.; Savić, B.; Rakočević, L.; Simić, M.; Brdarić, T.; Vasić Anićijević, D. Is It Possible to Restrain OER on Simple Carbon Electrodes to Efficiently Electrooxidize Organic Pollutants? Molecules 2022, 27, 5203. [Google Scholar] [CrossRef]
- Vlyssides, A.; Arapoglou, D.; Israilides, C.; Karlis, P. Electrochemical Oxidation of Three Obsolete Organophosphorous Pesticides Stocks. J. Pestic. Sci. 2004, 29, 105–109. [Google Scholar] [CrossRef]
- Hachami, F.; Errami, M.; Bazzi, L.; Hilali, M.; Salghi, R.; Jodeh, S.; Hammouti, B.; Hamed, O.A. A Comparative Study of Electrochemical Oxidation of Methidation Organophosphorous Pesticide on SnO2 and Boron-Doped Diamond Anodes. Chem. Cent. J. 2015, 9, 59. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, Y.; Wei, F.; Zhang, L.; Yao, Y. Electrochemical Oxidation of the Pesticide Nitenpyram Using a Gd-PbO2 Anode: Operation Parameter Optimization and Degradation Mechanism. J. Chem. Technol. Biotechnol. 2020, 95, 2120–2128. [Google Scholar] [CrossRef]
- Dos Santos, E.V.; Sáez, C.; Martínez-Huitle, C.A.; Cañizares, P.; Rodrigo, M.A. The Role of Particle Size on the Conductive Diamond Electrochemical Oxidation of Soil-Washing Effluent Polluted with Atrazine. Electrochem. Commun. 2015, 55, 26–29. [Google Scholar] [CrossRef]
- Malpass, G.R.P.; Miwa, D.W.; Santos, R.L.; Vieira, E.M.; Motheo, A.J. Unexpected Toxicity Decrease during Photoelectrochemical Degradation of Atrazine with NaCl. Environ. Chem. Lett. 2012, 10, 177–182. [Google Scholar] [CrossRef]
- Zaviska, F.; Drogui, P.; Blais, J.-F.; Mercier, G.; Lafrance, P. Experimental Design Methodology Applied to Electrochemical Oxidation of the Herbicide Atrazine Using Ti/IrO2 and Ti/SnO2 Circular Anode Electrodes. J. Hazard. Mater. 2011, 185, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Samet, Y.; Agengui, L.; Abdelhédi, R. Electrochemical Degradation of Chlorpyrifos Pesticide in Aqueous Solutions by Anodic Oxidation at Boron-Doped Diamond Electrodes. Chem. Eng. J. 2010, 161, 167–172. [Google Scholar] [CrossRef]
- Muff, J.; Andersen, C.D.; Erichsen, R.; Soegaard, E.G. Electrochimica Acta Electrochemical Treatment of Drainage Water from Toxic Dump of Pesticides and Degradation Products. Electrochim. Acta 2009, 54, 2062–2068. [Google Scholar] [CrossRef]
- Samet, Y.; Agengui, L.; Abdelhédi, R. Anodic Oxidation of Chlorpyrifos in Aqueous Solution at Lead Dioxide Electrodes. J. Electroanal. Chem. 2010, 650, 152–158. [Google Scholar] [CrossRef]
- Arapoglou, D.; Vlyssides, A.; Israilides, C.; Zorpas, A.; Karlis, P. Detoxification of Methyl-Parathion Pesticide in Aqueous Solutions by Electrochemical Oxidation. J. Hazard. Mater. 2003, 98, 191–199. [Google Scholar] [CrossRef]
- Agricultural, N. Electrochemical Oxidation of Two Organophosphoric Obsolete Pesticide Stocks Apostolos Vlyssides * Dimitris Arapoglou Sofia Mai and Elli Maria Barampouti. Int. J. Environ. Pollut. 2005, 23, 289–299. [Google Scholar] [CrossRef]
- Moteshaker, P.M.; Saadi, S.; Rokni, S.E.; Resources, N.; Azad, I.; Engineering, E.H.; Health, P. Electrochemical Removal of Diazinon Insecticide in Aqueous Solution by Pb/β-PbO2 (RSM). Water Environ. Res. 2020, 92, 975–986. [Google Scholar] [CrossRef]
- Hosseini, G.; Maleki, A.; Daraei, H.; Faez, E.; Shahamat, Y.D. Electrochemical Process for Diazinon Removal from Aqueous Media: Design of Experiments, Optimization, and DLLME-GC-FID Method for Diazinon Determination. Arab. J. Sci. Eng. 2015, 40, 3041–3046. [Google Scholar] [CrossRef]
- Radjenovic, J.; Bagastyo, A.; Rozendal, R.A.; Mu, Y.; Keller, J.; Rabaey, K. Electrochemical Oxidation of Trace Organic Contaminants in Reverse Osmosis Concentrate Using RuO2/IrO2-Coated Titanium Anodes. Water Res. 2011, 45, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Raschitor, A.; Llanos, J.; Cañizares, P.; Rodrigo, M.A. Novel Integrated Electrodialysis/Electro-Oxidation Process for the Efficient Degradation of 2,4-Dichlorophenoxyacetic Acid. Chemosphere 2017, 182, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Hu, D.; Wang, H.; Zhao, Y.; Cui, Y.; Luo, K.; Zhang, L.; Liu, W.; Wu, P.; Ge, H.; et al. Electrochemical-Assisted Hydrolysis/Acidification-Based Processes as a Cost- Effective and Efficient System for Pesticide Wastewater Treatment. Chem. Eng. J. 2020, 397, 125417. [Google Scholar] [CrossRef]
- Oturan, N.; Oturan, M.A. Degradation of Three Pesticides Used in Viticulture by Electrogenerated Fenton’s Reagent. Agron. Sustain. Dev. 2005, 25, 267–270. [Google Scholar] [CrossRef]
- Popescu, M.; Sandu, C.; Rosales, E.; Pazos, M.; Lazar, G.; Sanromán, M.Á. Evaluation of Different Cathodes and Reaction Parameters on the Enhancement of the Electro-Fenton Process. J. Electroanal. Chem. 2018, 808, 455–463. [Google Scholar] [CrossRef]
- Rubí-Juárez, H.; Cotillas, S.; Sáez, C.; Cañizares, P.; Barrera-Díaz, C.; Rodrigo, M.A. Use of Conductive Diamond Photo-Electrochemical Oxidation for the Removal of Pesticide Glyphosate. Sep. Purif. Technol. 2016, 167, 127–135. [Google Scholar] [CrossRef]
- Oturan, N.; Zhou, M.; Oturan, M.A. Metomyl Degradation by Electro-Fenton and Electro-Fenton-Like Processes: A Kinetics Study of the Effect of the Nature and Concentration of Some Transition Metal Ions as Catalyst. J. Phys. Chem. A 2010, 2, 10605–10611. [Google Scholar] [CrossRef]
- Sedaghat, M.; Vahid, B.; Aber, S.; Rasoulifard, M.H.; Khataee, A.; Daneshvar, N. Electrochemical and Photo-Assisted Electrochemical Treatment of the Pesticide Imidacloprid in Aqueous Solution by the Fenton Process: Effect of Operational Parameters. Res. Chem. Intermed. 2016, 42, 855–868. [Google Scholar] [CrossRef]
- Nguyen, D.D.D.; Huynh, K.A.; Nguyen, X.H.; Nguyen, T.P. Imidacloprid Degradation by Electro-Fenton Process Using Composite Fe3O4–Mn3O4 Nanoparticle Catalyst. Res. Chem. Intermed. 2020, 46, 4823–4840. [Google Scholar] [CrossRef]
- Iberache, N.; Titchou, F.E.; Errami, M.; Ben-Aazza, S.; Driouiche, A.; Akbour, R.A.; Hamdani, M.; Hadfi, A. Removal of the Insecticide Imidacloprid from Water in Commercial Formulation Using Electro-Fenton and Photo-Electro-Fenton: Optimization of COD Removal through Response Surface Methodology RSM-CCD. Chem. Eng. Process.—Process Intensif. 2024, 196, 109633. [Google Scholar] [CrossRef]
- Diagne, M.; Oturan, N.; Oturan, M.A. Removal of Methyl Parathion from Water by Electrochemically Generated Fenton’s Reagent. Chemosphere 2007, 66, 841–848. [Google Scholar] [CrossRef]
- Rocha, R.S.; Silva, F.L.; Valim, R.B.; Barros, W.R.P.; Steter, J.R.; Bertazzoli, R.; Lanza, M.R.V. Effect of Fe2+ on the Degradation of the Pesticide Profenofos by Electrogenerated H2O2. J. Electroanal. Chem. 2016, 783, 100–105. [Google Scholar] [CrossRef]
- Souiad, F.; Rodrigues, A.S.; Lopes, A.; Ciríaco, L.; Pacheco, M.J.; Bendaoud-Boulahlib, Y.; Fernandes, A. Methiocarb Degradation by Electro-Fenton: Ecotoxicological Evaluation. Molecules 2020, 25, 5893. [Google Scholar] [CrossRef]
- Çelebi, M.S.; Oturan, N.; Zazou, H.; Hamdani, M.; Oturan, M.A. Electrochemical Oxidation of Carbaryl on Platinum and Boron-Doped Diamond Anodes Using Electro-Fenton Technology. Sep. Purif. Technol. 2015, 156, 996–1002. [Google Scholar] [CrossRef]
- Gozzi, F.; Sirés, I.; Thiam, A.; De Oliveira, S.C.; Machulek, A.; Brillas, E. Treatment of Single and Mixed Pesticide Formulations by Solar Photoelectro-Fenton Using a Flow Plant. Chem. Eng. J. 2017, 310, 503–513. [Google Scholar] [CrossRef]
- Badellino, C.; Rodrigues, C.A.; Bertazzoli, R. Oxidation of Pesticides by in Situ Electrogenerated Hydrogen Peroxide: Study for the Degradation of 2,4-Dichlorophenoxyacetic Acid. J. Hazard. Mater. 2006, 137, 856–864. [Google Scholar] [CrossRef]
- Cai, J.; Xie, J.; Zhang, Q.; Zhou, M. Enhanced Degradation of 2,4-Dichlorophenoxyacetic Acid by Electro-Fenton in Flow-through System Using B, Co-TNT Anode. Chemosphere 2022, 292, 133470. [Google Scholar] [CrossRef] [PubMed]
- Brillas, E.; Miguel, A.; Skoumal, M.; Lluı, P.; Garrido, A.; Marı, R. Degradation of the Herbicide 2,4-DP by Anodic Oxidation, Electro-Fenton and Photoelectro-Fenton Using Platinum and Boron-Doped Diamond Anodes. Chemosphere 2007, 68, 199–209. [Google Scholar] [CrossRef]
- Carboneras Contreras, M.B.; Fourcade, F.; Assadi, A.; Amrane, A.; Fernandez-Morales, F.J. Electro Fenton Removal of Clopyralid in Soil Washing Effluents. Chemosphere 2019, 237, 124447. [Google Scholar] [CrossRef]
- Rosa Barbosa, M.P.; Lima, N.S.; de Matos, D.B.; Alves Felisardo, R.J.; Santos, G.N.; Salazar-Banda, G.R.; Cavalcanti, E.B. Degradation of Pesticide Mixture by Electro-Fenton in Filter-Press Reactor. J. Water Process Eng. 2018, 25, 222–235. [Google Scholar] [CrossRef]
- Simić, M.D.; Brdarić, T.P.; Savić Rosić, B.G.; Švorc, Ľ.; Relić, D.J.; Aćimović, D.D. Degradation of Bisphenol A via the Electro–Fenton Process Using Nanostructured Carbon-Metal Oxide Anodes: Intermediates and Reaction Mechanisms Study. J. Environ. Chem. Eng. 2024, 12, 113369. [Google Scholar] [CrossRef]
- Wang, X.; Xu, C.; Zhu, Y.; Zhou, C.; Yang, Y.; Miao, J.; Zhou, W.; Shao, Z. The Recent Progress of Cathode Materials for Heterogeneous Electro-Fenton Reactions. Surf. Interfaces 2024, 44, 103820. [Google Scholar] [CrossRef]
- Luo, M.; Yuan, S.; Tong, M.; Liao, P.; Xie, W.; Xu, X. An Integrated Catalyst of Pd Supported on Magnetic Fe3O4 Nanoparticles: Simultaneous Production of H2O2 and Fe2+ for Efficient Electro-Fenton Degradation of Organic Contaminants. Water Res. 2014, 48, 190–199. [Google Scholar] [CrossRef]
- Stojanović, K.D.; Aćimović, D.D.; Brdarić, T.P. Electrochemical-Based Technologies for Removing NSAIDs from Wastewater: Systematic Review with Bibliometric Analysis. Processes 2025, 13, 1272. [Google Scholar] [CrossRef]
- Inticher, J.J.; Cabrera, L.C.; Guimarães, R.E.; Zorzo, C.F.; Pellenz, L.; Seibert, D.; Borba, F.H. Advanced Treatment of Water Contaminated with Atrazine, Difenoconazole and Fipronil Mixture, Its by-Products and Bio-Toxicity Levels. J. Environ. Chem. Eng. 2021, 9, 105883. [Google Scholar] [CrossRef]
- Salmerón, I.; Plakas, K.V.; Sirés, I.; Oller, I.; Maldonado, M.I.; Karabelas, A.J.; Malato, S. Optimization of Electrocatalytic H2O2 Production at Pilot Plant Scale for Solar-Assisted Water Treatment. Appl. Catal. B 2019, 242, 327–336. [Google Scholar] [CrossRef]
- Juliya, P.; Ranjit, D.; Palanivelu, K.; Lee, C. Degradation of 2,4-Dichlorophenol in Aqueous Solution by Sono-Fenton Method. Korean J. Chem. Eng. 2008, 25, 112–117. [Google Scholar] [CrossRef]
- Dargahi, A.; Hasani, K.; Mokhtari, S.A.; Vosoughi, M.; Moradi, M.; Vaziri, Y. Journal of Environmental Chemical Engineering Highly Effective Degradation of 2,4-Dichlorophenoxyacetic Acid Herbicide in a Three-Dimensional Sono-Electro-Fenton (3D/SEF) System Using Powder Activated Carbon (PAC)/Fe3O4 as Magnetic Particle El. J. Environ. Chem. Eng. 2021, 9, 105889. [Google Scholar] [CrossRef]
- Halkijevic, I.; Licht, K.; Kosar, V.; Bogdan, L. Degradation of the Neonicotinoid Pesticide Imidacloprid by Electrocoagulation and Ultrasound. Sci. Rep. 2024, 14, 8836. [Google Scholar] [CrossRef]
- Dolatabadi, M.; Meftahizade, H.; Ahmadzade, S.; Abbasi, F.; Falakian, M. Efficiency of Modified Plant Guar Gum as Aid Coagulant for Removal of Diazinon from Aqueous Solution: Optimization by Response Surface Methodology. Chemical Papers 2022, 77, 1339–1349. [Google Scholar] [CrossRef]
- Ramya Sankar, M.S.; Sivasubramanian, V. Optimization and Evaluation of Malathion Removal by Electrocoagulation Process and Sludge Management. J. Environ. Chem. Eng. 2021, 9, 106147. [Google Scholar] [CrossRef]
- Behloul, M.; Grib, H.; Drouiche, N.; Abdi, N.; Lounici, H.; Mameri, N. Removal of Malathion Pesticide from Polluted Solutions by Electrocoagulation: Modeling of Experimental Results Using Response Surface Methodology. Sep. Sci. Technol. 2013, 48, 664–672. [Google Scholar] [CrossRef]
- Abdel-Gawad, S.A.; Baraka, A.M.; Omran, K.A.; Mokhtar, M.M. Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. Sci. 2012, 7, 6654–6665. [Google Scholar] [CrossRef]
- Raschitor, A.; Llanos, J.; Rodrigo, M.A.; Cañizares, P. Combined Electrochemical Processes for the e Ffi Cient Degradation of Non- Polar Organochlorine Pesticides. J. Environ. Manag. 2019, 248, 109289. [Google Scholar] [CrossRef]
- Muñoz, M.; Llanos, J.; Raschitor, A.; Ca, P.; Rodrigo, M.A. Electrocoagulation as the Key for an Efficient Concentration and Removal of Oxyfluorfen from Liquid Wastes. Ind. Eng. Chem. Res. 2017, 56, 3091–3097. [Google Scholar] [CrossRef]
- Madsen, H.T.; Søgaard, E.G.; Muff, J. Study of Degradation Intermediates Formed during Electrochemical Oxidation of Pesticide Residue 2,6-Dichlorobenzamide (BAM) at Boron Doped Diamond (BDD) and Platinum–Iridium Anodes. Chemosphere 2014, 109, 84–91. [Google Scholar] [CrossRef]
- Rabaaoui, N.; Saad, M.E.K.; Moussaoui, Y.; Allagui, M.S.; Bedoui, A.; Elaloui, E. Anodic Oxidation of O-Nitrophenol on BDD Electrode: Variable Effects and Mechanisms of Degradation. J. Hazard. Mater. 2013, 250–251, 447–453. [Google Scholar] [CrossRef]




| Author | Pesticide | Optimal Conditions | Cell Type/Electrodes | Degradation/Mineralization (TOC/COD/BOD) Efficiency |
|---|---|---|---|---|
| Garcia-Segura et al. (2015) [49] | Mixture (29 pharmaceuticals and pesticides) | Real municipal effluent (Cl− pre-sent) | Batch, BDD anode, SS cathode | Near-complete degradation and mineralization |
| Muff at al. (2009) [61] | Multiple organophosphorus pesticides | Drainage water pH 4.2, 310–1131 mA/cm2, | Flow cell, Ti/Pt90–Ir10 anode, SS cathode | Complete degradation |
| Li et al. (2015) [51] | DTMHP | Na2SO4, pH 3, 15 V | Undivided cell, Pb alloy, SS cathode | Degradation: 83.4%; COD 35.2% |
| Samet et al. (2010) [62] | Chlorpyrifos | H2SO4, pH 2, 10–50 mA/cm2 | Divided cell, Nb/PbO2 anode, graphite carbon bar cathode | Complete degradation, COD: 76% |
| Martinez-Huitle et al. (2008) [46] | Methamidophos | Na2SO4, pH 2, 5, 6, 9; 50 mA/cm2 | Divided cell, Si/BDD, Pb/PbO2, Ti/SnO2 anode, Zr cathode | BDD-complete degradation/mineralization; |
| Arapoglou et al. (2003) [63] | Methyl-parathion | NaCl, 36 A | Undivided cell, Ti/Pt anode, SS cathode | COD, BOD > 80% |
| Vlyssides et al. (2005) [64] | Monocrotophos, Phosphamidon | NaCl, 30–36 A | Undivided cell, Ti/Pt anode, SS cathode | Monocrotophos: COD 42.5%; Phosphamidon: COD 42.4% |
| Vlyssides et al. (2004) [54] | Methidathion phosalone, azinphos-methyl | NaCl, 30 A | Undivided cell, Ti/Pt anode, SS cathode | COD > 70% |
| Hachami et al. (2015) [55] | Methidathion | NaCl, pH 3, 60 mA/cm2 | Undivided cell, BDD and SnO2 anode, Pt cathode | BDD: COD 85% SnO2: COD 73% |
| Moteshaker et al. (2020) [65] | Diazinon | Na2SO4, pH 5, 25 mA/cm2 | Undivided cell, Pb/β-PbO2 anode, SS cathode | Near complete degradation TOC: 79.86% |
| Hosseini et al. (2015) [66] | Diazinon | KCl, pH 7, 40 mA/cm2 | Undivided cell, Al anode, graphite cathode | Degradation: 87% |
| Malpas et al. (2005) [48] | Atrazine | NaCl, 60 mA/cm2 | Undivided cell, Ti/Ru0.3Ti0.7O2 (DSA®) anode, Pt cathode | Complete degradation TOC: 46% |
| Zaviska et al. (2011) [59] | Atrazine | NaCl, 2 A | Undivided cell, Ti/IrO2, Ti/SnO2 anode, Ti cathode | Near complete degradation: 95% |
| Santos et al. (2015) [57] | Atrazine | NaHCO3, pH 8.48, | Undivided cell, Ti/SnO2-Sb, Ti/RuIr anode | Near complete degradation |
| Randjelovic et al. (2011) [67] | Mix of pesticides (Atrazine, Triclopyr, 2,4-D, Metolachlor) | Reverse osmosis, pH 7.5, 25 mA/cm2 | Undivided cell, RuO2/IrO2-coated, SS cathode | Near complete degradation |
| Yang et al. (2020) [56] | Nitenpyram | Na2SO4, pH 5, 70 mA/cm2 | Undivided cell, Gd-PbO2 anode, Ti cathode | Degradation: 95.4%; COD: 79.2% |
| Guo et al. (2021) [44] | Clothianidin | Na2SO4, pH 5, 25 mA/cm2 | Undivided cell, Ti/Sb–SnO2–Eu&rGO anode, Ti cathode | Near complete degradation |
| Souza et al. (2017) [50] | Chlorsulfuron | NaCl/Na2SO4, 30 and 100 mA/cm2 | Batch, BDD anode and cathode | Complete degradation and mineralization |
| Pereira et al. (2017) [47] | Tebuthiuron | Na2SO4 ± Cl−, 10, 30 and 50 mA/cm2 | Flow cell, BDD anode, SS cathode | Complete degradation, TOC: 80% |
| Raschitor et al. (2017) [68] | 2,4-D | NaCl, 1 V | Electrodialysis/electro-oxidation, DSA® anode | Electrodialysis enhances oxidation |
| Min et al. (2020) [69] | Pesticide wastewater | Pesticide wastewater | Pilot-scale systems, nano PbO2 anode | BOD: 85.7% |
| Author | Pesticide | Optimal Conditions | Cell Type/Electrodes | Degradation/Mineralization (TOC/COD/BOD) Efficiency |
|---|---|---|---|---|
| Diagne et al. (2006) [77] | Methyl parathion | aqueous solution, Fe2+ (0.1 mM), pH 3, 13.33 mA cm−2 | Undivided cell, Pt anode, carbon felt cathode | Complete degradation /mineralization |
| Rocha et al. (2016) [78] | Profenofos | K2SO4, Fe2+ (0.15 mM), acidic, −0.7 V | Undivided cell, Pt anode, GDE cathode | Complete degradation, 89% mineralization |
| Sedaghat et al. (2016) [74] | Imidacloprid | Na2SO4, Fe2+ (0.36 mM), pH 2.8, −1 V | Undivided three-electrode batch cell, graphite cathode, UV lamp for PEF | Deg. EF: 59.23%; PEF: 80.49%; Min.: EF: 50.73%; PEF: 67.15% |
| Nguyen et al. (2020) [75] | Imidacloprid | Na2SO4, Fe3O4–Mn3O4 nanoparticle catalyst, pH 4, 15 mA cm−2 | Undivided cell, graphite, Pt, BDD anode, Graphite cathode | Near complete degradation/mineralization |
| Iberache et al. (2024) [76] | Imidacloprid | Na2SO4, Fe2+ (0.225 mM), pH 3, 17.15 mA cm −2 | Undivided cell, BDD anode, carbon felt cathode | Complete degradation |
| Rosa Barbosa et al. (2018) [86] | Diuron, Glyphosate | Na2SO4, Fe2+ (1.0 mM), pH 3, 0.50–1.50 A | Divided reactor, Ti/RuTiO2 DSA plate anode, carbon felt cathode | Diuron-66.2%, Glyphosate-complete degradation |
| Cai et al. (2022) [83] | 2,4-D | aqueous solution, Fe2+ (0.5 mM), pH 3, 3.52 mA cm −2 | Flow-through system | Degradation: 85% Mineralization: 25.3% |
| Badellino et al. (2006) [82] | 2,4-D | K2SO4, Fe2+ (1 mM), pH 3.5 and 10, −1.6 V | Undivided cell, Rotating RVC cylinder anode, Pt cathode | Near-complete degradation, 67% TOC in acidic, 0% in alkali |
| Brillas et al. (2007) [84] | 2,4-D | Na2SO4, Fe2+ (1.0 mM), pH 3, 100 A | Undivided cell, Pt or BDD anode, graphite bar cathode) | Complete degradation/mineralization |
| Souiad et al. (2020) [79] | Methiocarb | NaCl, Fe2+ (0.18 mM), pH 3, 5 mA cm −2 | Undivided cell, Pt anode, carbon felt cathode | Complete degradation, 11.4% mineralization |
| Çelebi et al. (2015) [80] | Carbaryl | Na2SO4, Fe2+ (0.1 mM), pH 3, 300 mA | Undivided cell, Pt or BDD anode, carbon felt cathode) | Complete degradation, TOC > 90% |
| Oturan et al. (2010) [73] | Metomyl | Na2SO4, Fe2+ (0.1 mM), pH 3, 100 mA | Undivided cell, Pt anode, carbon felt cathode | Near complete degradation |
| Carboneras et al. (2019) [85] | Clopyralid | Soil washing effluent/synthetic groundwater, pH 3, 200 mA | Undivided cell, Pt anode, carbon felt cathode | Degradation: 80% Mineralization: 30% |
| Popescu et al. (2018) [71] | Pyrimethanil | Na2SO4, Fe2+ (0.1 mM), pH 3, 0.05–0.3 A | Batch and continuous treatment, BDD anode, different carbon cathode | Complete degradation, 25–40% mineralization |
| Electrochemical Techniques | Electrode | Advantages | Limitation |
|---|---|---|---|
| EO | BDD, Ti/Pt, PbO2, SnO2, carbon, SS, Ti/IrO2 |
|
|
| EF | Pt or BDD anode; graphite, carbon felt, GDE cathode |
|
|
| EC | Al, Fe, Cu (sacrificial) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brdarić, T.P.; Ječmenica Dučić, M.J.; Aćimović, D.D. Electrochemical Techniques for the Elimination of Pesticides from Wastewater: Challenges and Emerging Directions. Processes 2025, 13, 3893. https://doi.org/10.3390/pr13123893
Brdarić TP, Ječmenica Dučić MJ, Aćimović DD. Electrochemical Techniques for the Elimination of Pesticides from Wastewater: Challenges and Emerging Directions. Processes. 2025; 13(12):3893. https://doi.org/10.3390/pr13123893
Chicago/Turabian StyleBrdarić, Tanja P., Marija J. Ječmenica Dučić, and Danka D. Aćimović. 2025. "Electrochemical Techniques for the Elimination of Pesticides from Wastewater: Challenges and Emerging Directions" Processes 13, no. 12: 3893. https://doi.org/10.3390/pr13123893
APA StyleBrdarić, T. P., Ječmenica Dučić, M. J., & Aćimović, D. D. (2025). Electrochemical Techniques for the Elimination of Pesticides from Wastewater: Challenges and Emerging Directions. Processes, 13(12), 3893. https://doi.org/10.3390/pr13123893

