Effects of Manganese Sand Proportion on Nitrogen and Phosphorus Removal Performance and Microbial Community in Constructed Wetlands
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Setup
2.2. Water Quality Indicator Measurement and Analysis
2.3. Microbial Sample Collection and Detection
2.4. Data Statistics and Analysis
3. Results
3.1. Comparison of Plant Growth Adaptation
3.2. Long-Term Nitrogen and Phosphorus Removal Performance
3.3. Substrate Surface Morphology
3.4. Microbial Community
3.4.1. Microbial Diversity Analysis
3.4.2. Microbial Community Composition
3.4.3. OTU Distribution
3.4.4. Functional Microbial Communities
4. Discussion
4.1. Mechanisms of Nutrient Removal
4.2. Substrate Morphology and System Performance
4.3. Regulation of Microbial Community Structure
4.4. Linking Functional Microorganisms to Enhanced Nutrient Removal
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CWs | constructed wetlands |
| NH4+-N | ammonium nitrogen |
| TN | total nitrogen |
| TP | total phosphorus |
| WWTPs | wastewater treatment plants |
| MnOx | manganese oxide |
| VFCWs | vertical flow constructed wetlands |
| PVC | polyvinyl chloride |
| HRT | hydraulic retention time |
| PES | polyethersulfone |
| PCoA | Principal coordinate analysis |
| SEM | Scanning electron microscopy |
References
- Bischel, H.N.; Lawrence, J.E.; Halaburka, B.J.; Plumlee, M.H.; Bawazir, A.S.; King, J.P.; McCray, J.E.; Resh, V.H.; Luthy, R.G. Renewing Urban Streams with Recycled Water for Streamflow Augmentation: Hydrologic, Water Quality, and Ecosystem Services Management. Environ. Eng. Sci. 2013, 30, 455–479. [Google Scholar] [CrossRef]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems: A global problem. J. Environ. Sci. Pollut. Res. Int. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Fengle, Y.; Xianzhi, Z.; Jinhua, L.; Hongfeng, Z.; Fangming, J.; Zhou, B. Analysis and evaluation of the treatment and reuse of tailwater: A case study in Erhai Lake. J. Clean. Prod. 2021, 327, 129435. [Google Scholar] [CrossRef]
- Bayoumi, A.I.; Radawy, M.M.; Mahmoud, R.M.; Gabr, S.M. Effect of Salinity Stress on Growth and Metabolomic Profiling of Cucumis sativus and Solanum lycopersicum. J. Plants 2020, 9, 1626. [Google Scholar] [CrossRef]
- Jan, V. Constructed wetlands for wastewater treatment: Five decades of experience. J. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.; Guo, Z.; Hu, Z.; Wu, H. Recycling various wastes as substrates in constructed wetlands: A review on enhancing contaminants removal and potential risks. Sci. Total Environ. 2024, 957, 177749. [Google Scholar] [CrossRef]
- Shutes, R.B.E. Artificial wetlands and water quality improvement. Environ. Int. 2001, 26, 441–447. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. J. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Wu, Y.; Han, R.; Yang, X.; Zhang, Y.; Zhang, R. Long-term performance of an integrated constructed wetland for advanced treatment of mixed wastewater. Ecol. Eng. 2017, 99, 91–98. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, S.; Tian, W.; Zhang, D.; Chu, M.; Cao, H.; Chen, Z.; Zhang, R. Efficacy and power production performance of constructed wetlands coupled with microbial fuel cells for the advanced treatment of saline tailwater from wastewater treatment plants. J. Water Process. Eng. 2024, 60, 105228. [Google Scholar] [CrossRef]
- Shelef, O.; Gross, A.; Rachmilevitch, S. Role of Plants in a Constructed Wetland: Current and New Perspectives. Water 2013, 5, 405–419. [Google Scholar] [CrossRef]
- Zhu, D.; Sun, C.; Zhang, H.; Wu, Z.; Jia, B.; Zhang, Y. Roles of vegetation, flow type and filled depth on livestock wastewater treatment through multi-level mineralized refuse-based constructed wetlands. Ecol. Eng. 2012, 39, 7–15. [Google Scholar] [CrossRef]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Mainali, B.; Angove, M.J. Manganese oxides and their application to metal ion and contaminant removal from wastewater. J. Water Process. Eng. 2018, 26, 264–280. [Google Scholar] [CrossRef]
- Xu, G.M.; Li, Y.; Hou, W.H.; Wang, S.; Kong, F.L. Effects of substrate type on enhancing pollutant removal performance and reducing greenhouse gas emission in vertical subsurface flow constructed wetland. J. Environ. Manag. 2021, 280, 8. [Google Scholar] [CrossRef]
- Hu, P.Y.; Hsieh, Y.H.; Chen, J.C.; Chang, C.Y. Characteristics of manganese-coated sand using SEM and EDAX analysis. J. Colloid. Interface Sci. 2004, 272, 308–313. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Zhang, N.; Xie, H.; Zhang, J.; Hu, Z.; Wang, Q. Influence of application of manganese ore in constructed wetlands on the mechanisms and improvement of nitrogen and phosphorus removal. Ecotox. Environ. Safe. 2019, 170, 446–452. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, J.P.; Bagas, L.; Li, S.; Wei, H.T.; Chen, B.H. Southern China’s manganese resource assessment: An overview of resource status, mineral system, and prediction model. Ore Geol. Rev. 2020, 116, 13. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Husted, S. The Biochemical Properties of Manganese in Plants. Plants 2019, 8, 381. [Google Scholar] [CrossRef]
- Alejandro, S.; Holler, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhu, C.Y.; Weng, B.S.; Mo, P.W.; Xu, Z.J.; Tian, P.; Cui, B.S.; Bai, J.H. Regulation of heavy metals accumulated by Acorns calamus L. in constructed wetland through different nitrogen forms. Chemosphere 2021, 281, 10. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Jain, A.; Rai, V.; Ramanathan, A.L. Chemical fractionation and translocation of heavy metals in Canna indica L. grown on industrial waste amended soil. J. Hazard. Mater. 2008, 160, 187–193. [Google Scholar] [CrossRef]
- Ozurumba, Z.N.; Tanee, F.B.G.; Agbagwa, I.O. Phytoextraction potential of Canna indica (L.) for Cd removal from a hydroponic system. Chem. Ecol. 2024, 40, 466–485. [Google Scholar] [CrossRef]
- GB 18918-2002; Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. Ministry of Ecology and Environment: Beijing, China, 2002.
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. J. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. J. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.-A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. J. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Ding, S.; Jiao, L.; Wang, M.; Zhang, Y.; Qian, C. Simultaneous immobilization of ammonia and phosphorous by thermally treated sediment co-modified with hydrophilic organic matter and zeolite. J. Environ. Manage. 2023, 339, 117800. [Google Scholar] [CrossRef]
- Li, X.; Zhou, L.; Zhuang, L.-L.; Zhang, J.; Li, M.; Yang, Y. High-efficient nitrogen and phosphorus removal and its mechanism in a partially unsaturated constructed wetland with Fe-C micro-electrolysis substrate. Chem. Eng. J. 2022, 431, 133252. [Google Scholar] [CrossRef]
- Qian, X.; Huang, J.; Xv, J.; Yao, J. Macrophytes stimulate microbial interaction and carbon, nitrogen, sulfur, and iron cycling in iron-carbon micro-electrolysis constructed wetlands. Environ. Res. 2025, 286, 122982. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Y.; Bai, Y.; Su, J.; Zhang, H.; Cao, M.; Cheng, W. Manganese oxidation-reduction coupling denitrification performance of strain Pseudomonas sp. XFQ: Dual-function comparison and potential mechanisms. J. Hazard. Mater. 2025, 495, 138839. [Google Scholar] [CrossRef]
- Shu, J.; Wu, H.; Chen, M.; Peng, H.; Li, B.; Liu, R.; Liu, Z.; Wang, B.; Huang, T.; Hu, Z. Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation. Water Res. 2019, 153, 229–238. [Google Scholar] [CrossRef]
- Luo, B.; Yang, K.; Lyu, X.; Deng, X.; Yun, W.; Li, S.; Ye, X.; Sun, R. Fulvic acid increases rice resistance to phosphorus deficiency by increasing plant P uptake and rhizosphere P mobilization. Crop J. 2025, 13, 1619–1630. [Google Scholar] [CrossRef]
- Haukelidsaeter, S.; Boersma, A.S.; Kirwan, L.; Corbetta, A.; Gorres, I.D.; Lenstra, W.K.; Schoonenberg, F.K.; Borger, K.; Vos, L.; van der Wielen, P.W.; et al. Influence of filter age on Fe, Mn and NH4+ removal in dual media rapid sand filters used for drinking water production. J. Water Res. 2023, 242, 120184. [Google Scholar] [CrossRef] [PubMed]
- Liang-Tong, Z.; Li, Z.; Yuqing, Y.; Na, H.; Bate, B. Investigation of aqueous Fe(III) and Mn(II) removal using dolomite as a permeable reactive barrier material. Environ. Technol. 2023, 44, 2039–2053. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; He, W.; Xiang, F.; Zhu, J.; Li, J. Effects of Different Land-Use Types on Soil Properties and Microbial Communities in a Southeastern Tibetan Valley. Agronomy 2025, 15, 2317. [Google Scholar] [CrossRef]
- Ye, T.; Liu, H.; Qi, W.; Qu, J. Removal of pharmaceutical in a biogenic/chemical manganese oxide system driven by manganese-oxidizing bacteria with humic acids as sole carbon source. J. Environ. Sci. 2023, 126, 734–741. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Zhang, D.; Liu, J.; Fang, W.; Li, Y.; Cao, A.; Wang, Q.; Yan, D. Fumigation alters the manganese-oxidizing microbial communities to enhance soil manganese availability and increase tomato yield. Sci. Total Environ. 2024, 919, 170882. [Google Scholar] [CrossRef]
- Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. J. Hydrobiol. 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. J. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Mehrani, M.-J.; Sobotka, D.; Kowal, P.; Ciesielski, S.; Makinia, J. The occurrence and role of Nitrospira in nitrogen removal systems. Bioresour. Technol. 2020, 303, 122936. [Google Scholar] [CrossRef]
- Ji, B.; Yang, K.; Zhu, L.; Jiang, Y.; Wang, H.; Zhou, J.; Zhang, H. Aerobic denitrification: A review of important advances of the last 30 years. J. Biotechnol. Bioprocess. Eng. 2015, 20, 643–651. [Google Scholar] [CrossRef]
- Neupane, A.; Herndon, E.M.; DeBruyn, J.M.; Chhetri, A.; Jagadamma, S. Manganese concentration influences nitrogen cycling in agricultural soil. Appl. Soil. Ecol. 2025, 215, 106460. [Google Scholar] [CrossRef]
- Su, J.F.; Wang, Z.; Huang, T.L.; Zhang, H.; Zhang, H. Simultaneous removal of nitrate, phosphorous and cadmium using a novel multifunctional biomaterial immobilized aerobic strain Proteobacteria Cupriavidus H29. J. Bioresour. Technol. 2020, 307, 123196. [Google Scholar] [CrossRef]
- Zhong, L.; Yang, S.-S.; Sun, H.-J.; Cui, C.-H.; Wu, T.; Pang, J.-W.; Zhang, L.-Y.; Ren, N.-Q.; Ding, J. New insights into substrates shaped nutrients removal, species interactions and community assembly mechanisms in tidal flow constructed wetlands treating low carbon-to-nitrogen rural wastewater. Water Res. 2024, 256, 121600. [Google Scholar] [CrossRef] [PubMed]






| Unit | Plant Species | Manganese Sand:Zeolite:Ceramsite (Mass Ratio) | Manganese Sand Content (%) |
|---|---|---|---|
| BC | / | 1:3:1 | 20 |
| PA | A. calamus L. and C. indica L. | 3:1:1 | 60 |
| PB | 1:3:1 | 20 | |
| PC | 0:3:1 | 0 |
| Unit | Diversity Index | Richness Index | Coverage | |||
|---|---|---|---|---|---|---|
| Shannon-2 | Simpson | Pileous | Ace | Chao1 | ||
| BC | 8.340 | 0.011 | 0.793 | 1472 | 1472 | 0.98 |
| PA | 8.920 | 0.008 | 0.816 | 1961 | 1961 | 0.98 |
| PB | 9.240 | 0.005 | 0.840 | 2068 | 2068 | 0.98 |
| PC | 8.920 | 0.006 | 0.824 | 1818 | 1818 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhou, K.; Huang, L. Effects of Manganese Sand Proportion on Nitrogen and Phosphorus Removal Performance and Microbial Community in Constructed Wetlands. Processes 2025, 13, 3804. https://doi.org/10.3390/pr13123804
Peng Y, Zhou K, Huang L. Effects of Manganese Sand Proportion on Nitrogen and Phosphorus Removal Performance and Microbial Community in Constructed Wetlands. Processes. 2025; 13(12):3804. https://doi.org/10.3390/pr13123804
Chicago/Turabian StylePeng, Yue, Ke Zhou, and Lei Huang. 2025. "Effects of Manganese Sand Proportion on Nitrogen and Phosphorus Removal Performance and Microbial Community in Constructed Wetlands" Processes 13, no. 12: 3804. https://doi.org/10.3390/pr13123804
APA StylePeng, Y., Zhou, K., & Huang, L. (2025). Effects of Manganese Sand Proportion on Nitrogen and Phosphorus Removal Performance and Microbial Community in Constructed Wetlands. Processes, 13(12), 3804. https://doi.org/10.3390/pr13123804

