Multi-Area Economic Dispatch Under Renewable Integration: Optimization Challenges and Research Perspectives
Abstract
1. Introduction
- System-level perspective: Unlike many earlier surveys that focus almost exclusively on optimization methods, this review looks at the MAED problem as a whole. We discuss how objectives are formulated, how operational limits are represented, and how areas are coordinated through tie-lines. Framing the problem in this broader way makes it easier to understand the systemic challenges and the interactions between different regions.
- Integration of DERs and ESSs: Particular attention is given to distributed energy resources and storage units, as their variable and uncertain behavior directly influences dispatch outcomes. Intermittency, bidirectional flows, and time-coupled effects are all considered. By emphasizing these aspects, the study highlights a modeling dimension that is still underrepresented in the literature but increasingly important in practice.
- Methodological comparison: A range of solution approaches is compared, from classical deterministic formulations to metaheuristics and recent AI-based techniques. Their performance is discussed in multi-objective and uncertainty-aware contexts, pointing out where each approach performs well, where it falls short, and the types of problems for which it is most suitable.
- Gap identification and roadmap: Beyond summarizing past work, the paper identifies several key gaps: limited use of uncertainty modeling, weak incorporation of demand response, and the absence of unified strategies for multi-area systems. Building on these gaps, a research roadmap is proposed to guide future efforts. The goal is to move toward dispatch models that are not only efficient, but also more robust and adaptable to the realities of interconnected power grids.
2. Single-Area Economic Dispatch (SAED)
2.1. Objective Functions and Optimization Constraints
- Generation cost objective function
- Emission
- Power balance
- Power generation capacity
- Rampe-rate
- Tie-line capacity
2.2. Solution Approaches for SAED
- Classical methods
- Population-based evolutionary methods
2.3. Impact of Distributed Generation and Storage Integration
- Novel optimization approaches: Sakthivel et al. [85] designed a dispatch algorithm based on herd immunity principles for coordinating hydro storage, later extending it to EV integration [86]. Mishra and Shaik [87] applied a biologically inspired metaheuristic for hybrid diesel–solar–wind systems. Nagarajan et al. [88] introduced a cheetah-inspired algorithm incorporating demand-side flexibility, and Soni and Bhattacharjee [89] advanced an oppositional-based control method for joint scheduling of EVs and renewables, achieving faster convergence and higher accuracy.
2.4. Key Challenges
3. Advances in Multi-Area Economic Dispatch (MAED)
3.1. Multi-Objective Functions and Optimization Constraints in MADED
- Cost function incorporating valve-point effects and multiple fuel options
- Emission objective function
- Restricted operating zones
- Load demand balance
- Active power transmission losses
- Capacity of tie-lines
- Generator ramp rate limits
3.2. Solution Strategies for MAED Problems
3.3. Impact of Spinning Reserve on Multi-Area Economic Dispatch
| Category Type | Features | Ref. |
|---|---|---|
| Single-objective deterministic | Cost-only, no uncertainty, static models | [30,36,57,93,135] |
| Multi-objective deterministic | Cost & Emission, no uncertainty | [38,91,100,115,117] |
| Multi-objective stochastic | Cost & Emission + uncertainty in RES/load | [116,121,123,124,125,132] |
| DER-integrated models | Include RES/ESS in formulation | [23,79,113,116,117] |
| DR-integrated models | Consumer-side flexibility modeled | [118,119,123] |
| EV-aware dispatch models | Electric vehicles as storage/loads | [82,86,89,116,130] |
| MADED with dynamic constraints | Ramping, intertemporal, spinning reserve | [22,88,131,132,134] |
3.4. Incorporation of Demand Response and Uncertainty Modeling in MAED Frameworks
3.5. Research Gaps
4. Performance Evaluation on Different Test Systems
4.1. 6-Unit Test System
4.2. 10-Unit Test System
4.3. 40-Unit Test System
5. Future Research and Conclusions
5.1. Future Directions
5.2. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neto, J.X.V.; Reynoso-Meza, G.; Ruppel, T.H.; Mariani, V.C.; Coelho, L.D. Solving non-smooth economic dispatch by a new combination of continuous GRASP algorithm and differential evolution. Int. J. Electr. Power Energy Syst. 2017, 84, 13–24. [Google Scholar] [CrossRef]
- Naderi, E.; Narimani, H.; Fathi, M.; Narimani, M.R. A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch. Appl. Soft Comput. 2017, 53, 441–456. [Google Scholar] [CrossRef]
- Pourakbari-Kasmaei, M.; Rider, M.J.; Montovani, J.R.S. An unambiguous distance-based model to solve economic dispatch problems with disjoint operating zones. IEEE Trans. Power Syst. 2016, 31, 825–826. [Google Scholar] [CrossRef]
- Pourakbari-Kasmaei, M.; Rider, M.J.; Montovani, J.R.S. An unequivocal normalization-based paradigm to solve dynamic economic and emission active-reactive OPF (optimal power flow). Energy 2014, 73, 554–566. [Google Scholar] [CrossRef]
- Narimani, M.R.; Joo, J.Y.; Crow, M.L. Dynamic economic dispatch with demand side management of individual residential loads. In Proceedings of the North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015; pp. 1–6. [Google Scholar]
- Shaban, A.E.; Ismaeel, A.A.K.; Farhan, A.; Said, M.; El-Rifaie, A.M. Growth Optimizer Algorithm for Economic Load Dispatch Problem: Analysis and Evaluation. Processes 2024, 12, 2593. [Google Scholar] [CrossRef]
- Javadi, M.; Amraee, T.; Capitanescu, F. Look ahead dynamic security-constrained economic dispatch considering frequency stability and smart loads. Int. J. Electr. Power Energy Syst. 2019, 108, 240–251. [Google Scholar] [CrossRef]
- Lotfi, H. A multiobjective evolutionary approach for solving the multi-area dynamic economic emission dispatch problem considering reliability concerns. Sustainability 2022, 15, 442. [Google Scholar] [CrossRef]
- Azghandi, M.N.; Shojaei, A.A.; Lotfi, H. Hybrid PSO-SFLA with fuzzy optimization for multi-area dynamic economic load dispatch and demand response. Energy 360 2025, 3, 100021. [Google Scholar] [CrossRef]
- Azizivahed, A.; Arefi, A.; Naderi, E.; Narimani, H.; Fathi, M.; Narimani, M.R. An efficient hybrid approach to solve bi-objective multi-area dynamic economic emission dispatch problem. Electr. Power Compon. Syst. 2020, 48, 485–500. [Google Scholar] [CrossRef]
- Jadoun, V.K.; Gupta, N.; Niazi, K.R.; Swarnkar, A. Multi-area economic dispatch with reserve sharing using dynamically controlled particle swarm optimization. Int. J. Electr. Power Energy Syst. 2015, 73, 743–756. [Google Scholar] [CrossRef]
- Lasemi, M.A.; Assili, M.; Baghayipour, M. Modification of multi-area economic dispatch with multiple fuel options, considering the fuelling limitations. IET Gener. Transm. Distrib. 2014, 8, 1098–1106. [Google Scholar] [CrossRef]
- Ghanbari, H.; Lotfi, H. A Hybrid WOA–GWO Approach for Multi-Objective Optimization of Cost and Water Consumption in Multi-Area Dynamic Economic Dispatch with Renewable Energy and Energy Storage Integration. IET Gener. Transm. Distrib. 2025, 19, e70178. [Google Scholar] [CrossRef]
- Zhu, J.Z. Multiarea power systems economic power dispatch using a nonlinear optimization neural network approach. Electr. Power Compon. Syst. 2003, 31, 553–563. [Google Scholar] [CrossRef]
- Jadoun, V.K.; Gupta, N.; Niazi, K.R.; Swarnkar, A.; Bansal, R.C. Multi-area economic dispatch using improved particle swarm optimization. Energy Procedia 2015, 75, 1087–1092. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Z.-J. Multi-area economic dispatch using an improved stochastic fractal search algorithm. Energy 2019, 166, 47–58. [Google Scholar] [CrossRef]
- Sharma, D.K.; Dubey, H.M.; Pandit, M. Single and multi-area optimal dispatch by modified salp swarm algorithm. Int. J. Intell. Syst. Appl. 2020, 12, 18–26. [Google Scholar] [CrossRef]
- Sakthivel, V.P.; Sathya, P.D. Multi-area economic environmental dispatch using multi-objective squirrel search algorithm. Evol. Syst. 2022, 13, 183–199. [Google Scholar] [CrossRef]
- Li, P.; Wang, L.; Zhang, P.; Yan, P.; Li, C.; Nan, Z.; Wang, J. Strategic Demand Response for Economic Dispatch in Wind-Integrated Multi-Area Energy Systems. Energies 2025, 18, 2188. [Google Scholar] [CrossRef]
- Ghazal, H.M.; Khan, U.A.; Alismail, F. Multi-Area Wind Power Planning with Storage Systems for Capacity Credit Maximization Using Fuzzy-Based Optimization Strategy. Energies 2025, 18, 5628. [Google Scholar] [CrossRef]
- Ye, L.; Jin, Y.; Wang, K.; Chen, W.; Wang, F.; Dai, B. A multi-area intra-day dispatch strategy for power systems under high share of renewable energy with power support capacity assessment. Appl. Energy 2023, 351, 121866. [Google Scholar] [CrossRef]
- Basu, M. Multi-area dynamic economic emission dispatch of hydro-wind-thermal power system. Renew. Energy Focus 2019, 28, 11–35. [Google Scholar] [CrossRef]
- Shahri, H.Y.; Hosseini, S.A.; Pourhossein, J. Multi-objective evolutionary method for multi-area dynamic emission/economic dispatch considering energy storage and renewable energy units. Heliyon 2024, 10, e37476. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, H.; Nikkhah, M.H. Multi-objective profit-based unit commitment with renewable energy and energy storage units using a modified optimization method. Sustainability 2024, 16, 1708. [Google Scholar] [CrossRef]
- Zein, H.; Raharjo, J.; Mardiyanto, I.R. A method for completing economic load dispatch using the technique of narrowing down area. IEEE Access 2022, 10, 30822–30831. [Google Scholar] [CrossRef]
- Said, M.; Houssein, E.H.; Deb, S.; Ghoniem, R.M.; Elsayed, A.G. Economic load dispatch problem based on search and rescue optimization algorithm. IEEE Access 2022, 10, 47109–47123. [Google Scholar] [CrossRef]
- Gholami, K.; Abbasi, M.; Azizivahed, A.; Li, L. An efficient bi-objective approach for dynamic economic emission dispatch of renewable-integrated microgrids. J. Ambient Intell. Humaniz. Comput. 2023, 14, 10695–10714. [Google Scholar] [CrossRef]
- Lotfi, H. Presenting a novel hybrid method for dynamic economic/emission dispatch considering renewable energy units and energy storage systems. Evol. Intell. 2025, 18, 63. [Google Scholar] [CrossRef]
- Lotfi, H.; Dadpour, A.; Samadi, M. Solving economic dispatch in competitive power market using improved particle swarm optimization algorithm. In Proceedings of the 2017 Conference on Electrical Power Distribution Networks Conference (EPDC), Semnan, Iran, 19–20 April 2017. IEEE. [Google Scholar]
- Chen, S.-D.; Chen, J.-F. A direct Newton–Raphson economic emission dispatch. Int. J. Electr. Power Energy Syst. 2003, 25, 411–417. [Google Scholar] [CrossRef]
- Singhal, P.K.; Naresh, R.; Sharma, V.; Kumar, G. Enhanced lambda iteration algorithm for the solution of large-scale economic dispatch problem. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014; pp. 1–6. [Google Scholar]
- Shalini, S.; Lakshmi, K. Solution to Economic Emission Dispatch problem using Lagrangian relaxation method. In Proceedings of the International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, 6–8 March 2014; pp. 1–6. [Google Scholar]
- Ding, T.; Bo, R.; Li, F.; Sun, H. A bi-level branch and bound method for economic dispatch with disjoint prohibited zones considering network losses. IEEE Trans. Power Syst. 2014, 30, 2841–2855. [Google Scholar] [CrossRef]
- Jabr, R.A. Adjustable robust OPF with renewable energy sources. IEEE Trans. Power Syst. 2013, 28, 4742–4751. [Google Scholar] [CrossRef]
- Dodu, J.; Martin, P.; Merlin, A.; Pouget, J. An optimal formulation and solution of short-range operating problems for a power system with flow constraints. Proc. IEEE 1972, 60, 54–63. [Google Scholar] [CrossRef]
- Fan, J.-Y.; Zhang, L. Real-time economic dispatch with line flow and emission constraints using quadratic programming. IEEE Trans. Power Syst. 1998, 13, 320–325. [Google Scholar] [CrossRef]
- Kim, K.-S.; Jung, L.-H.; Lee, S.-C.; Moon, U.-C. Security constrained economic dispatch using interior point method. In Proceedings of the International Conference on Power System Technology, Chongqing, China, 22–26 October 2006; pp. 1–6. [Google Scholar]
- Labbi, Y.; Attous, D.B. A Hybrid Big Bang–Big Crunch optimization algorithm for solving the different economic load dispatch problems. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 275–286. [Google Scholar] [CrossRef]
- Affijulla, S.; Chauhan, S. A new intelligence solution for power system economic load dispatch. In Proceedings of the 10th International Conference on Environment and Electrical Engineering, Rome, Italy, 8–11 May 2011; pp. 1–5. [Google Scholar]
- Dhiman, G. MOSHEPO: A hybrid multi-objective approach to solve economic load dispatch and micro grid problems. Appl. Intell. 2019, 50, 119–137. [Google Scholar] [CrossRef]
- Hosseinnezhad, V.; Rafiee, M.; Ahmadian, M.; Ameli, M.T. Species-based quantum particle swarm optimization for economic load dispatch. Int. J. Electr. Power Energy Syst. 2014, 63, 311–322. [Google Scholar] [CrossRef]
- Park, J.B.; Lee, K.S.; Shin, J.R.; Lee, K.Y. A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Trans. Power Syst. 2005, 20, 34–42. [Google Scholar] [CrossRef]
- Saxena, N.; Ganguli, S. Solar and wind power estimation and economic load dispatch using firefly algorithm. Procedia Comput. Sci. 2015, 70, 688–700. [Google Scholar] [CrossRef]
- Yang, X.S.; Hosseini, S.S.S.; Gandomi, A.H. Firefly algorithm for solving nonconvex economic dispatch problems with valve loading effect. Appl. Soft Comput. 2012, 12, 1180–1186. [Google Scholar] [CrossRef]
- Chiang, C.L. Genetic-based algorithm for power economic load dispatch. IET Gener. Transm. Distrib. 2007, 1, 261–269. [Google Scholar] [CrossRef]
- Walters, D.C.; Sheble, G.B. Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans. Power Syst. 1993, 8, 1325–1332. [Google Scholar] [CrossRef]
- Nanda, J.; Narayanan, R.B. Application of genetic algorithm to economic load dispatch with Lineflow constraints. Int. J. Electr. Power Energy Syst. 2002, 24, 723–729. [Google Scholar] [CrossRef]
- Basu, M.; Chowdhury, A. Cuckoo search algorithm for economic dispatch. Energy 2013, 60, 99–108. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Vo, D.N. The application of one rank cuckoo search algorithm for solving economic load dispatch problems. Appl. Soft Comput. 2015, 37, 763–773. [Google Scholar] [CrossRef]
- Vo, D.N.; Schegner, P.; Ongsakul, W. Cuckoo search algorithm for non-convex economic dispatch. IET Gener. Transm. Distrib. 2013, 7, 645–654. [Google Scholar] [CrossRef]
- Niknam, T.; Mojarrad, H.D.; Meymand, H.Z.; Firouzi, B.B. A new honey bee mating optimization algorithm for non-smooth economic dispatch. Energy 2011, 36, 896–908. [Google Scholar] [CrossRef]
- Panigrahi, B.; Pandi, V.R.; Das, S.; Das, S. Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem. Energy 2010, 35, 4761–4770. [Google Scholar] [CrossRef]
- Sivasubramani, S.; Swarup, K. Environmental/economic dispatch using multiobjective harmony search algorithm. Electr. Power Syst. Res. 2011, 81, 1778–1785. [Google Scholar] [CrossRef]
- Arul, R.; Ravi, G.; Velusami, S. Non-convex economic dispatch with heuristic load patterns, valve point loading effect, prohibited operating zones, ramp-rate limits and spinning reserve constraints using harmony search algorithm. Electr. Eng. 2013, 95, 53–61. [Google Scholar] [CrossRef]
- Noman, N.; Iba, H. Differential evolution for economic load dispatch problems. Electr. Power Syst. Res. 2008, 78, 1322–1331. [Google Scholar] [CrossRef]
- Hemamalini, S.; Simon, S.P. Artificial bee colony algorithm for economic load dispatch problem with non-smooth cost functions. Electr. Power Compon. Syst. 2010, 38, 786–803. [Google Scholar] [CrossRef]
- Basu, M. Artificial bee colony optimization for multi-area economic dispatch. Int. J. Electr. Power Energy Syst. 2013, 49, 181–187. [Google Scholar] [CrossRef]
- Aydin, D.; Özyön, S.; Yaşar, C.; Liao, T. Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem. Int. J. Electr. Power Energy Syst. 2014, 54, 144–153. [Google Scholar] [CrossRef]
- Kamboj, V.K.; Bhadoria, A.; Bath, S. Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer. Neural Comput. Appl. 2017, 28, 2181–2192. [Google Scholar] [CrossRef]
- Jayabarathi, T.; Raghunathan, T.; Adarsh, B.; Suganthan, P.N. Economic dispatch using hybrid grey wolf optimizer. Energy 2016, 111, 630–641. [Google Scholar] [CrossRef]
- Pradhan, M.; Roy, P.K.; Pal, T. Grey wolf optimization applied to economic load dispatch problems. Int. J. Electr. Power Energy Syst. 2016, 83, 325–334. [Google Scholar] [CrossRef]
- Adarsh, B.; Raghunathan, T.; Jayabarathi, T.; Yang, X.S. Economic dispatch using chaotic bat algorithm. Energy 2016, 96, 666–675. [Google Scholar] [CrossRef]
- Kumar, A.; Bhalla, V.; Kumar, P.; Bhardwaj, T.; Jangir, N. Whale optimization algorithm for constrained economic load dispatch problems-a cost optimization. In Ambient Communications and Computer Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 353–366. [Google Scholar]
- Abdelaziz; Ali, E.; Abd Elazim, S. Combined economic and emission dispatch solution using flower pollination algorithm. Int. J. Electr. Power Energy Syst. 2016, 80, 264–274. [Google Scholar] [CrossRef]
- Trivedi, I.; Kumar, A.; Ranpariya, A.H.; Jangir, P. Economic Load Dispatch problem with ramp rate limits and prohibited operating zones solve using Levy flight Moth-Flame optimizer. In Proceedings of the International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil, India, 7–8 April 2016; pp. 442–447. [Google Scholar]
- Barisal, A.K.; Prusty, R. Large scale economic dispatch of power systems using oppositional invasive weed optimization. Appl. Soft Comput. 2015, 29, 122–137. [Google Scholar] [CrossRef]
- Elattar, E.E. Environmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithm. Energy 2019, 171, 256–269. [Google Scholar] [CrossRef]
- Sakthivel, V.; Suman, M.; Sathya, P. Large-scale economic load dispatch using squirrel search algorithm. Int. J. Energy Sect. Manag. 2020, 14, 1351–1380. [Google Scholar] [CrossRef]
- Abou El Ela, A.; El-Sehiemy, R.A.; Shaheen, A.; Shalaby, A. Application of the crow search algorithm for economic environmental dispatch. In Proceedings of the Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017; pp. 78–83. [Google Scholar]
- Vlachogiannis, J.G.; Lee, K.Y. Economic load dispatch—A comparative study on heuristic optimization techniques with an improved coordinated aggregationbased PSO. IEEE Trans. Power Syst. 2009, 24, 991–1001. [Google Scholar] [CrossRef]
- Zou, D.; Li, S.; Kong, X.; Ouyang, H.; Li, Z. Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy. Appl. Energy 2019, 237, 646–670. [Google Scholar] [CrossRef]
- Shang, Y.; Fan, Q.; Shang, L.; Sun, Z.; Xiao, G. Modified genetic algorithm with simulated annealing applied to optimal load dispatch of the Three Gorges Hydropower Plant in China. Hydrol. Sci. J. 2019, 64, 1129–1139. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, S.; Zhou, M.; Guo, X.; Qi, L. Modified cuckoo search algorithm to solve economic power dispatch optimization problems. IEEE/CAA J. Autom. Sin. 2018, 5, 794–806. [Google Scholar] [CrossRef]
- Sharifi, S.; Sedaghat, M.; Farhadi, P.; Ghadimi, N.; Taheri, B. Environmental economic dispatch using improved artificial bee colony algorithm. Evol. Syst. 2017, 8, 233–242. [Google Scholar] [CrossRef]
- Dashtdar, M.; Flah, A.; Hosseinimoghadam, S.M.S.; Reddy, C.R.; Kotb, H.; AboRas, K.M.; Jasińska, E.; Jasiński, M. Solving the environmental/economic dispatch problem using the hybrid FA-GA multi-objective algorithm. Energy Rep. 2022, 8, 13766–13779. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, B.; Liu, H.; Zhang, Y.; Zhao, J.; Manla, E. Chaos firefly algorithm with self-adaptation mutation mechanism for solving large-scale economic dispatch with valve-point effects and multiple fuel options. IEEE Access 2018, 6, 5907–45922. [Google Scholar] [CrossRef]
- Niknam, T.; Narimani, M.R.; Jabbari, M.; Malekpour, A.R. A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy 2011, 36, 6420–6432. [Google Scholar] [CrossRef]
- Zou, D.; Li, S.; Wang, G.G.; Li, Z.; Ouyang, H. An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects. Appl. Energy 2016, 181, 375–390. [Google Scholar] [CrossRef]
- Nazari-Heris, M.; Babaei, A.F.; Mohammadi-Ivatloo, B.; Asadi, S. Improved harmony search algorithm for the solution of non-linear non-convex short-term hydrothermal scheduling. Energy 2018, 151, 226–237. [Google Scholar] [CrossRef]
- Paul, C.; Roy, P.K.; Mukherjee, V. Chaotic whale optimization algorithm for optimal solution of combined heat and power economic dispatch problem incorporating wind, Renew. Energy Focus 2020, 35, 56–71. [Google Scholar] [CrossRef]
- Nikkhah, M.H.; Lotfi, H.; Samadi, M.; Hajiabadi, M.E. Optimal effect of energy resources and distributed generations on network flow using an analytical method and structural decomposition. Electr. Eng. 2023, 105, 2845–2860. [Google Scholar] [CrossRef]
- Soni, J.; Bhattacharjee, K. Multi-objective dynamic economic emission dispatch integration with renewable energy sources and plug-in electrical vehicle using equilibrium optimizer. Environ. Dev. Sustain. 2024, 26, 8555–8586. [Google Scholar] [CrossRef]
- Kumar, N.; Dahiya, S.; Singh Parmar, K.P. Multi-objective economic emission dispatch optimization strategy considering battery energy storage system in islanded microgrid. J. Oper. Autom. Power Eng. 2024, 12, 296–311. [Google Scholar]
- Soni, J.; Bhattacharjee, K. A multi-objective economic emission dispatch problem in microgrid with high penetration of renewable energy sources using equilibrium optimizer. Electr. Eng. 2025, 107, 403–418. [Google Scholar] [CrossRef]
- Sakthivel, V.P.; Kumar, S.N.; Sathya, P.D. Multi-objective dynamic economic and emission generation scheduling of coordinated power system considering renewable energy sources and pumped storage hydro plants via fuzzy surrogate-assisted coronavirus herd immunity optimization. Electr. Power Compon. Syst. 2024, 1–30. [Google Scholar] [CrossRef]
- Soni, J.; Bhattacharjee, K. Equilibrium optimizer for multi-objective dynamic economic emission dispatch integration with plug-in electric vehicles and renewable sources. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 2683–2699. [Google Scholar] [CrossRef]
- Mishra, S.; Shaik, A.G. Solving bi-objective economic-emission load dispatch of diesel-wind-solar microgrid using African vulture optimization algorithm. Heliyon 2024, 10, e24993. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, K.; Rajagopalan, A.; Bajaj, M.; Sitharthan, R.; Mohammadi, S.A.D.; Blazek, V. Optimizing dynamic economic dispatch through an enhanced Cheetah-inspired algorithm for integrated renewable energy and demand-side management. Sci. Rep. 2024, 14, 3091. [Google Scholar] [CrossRef] [PubMed]
- Soni, J.; Bhattacharjee, K. Integrating renewable energy sources and electric vehicles in dynamic economic emission dispatch: An oppositional-based equilibrium optimizer approach. Eng. Optim. 2024, 56, 1845–1879. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, G. Metaheuristic optimization algorithms for multi-area economic dispatch of power systems: Part II—A comparative study. Artif. Intell. Rev. 2025, 58, 132. [Google Scholar] [CrossRef]
- Girishkumar, G.; Ganesan, S.; Jayakumar, N.; Subramanian, S. Black widow optimization for multi area economic emission dispatch. Intell. Autom. Soft Comput. 2023, 35, 609–625. [Google Scholar] [CrossRef]
- Pattanaik, J.K.; Mohapatra, S.K.; Ray, N.K.; Prusty, B.K.; Dash, S.S. Multi-area dynamic economic dispatch by simulated annealing. In Proceedings of the 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), Keonjhar, India, 29–31 July 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Basu, M. Teaching–learning-based optimization algorithm for multi-area economic dispatch. Energy 2014, 68, 21–28. [Google Scholar] [CrossRef]
- Jena, C.; Mishra, S.S.; Panda, B. Group search optimization technique for multi-areaeconomic dispatch. In Proceedings of the Information and Decision Sciences: Proceedings of the 6th International Conference on FICTA, Bhubaneswar, India, 14–15 October 2017; Springer: Singapore, 2018. [Google Scholar]
- Sudhakar, A.; Chandram, K.; Laxmi, A.J. Differential evolution for solving multi area economic dispatch. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 24–27 September 2014; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Sakthivel, V.; Sathya, P. Squirrel search optimization for non-convex multi-area economic dispatch. Int. J. Eng. 2021, 34, 120–127. [Google Scholar]
- Mohammadian, M.; Lorestani, A.; Ardehali, M. Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm. Energy 2018, 161, 710–724. [Google Scholar] [CrossRef]
- Secui, D.C. The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch. Energy 2015, 93, 2518–2545. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, W.; Dong, Y.; Rouyendegh, B.D. Multi-area economic dispatching using improved grasshopper optimization algorithm. Evol. Syst. 2021, 12, 837–847. [Google Scholar] [CrossRef]
- Sharifian, Y.; Abdi, H. Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm. Energy 2023, 267, 126550. [Google Scholar] [CrossRef]
- Elattar, E.E. Solving multi-area economic dispatch with multiple fuels using hybrid optimization technique. MEJ-Mansoura Eng. J. 2020, 40, 36–47. [Google Scholar] [CrossRef]
- Liang, H.; Lin, C.; Pang, A. Surrogate-based constraint-handling technique for multiarea combined economic/emission dispatch problems within Bi-level programming framework. IEEE Trans. Emerg. Top. Comput. Intell. 2024; early access. [Google Scholar]
- Ru, Y.; Wang, Y.; Mao, W.; Zheng, D.; Fang, W. Dynamic Environmental Economic Dispatch Considering the Uncertainty and Correlation of Photovoltaic–Wind Joint Power. Energies 2024, 17, 6247. [Google Scholar] [CrossRef]
- Meng, A.; Xu, X.; Zhang, Z.; Zeng, C.; Liang, R.; Zhang, Z.; Wang, X.; Yan, B.; Yin, H.; Luo, J. Solving high-dimensional multi-area economic dispatch problem by decoupled distributed crisscross optimization algorithm with population cross generation strategy. Energy 2022, 258, 124836. [Google Scholar] [CrossRef]
- Chen, X.; Tang, G. Solving static and dynamic multi-area economic dispatch problems using an improved competitive swarm optimization algorithm. Energy 2022, 238, 122035. [Google Scholar] [CrossRef]
- Basu, M. Quasi-oppositional group search optimization for multi-area dynamic economic dispatch. Int. J. Electr. Power Energy Syst. 2016, 78, 356–367. [Google Scholar] [CrossRef]
- Mokarram, M.J.; Gitizadeh, M.; Niknam, T.; Niknam, S. Robust and effective parallel process to coordinate multi-area economic dispatch (MAED) problems in the presence of uncertainty. IET Gener. Transm. Distrib. 2019, 13, 4197–4205. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, C.; Guo, Y.; Luo, T.; Mo, X.; Xia, Y. Approximate dynamic programming-based decentralised robust optimisation approach for multi-area economic dispatch considering wind power uncertainty. IET Renew. Power Gener. 2020, 14, 2376–2385. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, C.; Dong, S.; Mao, H. Fully distributed risk-based robust multi-area dynamic economic dispatch. In Proceedings of the 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Weihai, China, 13–16 July 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Nourianfar, H.; Abdi, H. Solving power systems optimization problems in the presence of renewable energy sources using modified exchange market algorithm. Sustain. Energy Grids Netw. 2021, 26, 100449. [Google Scholar] [CrossRef]
- Dubey, H.M.; Pandit, M.; Tyagi, N.; Panigrahi, B.K. Wind integrated multi area economic dispatch using backtracking search algorithm. In Proceedings of the 2016 IEEE 6th International Conference on Power Systems (ICPS), New Delhi, India, 4–6 March 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Azizivahed, A.; Razavi, S.-E.; Arefi, A.; Ghadi, M.J.; Li, L.; Zhang, J.; Shafie-Khah, M.; Catalao, J.P.S. Risk-oriented multi-area economic dispatch solution with high penetration of wind power generation and compressed air energy storage system. IEEE Trans. Sustain. Energy 2019, 11, 1569–1578. [Google Scholar] [CrossRef]
- Chaudhary, V.; Dubey, H.M.; Pandit, M.; Bansal, J.C. Multi-area economic dispatch with stochastic wind power using salp swarm algorithm. Array 2020, 8, 100044. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Q.; Yuan, Y.; He, K. A novel derivative search political optimization algorithm for multiarea economic dispatch incorporating renewable energy. Energy 2024, 300, 131510. [Google Scholar] [CrossRef]
- Ahmed, I.; Rehan, M.; Basit, A.; Malik, S.H.; Alvi, U.-E.; Hong, K.-S. Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations. Energy 2022, 261, 125178. [Google Scholar] [CrossRef]
- Kumari, C.L.; Kamboj, V.K.; Bath, S. Multi-area dynamic dispatch mathematical formulation incorporating PEVs/BEVs and renewable energy sources. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Online, 8–9 November 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Abdollahzadeh Sangrodi, R.; Samiei-Moghaddam, M.; Hajizadeh, A. Multi-area economic/emission dispatch considering the impact of the renewable energy resources and electric vehicles. Int. J. Nonlinear Anal. Appl. 2022, 13, 3083–3094. [Google Scholar]
- Adeyanju, O.M.; Canha, L.N. Decentralized multi-area multi-agent economic dispatch model using select meta-heuristic optimization algorithms. Electr. Power Syst. Res. 2021, 195, 107128. [Google Scholar] [CrossRef]
- Adeyanju, O.M.; Canha, L.N.; Rangel, C.A.S.; Prado, J.C.D. Semi-decentralized and fully decentralized multiarea economic dispatch considering participation of local private aggregators using meta-heuristic method. Int. J. Electr. Power Energy Syst. 2021, 128, 106656. [Google Scholar] [CrossRef]
- Cristian, P.; Tipán, L. Multi-objetive dispatching in multi-area power systems using the fuzzy satisficing method. Energies 2024, 17, 5044. [Google Scholar] [CrossRef]
- Soroudi, A.; Rabiee, A. Optimal multi-area generation schedule considering renewable resources mix: A real-time approach. IET Gener. Transm. Distrib. 2013, 7, 1011–1026. [Google Scholar] [CrossRef]
- Li, Z.; Shahidehpour, M.; Wu, W.; Zeng, B.; Zhang, B.; Zheng, W. Decentralized multiarea robust generation unit and tie-line scheduling under wind power uncertainty. IEEE Trans. Sustain. Energy 2015, 6, 1377–1388. [Google Scholar] [CrossRef]
- Sharifian, Y.; Abdi, H. Multi-area dynamic economic dispatch considering the demand response and price uncertainty. Energy 2025, 322, 135532. [Google Scholar] [CrossRef]
- Mokarram, M.J.; Nayeripour, M.; Niknam, T.; Waffenschmidt, E. Multi-area economic dispatch considering generation uncertainty. In Proceedings of the 2018 7th International Energy and Sustainability Conference (IESC), Nordrhein-Westfalen, Germany, 17–18 May 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Azizivahed, A.; Ghavidel, S.; Ghadi, M.J.; Li, L.; Zhang, J. Multi-area economic emission dispatch considering load uncertainty. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 11–14 April 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Antonycharles, A.; Venkadesh, R. Deep learning optimisation for dynamic multi-area economics dispatch issues. Int. J. Eng. Technol. Res. Manag. 2024, 8, 279–289. [Google Scholar]
- Ding, L.; Cui, Y.; Yan, G.; Huang, Y.; Fan, Z. Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning. Int. J. Electr. Power Energy Syst. 2024, 157, 109867. [Google Scholar] [CrossRef]
- Hong, Y.-Y.; Zeng, H. Decentralized Multi-Area Economic Dispatch in Power Systems Using the Consensus Algorithm. Energies 2024, 17, 3609. [Google Scholar] [CrossRef]
- Yu, L.; Li, D.; Li, N. Offline economic dispatch for multi-area power system via hierarchical reinforcement learning. Int. J. Electr. Power Energy Syst. 2023, 152, 109195. [Google Scholar] [CrossRef]
- Safiri, S.; Nikoofard, A.; Khosravy, M.; Senjyu, T. Multi-agent distributed reinforcement learning algorithm for free-model economic-environmental power and CHP dispatch problems. IEEE Trans. Power Syst. 2022, 38, 4489–4500. [Google Scholar] [CrossRef]
- Zare, M.; Narimani, M.R.; Malekpour, M.; Azizipanah-Abarghooee, R.; Terzija, V. Reserve constrained dynamic economic dispatch in multi-area power systems: An improved fireworks algorithm. Int. J. Electr. Power Energy Syst. 2021, 126, 106579. [Google Scholar] [CrossRef]
- Chen, C.-L.; Chen, Z.-Y.; Lee, T.-Y. Multi-area economic generation and reserve dispatch considering large-scale integration of wind power. Int. J. Electr. Power Energy Syst. 2014, 55, 171–178. [Google Scholar] [CrossRef]
- Lotfi, H.; Nikkhah, M.H. Presenting a novel evolutionary method for reserve constrained multi-area economic/emission dispatch problem. Sustainability 2023, 15, 10614. [Google Scholar] [CrossRef]
- Sharma, M.; Pandit, M.; Srivastava, L. Reserve constrained multi-area economic dispatch employing differential evolution with time-varying mutation. Int. J. Electr. Power Energy Syst. 2011, 33, 753–766. [Google Scholar] [CrossRef]
- Narimani, H.; Razavi, S.E.; Azizivahed, A.; Naderi, E.; Fathi, M.; Ataei, M.H.; Narimani, M.R. A multi-objective framework for multi-area economic emission dispatch. Energy 2018, 154, 126–142. [Google Scholar] [CrossRef]
- Samadi, M.; Nikkhah, M.H.; Lotfi, H. Electric vehicles and the operation of multi-carrier energy systems in the smart grid: A review study. Int. J. Ambient Energy 2024, 45, 2331231. [Google Scholar] [CrossRef]
- Sinha, N.; Chakrabarti, R.; Chattopadhyay, P. Evolutionary programming techniques for economic load dispatch. IEEE Trans. Evol. Comput. 2003, 7, 83–94. [Google Scholar] [CrossRef]




| Ref. | Year | Objective Function | Method | DERs | ESSs | Test System | Problem Type | ||
|---|---|---|---|---|---|---|---|---|---|
| Cost | Emission | ED | DED | ||||||
| [27] | 2023 | ✓ | ✓ | SACDE | ✓ | ✗ | 10-units | ✗ | ✓ |
| [28] | 2025 | ✓ | ✓ | PSO-MSFLA | ✓ | ✓ | 10-units | ✗ | ✓ |
| [29] | 2017 | ✓ | ✗ | IPSO | ✗ | ✗ | 10-units | ✓ | ✗ |
| [38] | 2017 | ✓ | ✗ | PSO-BBCO | ✗ | ✗ | 6-,15- and 40-units | ✓ | ✗ |
| [40] | 2023 | ✓ | ✓ | MOSHEPO | ✗ | ✗ | 10-units | ✓ | ✗ |
| [41] | 2014 | ✓ | ✗ | PSO | ✗ | ✗ | 10-, 40-units | ✓ | ✗ |
| [44] | 2012 | ✓ | ✗ | FA | ✗ | ✗ | 10-units | ✓ | ✗ |
| [48] | 2013 | ✓ | ✗ | CSA | ✗ | ✗ | 6-,10-,20- and 40-units | ✓ | ✗ |
| [49] | 2015 | ✓ | ✗ | CSA | ✗ | ✗ | 6-units | ✓ | ✗ |
| [51] | 2011 | ✓ | ✗ | HBMO | ✗ | ✗ | 10-units | ✓ | ✗ |
| [52] | 2010 | ✓ | ✓ | BFA | ✗ | ✗ | 6-, and 40-units | ✓ | ✗ |
| [53] | 2011 | ✓ | ✗ | HSA | ✗ | ✗ | 6-, and 15-units | ✓ | ✗ |
| [54] | 2013 | ✓ | ✗ | HSA | ✗ | ✗ | 6-, and 10-units | ✓ | ✗ |
| [56] | 2010 | ✓ | ✗ | ABCO | ✗ | ✗ | 6-, and 10-units | ✓ | ✗ |
| [58] | 2014 | ✓ | ✓ | ABCO | ✗ | ✗ | 6-, and 40-units | ✓ | ✗ |
| [59] | 2017 | ✓ | ✗ | ALO | ✗ | ✗ | 6-, 10-, and 40-units | ✓ | ✗ |
| [60] | 2016 | ✓ | ✗ | HGWO | ✗ | ✗ | 6-, 15-, and 40-units | ✓ | ✗ |
| [61] | 2016 | ✓ | ✗ | GWO | ✗ | ✗ | 6-, 15-, and 40-units | ✓ | ✗ |
| [62] | 2016 | ✓ | ✗ | CBA | ✗ | ✗ | 6-, 15-, and 40-units | ✓ | ✗ |
| [63] | 2018 | ✓ | ✗ | WOA | ✗ | ✗ | 6-, and 15-units | ✓ | ✗ |
| [66] | 2015 | ✓ | ✗ | OIWO | ✗ | ✗ | 13-, 40-,110-, and 140-units | ✓ | ✗ |
| [67] | 2019 | ✓ | ✓ | MSFLA | ✗ | ✗ | 6-, 15-, and 40-units | ✓ | ✗ |
| [68] | 2020 | ✓ | ✗ | SSA | ✗ | ✗ | 15-, 40-, and 110-units | ✓ | ✗ |
| [71] | 2019 | ✓ | ✗ | IGA | ✓ | ✗ | 5-units | ✗ | ✓ |
| [72] | 2019 | ✓ | ✗ | MGA-SA | ✓ | ✗ | 32-units | ✗ | ✓ |
| [74] | 2017 | ✓ | ✓ | IABCO | ✗ | ✗ | 6-, and 10-units | ✓ | ✗ |
| [76] | 2018 | ✓ | ✗ | CFA | ✗ | ✗ | 40-, and 140-units | ✓ | ✗ |
| [78] | 2016 | ✓ | ✗ | IDE | ✗ | ✗ | 6-, 13-, and 40-units | ✓ | ✗ |
| [79] | 2018 | ✓ | ✗ | IHSA | ✓ | ✗ | 5-units | ✗ | ✓ |
| [80] | 2020 | ✓ | ✗ | CWOA | ✓ | ✗ | 5-units | ✗ | ✓ |
| Ref. | Year | Objective Function | Method | DERs | Uncertainty | DR | Problem Type | ||
|---|---|---|---|---|---|---|---|---|---|
| Cost | Emission | MAED | MADED | ||||||
| [91] | 2023 | ✓ | ✓ | BWO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [92] | 2020 | ✓ | ✗ | SA | ✗ | ✗ | ✗ | ✓ | ✗ |
| [93] | 2014 | ✓ | ✗ | TLBO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [94] | 2018 | ✓ | ✗ | GSO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [95] | 2014 | ✓ | ✗ | DE | ✗ | ✗ | ✗ | ✓ | ✗ |
| [96] | 2021 | ✓ | ✗ | SSO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [57] | 2013 | ✓ | ✗ | ABCO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [97] | 2018 | ✓ | ✗ | EPSO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [98] | 2015 | ✓ | ✗ | ABCO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [99] | 2021 | ✓ | ✗ | IGO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [100] | 2023 | ✓ | ✗ | HGO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [101] | 2020 | ✓ | ✗ | CPSO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [102] | 2024 | ✓ | ✓ | SBO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [103] | 2021 | ✓ | ✗ | IFA | ✗ | ✗ | ✗ | ✗ | ✓ |
| [105] | 2022 | ✓ | ✗ | ICS | ✗ | ✗ | ✗ | ✓ | ✗ |
| [106] | 2016 | ✓ | ✗ | QOGS | ✗ | ✗ | ✗ | ✗ | ✓ |
| [113] | 2020 | ✓ | ✗ | SS | ✗ | ✓ | ✗ | ✓ | ✗ |
| [115] | 2022 | ✓ | ✗ | CSO | ✗ | ✗ | ✗ | ✓ | ✗ |
| [116] | 2020 | ✓ | ✗ | RO | ✓ | ✓ | ✗ | ✗ | ✓ |
| [117] | 2022 | ✓ | ✓ | MPSO | ✓ | ✓ | ✗ | ✗ | ✓ |
| [23] | 2024 | ✓ | ✓ | PSO-WOA | ✓ | ✓ | ✗ | ✗ | ✓ |
| [22] | 2019 | ✓ | ✓ | NSGA-II | ✓ | ✗ | ✗ | ✗ | ✓ |
| [121] | 2013 | ✓ | ✗ | RO | ✓ | ✓ | ✗ | ✓ | ✗ |
| [122] | 2015 | ✓ | ✗ | RO | ✓ | ✓ | ✗ | ✓ | ✗ |
| [123] | 2025 | ✓ | ✗ | CSA | ✗ | ✓ | ✓ | ✗ | ✓ |
| [124] | 2018 | ✓ | ✗ | Lagrangian relaxation | ✓ | ✓ | ✗ | ✓ | ✗ |
| [125] | 2017 | ✓ | ✓ | PSO-SFLA | ✗ | ✓ | ✗ | ✓ | ✗ |
| [126] | 2024 | ✓ | ✗ | DL | ✗ | ✗ | ✗ | ✓ | ✗ |
| [127] | 2024 | ✓ | ✗ | RL | ✗ | ✗ | ✗ | ✓ | ✗ |
| [129] | 2023 | ✓ | ✗ | HRL | ✗ | ✗ | ✗ | ✓ | ✗ |
| Feature | Percentage of Studies Covering |
|---|---|
| Deterministic formulation | ~70% |
| Stochastic/robust approaches | ~30% |
| Integration of DERs | ~30% |
| Integration of DR mechanisms | ~10% |
| Consideration of EVs | ~18% |
| Use of MADED (dynamic) models | ~25% |
| Inclusion of reliability metrics | ~18% |
| Control Variables | Methods | |||
|---|---|---|---|---|
| DE [93] | SA [93] | EP [93] | RCGA [93] | |
| P1,1 | 500.00 | 500.00 | 500.00 | 500.00 |
| P1,2 | 200.00 | 200.00 | 200.00 | 200.00 |
| P1,3 | 150.00 | 150.00 | 149.98 | 149.63 |
| P2,1 | 204.33 | 204.21 | 206.44 | 205.93 |
| P2,2 | 154.70 | 155.05 | 154.89 | 155.83 |
| P2,3 | 67.55 | 67.53 | 65.22 | 65.35 |
| T2,1 | 82.773 | 82.773 | 82.761 | 82.410 |
| Cost ($) | 12,255.39 | 12,255.39 | 12,255.43 | 12,256.23 |
| Control Variables | Methods | ||||||
|---|---|---|---|---|---|---|---|
| PSO-SFLA [135] | TLBO [93] | DE [93] | EP [93] | RCGA [93] | ABCO [57] | SA [93] | |
| Output Active Power of Generators | Power (kW) | ||||||
| P1,1 | 225.297361 | 224.308 | 225.444 | 223.8491 | 239.095 | 225.943 | 228.17 |
| P1,2 | 211.803184 | 210.664 | 210.166 | 209.5759 | 216.116 | 211.159 | 213.34 |
| P1,3 | 489.740555 | 491.699 | 491.284 | 496.068 | 484.150 | 489.921 | 482.82 |
| P1,4 | 241.433389 | 240.624 | 240.895 | 237.9954 | 240.622 | 240.623 | 242.64 |
| P2,1 | 246.242359 | 249.564 | 251.004 | 259.4299 | 259.663 | 254.039 | 253.50 |
| P2,2 | 232.565497 | 235.897 | 238.860 | 228.9422 | 219.910 | 235.492 | 236.57 |
| P2,3 | 260.429189 | 263.741 | 264.090 | 264.1133 | 254.514 | 263.883 | 266.63 |
| P3,1 | 239.008128 | 237.132 | 236.998 | 238.228 | 231.356 | 237.000 | 234.31 |
| P3,2 | 336.091 | 332.591 | 326.539 | 331.2982 | 341.962 | 328.737 | 325.95 |
| P3,3 | 252.9628 | 249.462 | 250.333 | 246.6025 | 248.278 | 248.860 | 251.45 |
| Active power flows related to Ti-lines | |||||||
| T21 | 100 | 100 | 99.468 | 100 | 93.17 | 99.8288 | 100 |
| T31 | 98.9523326 | 100 | 100 | 100 | 93.8739 | 99.7334 | 98.80 |
| T32 | 45.1750355 | 35.4599 | 30.281 | 32.5231 | 43.7824 | 31.2615 | 28.38 |
| Cost ($/h) | 653.86223 | 653.9977 | 654.0184 | 655.1716 | 657.3325 | 653.9995 | 654.9016 |
| Control Variables | Methods | |||||
|---|---|---|---|---|---|---|
| PSO-SFLA [134] | TLBO [93] | DE [93] | EP [93] | RCGA [93] | ABCO [57] | |
| Output Active Power of Generators | Power (kW) | |||||
| P1,1 | 108.0679321 | 110.8791 | 111.5448 | 107.6644 | 95.7552 | 111.102 |
| P1,2 | 110.1474658 | 112.955 | 111.7092 | 112.0673 | 88.5828 | 109.9774 |
| P1,3 | 94.58036466 | 97.4151 | 98.2429 | 91.8132 | 97.6063 | 100.9238 |
| P1,4 | 177.2563282 | 179.9466 | 179.8834 | 175.3171 | 126.4966 | 190.0000 |
| P1,5 | 86.64690215 | 89.4955 | 95.95 | 92.4242 | 71.0127 | 96.9390 |
| P1,6 | 137.1333194 | 139.8937 | 139.3533 | 112.5634 | 116.3866 | 96.9675 |
| P1,7 | 257.1831881 | 259.7338 | 259.3395 | 257.537 | 244.5857 | 259.6950 |
| P1,8 | 282.1316818 | 284.6387 | 285.3569 | 297.3619 | 210.692 | 276.8725 |
| P1,9 | 282.2345616 | 284.7414 | 284.9627 | 285.2035 | 236.1685 | 300.0000 |
| P1,10 | 130.2275526 | 130.1151 | 130.2217 | 134.5862 | 130.1286 | 130.6977 |
| P2,1 | 171.6969240 | 168.8311 | 243.6005 | 162.4313 | 367.4862 | 245.1007 |
| P2,2 | 171.6872316 | 168.8214 | 95.389 | 217.8387 | 297.9501 | 94.0000 |
| P2,3 | 127.9623013 | 125.0623 | 214.5171 | 125.0000 | 394.9246 | 125.0000 |
| P2,4 | 396.9696801 | 394.2799 | 394.0808 | 384.0187 | 370.3473 | 434.8062 |
| P2,5 | 396.9427012 | 394.2529 | 394.2481 | 397.6902 | 455.7123 | 390.6743 |
| P2,6 | 486.6625878 | 484.0429 | 394.436 | 407.4993 | 393.9673 | 395.0043 |
| P2,7 | 491.8995953 | 489.284 | 489.9552 | 500.0000 | 424.1994 | 500.0000 |
| P2,8 | 491.8859060 | 489.2703 | 488.8885 | 480.8874 | 484.5498 | 500.0000 |
| P2,9 | 513.9330768 | 511.3347 | 511.4713 | 524.8487 | 528.4148 | 530.7889 |
| P2,10 | 514.053083 | 511.4548 | 511.4125 | 499.7857 | 511.3403 | 514.4090 |
| P3,1 | 521.1923035 | 523.2816 | 523.2896 | 523.4522 | 525.4497 | 527.1989 |
| P3,2 | 521.3430669 | 523.4321 | 523.295 | 526.5051 | 510.7391 | 502.0795 |
| P3,3 | 521.2878705 | 523.377 | 523.4129 | 537.3675 | 533.6399 | 530.3657 |
| P3,4 | 521.5086563 | 523.5974 | 523.4073 | 525.7752 | 518.112 | 542.3424 |
| P3,5 | 521.4604721 | 523.5493 | 523.7703 | 531.2092 | 538.1994 | 520.2448 |
| P3,6 | 521.1879960 | 523.2773 | 523.5424 | 513.5659 | 527.4775 | 533.6389 |
| P3,7 | 10.01750405 | 10.1442 | 10.1621 | 11.3612 | 24.4133 | 10.0000 |
| P3,8 | 10.01750405 | 10.0248 | 10.1326 | 10.0000 | 28.9856 | 10.0000 |
| P3,9 | 10.01750405 | 10.0862 | 10.6366 | 10.0000 | 28.8571 | 10.0000 |
| P3,10 | 85.38459647 | 88.2354 | 88.1189 | 78.3523 | 87.9016 | 96.7699 |
| P4,1 | 190.0000000 | 189.919 | 161.222 | 162.448 | 159.7482 | 190.0000 |
| P4,2 | 189.8075671 | 189.9718 | 189.5668 | 166.3508 | 153.6255 | 168.6841 |
| P4,3 | 190.0000000 | 190.0000 | 189.924 | 190.0000 | 160.4706 | 173.6165 |
| P4,4 | 167.8927000 | 164.8927 | 165.6621 | 178.4541 | 169.9359 | 186.374 |
| P4,5 | 168.1343000 | 165.1343 | 165.4321 | 168.0752 | 168.522 | 200.0000 |
| P4,6 | 168.2322000 | 165.2322 | 164.9868 | 174.4529 | 172.2638 | 164.957 |
| P4,7 | 93.27580000 | 90.2758 | 109.8137 | 77.3875 | 91.2423 | 92.5627 |
| P4,8 | 110.0000000 | 109.9813 | 109.7935 | 90.1059 | 86.4778 | 96.9911 |
| P4,9 | 93.20190000 | 90.2019 | 90.1543 | 109.5654 | 88.3627 | 109.8153 |
| P4,10 | 456.7356754 | 458.9376 | 459.114 | 549.0335 | 279.2691 | 431.4011 |
| Active power flows related to Ti-lines | ||||||
| T12 | −200.000000 | 185.5862 | 172.0652 | 200 | −71.7855 | 191.7078 |
| T31 | −86.45568516 | 23.6686 | −36.306 | 17.5885 | 161.9336 | 6.674 |
| T32 | 91.48638895 | 183.0863 | 191.1128 | 200 | 95.2833 | 183.1852 |
| T41 | 195.8463887 | 47.1037 | 86.807 | 90.8733 | −76.134 | 86.859 |
| T42 | 144.8205240 | 94.6933 | 98.8231 | 100 | −52.39 | 95.3237 |
| T43 | 193.9153037 | 97.7497 | 45.0391 | 100 | 83.4418 | 57.2192 |
| Total cost ($/h) | 121,619.8377 | 121,760.50 | 121,794.80 | 123,591.90 | 128,046.50 | 124,009.4 |
| Stage | Research Focus | Objective | Suggested Methods |
|---|---|---|---|
| Stage 1 | Uncertainty modeling in RES and demand | Improve realism of dispatch models | Stochastic/Robust Optimization |
| Stage 2 | Demand Response integration | Enable flexible, consumer-driven dispatch | Real-time DR with adaptive control |
| Stage 3 | EV and V2G modeling | Incorporate mobile storage and dynamic load | Multi-agent and probabilistic models |
| Stage 4 | Hybrid optimization methods | Enhance convergence and robustness | MH-AI hybrids with dynamic tuning |
| Stage 5 | Hierarchical & resilient architectures | Align with decentralized grids | Multi-layer optimization + cybersecurity modeling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotfi, H. Multi-Area Economic Dispatch Under Renewable Integration: Optimization Challenges and Research Perspectives. Processes 2025, 13, 3766. https://doi.org/10.3390/pr13123766
Lotfi H. Multi-Area Economic Dispatch Under Renewable Integration: Optimization Challenges and Research Perspectives. Processes. 2025; 13(12):3766. https://doi.org/10.3390/pr13123766
Chicago/Turabian StyleLotfi, Hossein. 2025. "Multi-Area Economic Dispatch Under Renewable Integration: Optimization Challenges and Research Perspectives" Processes 13, no. 12: 3766. https://doi.org/10.3390/pr13123766
APA StyleLotfi, H. (2025). Multi-Area Economic Dispatch Under Renewable Integration: Optimization Challenges and Research Perspectives. Processes, 13(12), 3766. https://doi.org/10.3390/pr13123766

